greatest common divisor

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "greatest common divisor"

Transcription

1 4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson about the ntent of the notaton. Example: (13320, 22140) =?

2 4. GCD 2 Soluton #1: The dvsors of are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 37, 40, 45, 60, 72, 74, 90, 111, 120, 148, 180, 185, 222, 296, 333, 360, 370, 444, 555, 666, 740, 888, 1110, 1332, 1480, 1665, 2220, 2664, 3330, 4440, 6660, 13320; the dvsors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, 45, 54, 60, 82, 90, 108, 123, 135, 164, 180, 205, 246, 270, 369, 410, 492, 540, 615, 738, 820, 1107, 1230, 1476, 1845, 2214, 2460, 3690, 4428, 5535, 7380, 11070, The common dvsors are hghlghted; the largest number n both sets s 180.

3 4. GCD 3 Soluton #2: The prme factorzatons of these numbers are = and = The gcd can be nferred from these factorzatons to be = 180. Proposton Suppose that the ntegers m and n have prme factorzatons d p and both numbers.) Then (m, n) = e p, respectvely, where the d s and e s are nonnegatve exponents (thereby allowng us to use the same set of prmes for mn(d p,e ). // Corollary Every common dvsor of m and n s a dvsor of (m, n). // Porsm Suppose that the ntegers m and n have prme factorzatons [m, n] = d p and max(d p,e ). // e p, respectvely, where the d s and e s are nonnegatve exponents. Then the least common multple of m and n s gven by the formula Corollary (m, n) [m, n] = mn. //

4 4. GCD 4 Soluton #3: Usng the dvson algorthm, we fnd that = Ths relaton mples that any common dvsor of and and n partcular ther gcd must also be a dvsor of Sgnfcantly, t also mples that any common dvsor of 8820 and and n partcular ther gcd s a common dvsor of of and It follows that (8820, 13320) (13320, 22140) and (13320, 22140) (8820, 13320). So (13320, 22140) = (8820, 13320). Ths prncple can be codfed n the followng Proposton If m n are postve ntegers and ntegers q, r satsfy m = qn + r, 0 r < n, by the Dvson Algorthm, then (m,n) = (n,r). Proof Easy. // Applyng ths proposton allows us to say that (8820, 13320) = (4500, 8820), snce 4500 s the remander of the dvson of by

5 4. GCD We may therefore reduce the sze of the orgnal numbers we are dealng wthout havng yet computed the gcd. Contnung: (13320,22140) = (8820,13320) = (4500,8820) = (4320,4500) = (180,4320) = = = = = = Note that at each stage, the prevous dvsor becomes the new dvdend and the prevous remander becomes the new dvsor, the dvsons endng when the remander reaches 0. The fnal nonzero remander s the desred gcd. Ths process s called the Eucldean algorthm. (It appears n a slghtly dfferent form Eucld s Elements.) It can be much abbrevated by layng out the computatons n a smple array:

6 4. GCD The second column holds the nteger quotents ( q ) for the dvsons obtaned when we dvde a number n the frst column ( r ) nto the number above t ( r 1 ). The remander of the dvson ( r +1 ) becomes the subsequent number n the frst column, and so on: r 1 r r +1 Note how much less computaton s requred to fnd the gcd by the Eucldean algorthm than be the frst two methods we consdered! Indeed, the Eucldean algorthm has long been revered for ts remarable smplcty. 0 q

7 4. GCD 7 Theorem The gcd of the (postve) ntegers m and n s representable as an nteger lnear combnaton of m and n. That s, there exst ntegers x and y so that (m,n) = xm + yn. In fact, (m, n) s the smallest postve nteger lnear combnaton of m and n. Proof We need only prove the fnal statement snce the frst asserton follows from t drectly. Let S be the set of all postve ntegers of the form xm + yn. Clearly, S s non-empty (consder x = 1, y = 0, or x = 0, y = 1), so t has a least element. Call ths number g = x 0 m + y 0 n. Now g s dvsble by every common factor of m and n; n partcular, (m, n) g. So (m, n) g. On the other hand, dvdng m by g yelds a quotent and remander: m = qg + r, 0 r < g. Subttutng for g n ths equaton we obtan m = q(x 0 m+ y 0 n)+ r, or r = (1 qx 0 )m+( qy 0 )n. But ths means ether that r s n S and s smaller than g, whch s mpossble, or that r = 0. Therefore, g m. An entrely smlar argument shows that g n, too. So g s a common dvsor of m and n, whence g (m, n), mplyng that g (m, n). We can then conclude that g = (m, n). // It s possble to extend the Eucldean algorthm slghtly so as to compute the values of x and y for whch (m,n) = xm + yn: Fnd x and y so that (22140, 13320) = 22140x y.

