1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.


 Cornelius Wilkerson
 2 years ago
 Views:
Transcription
1 Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north pole of a magnet points towards the Earth's north pole. C) Like poles of a magnet attract each other and unlike poles repel. D) The SI unit of the magnetic field is the gauss. 3) A +2mC charge is at rest in a magnetic field of 2 T pointing along the +xaxis. What is the force acting on this charge in the magnetic field? A) +4 mn B) 0 N C) 4 mn D) +2 mn 4) An electron moving along the +xaxis enters a magnetic field. If the electron experiences a magnetic deflection in the y direction, what is the direction of the magnetic field in this region? A) along the +zaxis B) along the +yaxis C) along the xaxis D) along the zaxis 5) A charged particle moving with a certain velocity along the +xaxis enters a magnetic field pointing toward the +zaxis. Determine the required direction of an electric field that will allow the charged particle to continue to move along the +xaxis. A) along the xaxis B) along the yaxis C) along the +yaxis D) along the +xaxis Figure ) A rectangular coil, with corners labeled ABCD, of length L and width w is placed in a magnetic field B as shown in Figure If there is a current I flowing through this coil, what is the force acting on section AB of this coil? A) ILB B) ILB sinq C) 0 N D) ILB/2 1
2 7) A wire is carrying current vertically downward. What is the direction of the force due to Earth's magnetic field on the wire? A) horizontally towards the east B) horizontally towards the south C) horizontally towards the west D) horizontally towards the north Figure ) A wire in the shape of an "M" lies in the plane of the paper. It carries a current of 2.0 A, flowing from A to E. It is placed in a uniform magnetic field of 0.55 T in the same plane, directed as shown on the right side of Figure The figure indicates the dimensions of the wire. What is the magnitude and direction of the force acting on section AB of this wire? A) 0.20 N perpendicular into the page B) N perpendicular out of the page C) 0.20 N perpendicular out of the