8 4. GCD 8 Consder solutons to the equaton r = 22140x y r x y q We place the trval solutons x = 1, y = 0, and x = 0, y = 1 n the frst two rows of the array (recognzable as the 2 2 dentty matrx), then use the same arthmetc from the nteger dvson of each value of r by the subsequent value to determne the subsequent values of x and y as well (thn elementary row operatons): f the ( 1)st and th rows of the array are determned by equatons r 1 = 22140x y 1 r = 22140x y and r +1 = r 1 q r, then the (+1)st row s

9 4. GCD 9 determned by subtractng q tmes the th equaton from the ( 1)st: x +1 = x 1 q x, y +1 = y 1 q y. When the array produces the gcd as the last nonzero remander, the row of the array contanng ths gcd also contans the approprate coeffcents that represent t as a lnear combnaton of and 13320: for nstance, from the above array, we see that 180 = If the numbers a, b have gcd = 1, we see that they share no common factors besdes 1. Such are numbers are sad to be relatvely prme to each other. Eucld s Lemma If a bc but (a, b) = 1, then a c. Proof Snce (a, b) = 1, we can fnd ntegers x and y so that ax +by = 1. Multplyng through by c gves cax + cby = c, and snce both terms on the left are dvsble by a (the second term because a bc), t follows that a c. //

We are now ready to answer the question: What are the possible cardinalities for finite fields?

We are now ready to answer the question: What are the possible cardinalities for finite fields? Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

PLANAR GRAPHS. Plane graph (or embedded graph) A graph that is drawn on the plane without edge crossing, is called a Plane graph

PLANAR GRAPHS. Plane graph (or embedded graph) A graph that is drawn on the plane without edge crossing, is called a Plane graph PLANAR GRAPHS Basc defntons Isomorphc graphs Two graphs G(V,E) and G2(V2,E2) are somorphc f there s a one-to-one correspondence F of ther vertces such that the followng holds: - u,v V, uv E, => F(u)F(v)

More information

Math 31 Lesson Plan. Day 27: Fundamental Theorem of Finite Abelian Groups. Elizabeth Gillaspy. November 11, 2011

Math 31 Lesson Plan. Day 27: Fundamental Theorem of Finite Abelian Groups. Elizabeth Gillaspy. November 11, 2011 Math 31 Lesson Plan Day 27: Fundamental Theorem of Fnte Abelan Groups Elzabeth Gllaspy November 11, 2011 Supples needed: Colored chal Quzzes Homewor 4 envelopes: evals, HW, presentaton rubrcs, * probs

More information

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2 EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

More information

A Note on the Decomposition of a Random Sample Size

A Note on the Decomposition of a Random Sample Size A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

Ring structure of splines on triangulations

Ring structure of splines on triangulations www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

More information

SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY

SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY PARKER HAVIZA Abstract. Ths paper ntroduces three mathematcal methods of sharng encrypted nformaton: the Pohlg-Hellman Key Exchange and the ElGamal and RSA

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006 Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,

More information

The eigenvalue derivatives of linear damped systems

The eigenvalue derivatives of linear damped systems Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by Yeong-Jeu Sun Department of Electrcal Engneerng I-Shou Unversty Kaohsung, Tawan 840, R.O.C e-mal: yjsun@su.edu.tw

More information

Formula of Total Probability, Bayes Rule, and Applications

Formula of Total Probability, Bayes Rule, and Applications 1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.

More information

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1 Nov Sad J. Math. Vol. 36, No. 2, 2006, 0-09 IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS Modrag S. Petkovć 2, Dušan M. Mloševć 3 Abstract. A new theorem concerned

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

New bounds in Balog-Szemerédi-Gowers theorem

New bounds in Balog-Szemerédi-Gowers theorem New bounds n Balog-Szemeréd-Gowers theorem By Tomasz Schoen Abstract We prove, n partcular, that every fnte subset A of an abelan group wth the addtve energy κ A 3 contans a set A such that A κ A and A

More information

Matrix Multiplication I

Matrix Multiplication I Matrx Multplcaton I Yuval Flmus February 2, 2012 These notes are based on a lecture gven at the Toronto Student Semnar on February 2, 2012. The materal s taen mostly from the boo Algebrac Complexty Theory

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Compiling for Parallelism & Locality. Dependence Testing in General. Algorithms for Solving the Dependence Problem. Dependence Testing

Compiling for Parallelism & Locality. Dependence Testing in General. Algorithms for Solving the Dependence Problem. Dependence Testing Complng for Parallelsm & Localty Dependence Testng n General Assgnments Deadlne for proect 4 extended to Dec 1 Last tme Data dependences and loops Today Fnsh data dependence analyss for loops General code

More information

5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Simultaneous eigenstates: Consider two operators that commute:  η = a η (13.29) 5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let  satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB  η = a η (13.29) ˆB [  η ] = ˆB [a η ] = a

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3 Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons

More information

Generalizing the degree sequence problem

Generalizing the degree sequence problem Mddlebury College March 2009 Arzona State Unversty Dscrete Mathematcs Semnar The degree sequence problem Problem: Gven an nteger sequence d = (d 1,...,d n ) determne f there exsts a graph G wth d as ts

More information

Math 131: Homework 4 Solutions

Math 131: Homework 4 Solutions Math 3: Homework 4 Solutons Greg Parker, Wyatt Mackey, Chrstan Carrck October 6, 05 Problem (Munkres 3.) Let {A n } be a sequence of connected subspaces of X such that A n \ A n+ 6= ; for all n. Then S

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

Question 2: What is the variance and standard deviation of a dataset?

Question 2: What is the variance and standard deviation of a dataset? Queston 2: What s the varance and standard devaton of a dataset? The varance of the data uses all of the data to compute a measure of the spread n the data. The varance may be computed for a sample of

More information

1 Approximation Algorithms

1 Approximation Algorithms CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

Lossless Data Compression

Lossless Data Compression Lossless Data Compresson Lecture : Unquely Decodable and Instantaneous Codes Sam Rowes September 5, 005 Let s focus on the lossless data compresson problem for now, and not worry about nosy channel codng

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

More information

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1 (4.): ontours. Fnd an admssble parametrzaton. (a). the lne segment from z + to z 3. z(t) z (t) + t(z z ) z(t) + + t( 3 ( + )) z(t) + + t( 3 4); t (b). the crcle jz j 4 traversed once clockwse startng at

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Fast degree elevation and knot insertion for B-spline curves

Fast degree elevation and knot insertion for B-spline curves Computer Aded Geometrc Desgn 22 (2005) 183 197 www.elsever.com/locate/cagd Fast degree elevaton and knot nserton for B-splne curves Q-Xng Huang a,sh-mnhu a,, Ralph R. Martn b a Department of Computer Scence

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Level Annuities with Payments Less Frequent than Each Interest Period

Level Annuities with Payments Less Frequent than Each Interest Period Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier

Lesson 2 Chapter Two Three Phase Uncontrolled Rectifier Lesson 2 Chapter Two Three Phase Uncontrolled Rectfer. Operatng prncple of three phase half wave uncontrolled rectfer The half wave uncontrolled converter s the smplest of all three phase rectfer topologes.

More information

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Implementation of Deutsch's Algorithm Using Mathcad

Implementation of Deutsch's Algorithm Using Mathcad Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

More information

The k-binomial Transforms and the Hankel Transform

The k-binomial Transforms and the Hankel Transform 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 9 (2006, Artcle 06.1.1 The k-bnomal Transforms and the Hankel Transform Mchael Z. Spvey Department of Mathematcs and Computer Scence Unversty of Puget

More information

A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME

A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME NEIL J. CALKIN DEPARTMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, SC 29634-1907 AND JOHN G. STEVENS AND DIANA M. THOMAS

More information

INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations

INTRODUCTION. governed by a differential equation Need systematic approaches to generate FE equations WEIGHTED RESIDUA METHOD INTRODUCTION Drect stffness method s lmted for smple D problems PMPE s lmted to potental problems FEM can be appled to many engneerng problems that are governed by a dfferental

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

2.4 Bivariate distributions

2.4 Bivariate distributions page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

Lecture 2 Sequence Alignment. Burr Settles IBS Summer Research Program 2008 bsettles@cs.wisc.edu www.cs.wisc.edu/~bsettles/ibs08/

Lecture 2 Sequence Alignment. Burr Settles IBS Summer Research Program 2008 bsettles@cs.wisc.edu www.cs.wisc.edu/~bsettles/ibs08/ Lecture 2 Sequence lgnment Burr Settles IBS Summer Research Program 2008 bsettles@cs.wsc.edu www.cs.wsc.edu/~bsettles/bs08/ Sequence lgnment: Task Defnton gven: a par of sequences DN or proten) a method

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

A Computer Technique for Solving LP Problems with Bounded Variables

A Computer Technique for Solving LP Problems with Bounded Variables Dhaka Unv. J. Sc. 60(2): 163-168, 2012 (July) A Computer Technque for Solvng LP Problems wth Bounded Varables S. M. Atqur Rahman Chowdhury * and Sanwar Uddn Ahmad Department of Mathematcs; Unversty of

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Section B9: Zener Diodes

Section B9: Zener Diodes Secton B9: Zener Dodes When we frst talked about practcal dodes, t was mentoned that a parameter assocated wth the dode n the reverse bas regon was the breakdown voltage, BR, also known as the peak-nverse

More information

IDEAL FACTORIZATION KEITH CONRAD

IDEAL FACTORIZATION KEITH CONRAD IDEAL FACTORIZATION KEITH CONRAD 1. Introducton We wll prove here the fundamental theorem of deal theory n number felds: every nonzero proper deal n the ntegers of a number feld admts unque factorzaton

More information

2. Linear Algebraic Equations

2. Linear Algebraic Equations 2. Lnear Algebrac Equatons Many physcal systems yeld smultaneous algebrac equatons when mathematcal functons are requred to satsfy several condtons smultaneously. Each condton results n an equaton that

More information

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001. Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

Properties of American Derivative Securities

Properties of American Derivative Securities Capter 6 Propertes of Amercan Dervatve Securtes 6.1 Te propertes Defnton 6.1 An Amercan dervatve securty s a sequence of non-negatve random varables fg k g n k= suc tat eac G k s F k -measurable. Te owner

More information

ErrorPropagation.nb 1. Error Propagation

ErrorPropagation.nb 1. Error Propagation ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Introduction: Analysis of Electronic Circuits

Introduction: Analysis of Electronic Circuits /30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,

More information

Solutions to First Midterm

Solutions to First Midterm rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

Solutions to the exam in SF2862, June 2009

Solutions to the exam in SF2862, June 2009 Solutons to the exam n SF86, June 009 Exercse 1. Ths s a determnstc perodc-revew nventory model. Let n = the number of consdered wees,.e. n = 4 n ths exercse, and r = the demand at wee,.e. r 1 = r = r

More information

1. Math 210 Finite Mathematics

1. Math 210 Finite Mathematics 1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

Chapter 7. Random-Variate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 Random-Variate Generation

Chapter 7. Random-Variate Generation 7.1. Prof. Dr. Mesut Güneş Ch. 7 Random-Variate Generation Chapter 7 Random-Varate Generaton 7. Contents Inverse-transform Technque Acceptance-Rejecton Technque Specal Propertes 7. Purpose & Overvew Develop understandng of generatng samples from a specfed dstrbuton

More information

Performance attribution for multi-layered investment decisions

Performance attribution for multi-layered investment decisions Performance attrbuton for mult-layered nvestment decsons 880 Thrd Avenue 7th Floor Ne Yor, NY 10022 212.866.9200 t 212.866.9201 f qsnvestors.com Inna Oounova Head of Strategc Asset Allocaton Portfolo Management

More information

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004 OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL Thomas S. Ferguson and C. Zachary Glsten UCLA and Bell Communcatons May 985, revsed 2004 Abstract. Optmal nvestment polces for maxmzng the expected

More information

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets . The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely

More information

INSTITUT FÜR INFORMATIK

INSTITUT FÜR INFORMATIK INSTITUT FÜR INFORMATIK An EPTAS for schedulng jobs on unform processors: usng an MILP relaxaton wth a constant number of ntegral varables Klaus Jansen Bercht Nr. 1002 February 2010 CHRISTIAN-ALBRECHTS-UNIVERSITÄT

More information

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b.

Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that. a = bq + r and 0 r < b. Theorem (The division theorem) Suppose that a and b are integers with b > 0. There exist unique integers q and r so that a = bq + r and 0 r < b. We re dividing a by b: q is the quotient and r is the remainder,

More information

Non-degenerate Hilbert Cubes in Random Sets

Non-degenerate Hilbert Cubes in Random Sets Journal de Théore des Nombres de Bordeaux 00 (XXXX), 000 000 Non-degenerate Hlbert Cubes n Random Sets par Csaba Sándor Résumé. Une légère modfcaton de la démonstraton du lemme des cubes de Szemeréd donne

More information

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143 1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

More information

RTCA Special Committee 186, Working Group 3. ADS-B 1090 MOPS, Revision B. Meeting #30. An Expanded Description of the CPR Algorithm

RTCA Special Committee 186, Working Group 3. ADS-B 1090 MOPS, Revision B. Meeting #30. An Expanded Description of the CPR Algorithm 1 1090-WP30-12 August 18-21, 2009 RTCA Specal Commttee 186, Workng Group 3 ADS-B 1090 MOPS, Revson B Meetng #30 An Expanded Descrpton of the CPR Algorthm Prepared by Al Marshall Senss Corporaton SUMMARY

More information

Using Mixture Covariance Matrices to Improve Face and Facial Expression Recognitions

Using Mixture Covariance Matrices to Improve Face and Facial Expression Recognitions Usng Mxture Covarance Matrces to Improve Face and Facal Expresson Recogntons Carlos E. homaz, Duncan F. Glles and Raul Q. Fetosa 2 Imperal College of Scence echnology and Medcne, Department of Computng,

More information

Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem

Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME, ISSUE, FEBRUARY ISSN 77-866 Logcal Development Of Vogel s Approxmaton Method (LD- An Approach To Fnd Basc Feasble Soluton Of Transportaton

More information

Minimal Coding Network With Combinatorial Structure For Instantaneous Recovery From Edge Failures

Minimal Coding Network With Combinatorial Structure For Instantaneous Recovery From Edge Failures Mnmal Codng Network Wth Combnatoral Structure For Instantaneous Recovery From Edge Falures Ashly Joseph 1, Mr.M.Sadsh Sendl 2, Dr.S.Karthk 3 1 Fnal Year ME CSE Student Department of Computer Scence Engneerng

More information

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6) Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

More information

Basic Image Compression Algorithm and Introduction to JPEG Standard

Basic Image Compression Algorithm and Introduction to JPEG Standard Basc Image Compresson Algorthm and Introducton to JPEG Standard Pao-Yen Ln E-mal: r97942117@ntu.edu.tw Graduate Insttute of Communcaton Engneerng atonal Tawan Unversty, Tape, Tawan, ROC Abstract Because

More information

Nonbinary Quantum Error-Correcting Codes from Algebraic Curves

Nonbinary Quantum Error-Correcting Codes from Algebraic Curves Nonbnary Quantum Error-Correctng Codes from Algebrac Curves Jon-Lark Km and Judy Walker Department of Mathematcs Unversty of Nebraska-Lncoln, Lncoln, NE 68588-0130 USA e-mal: {jlkm, jwalker}@math.unl.edu

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

Identifying Workloads in Mixed Applications

Identifying Workloads in Mixed Applications , pp.395-400 http://dx.do.org/0.4257/astl.203.29.8 Identfyng Workloads n Mxed Applcatons Jeong Seok Oh, Hyo Jung Bang, Yong Do Cho, Insttute of Gas Safety R&D, Korea Gas Safety Corporaton, Shghung-Sh,

More information

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6 PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has

More information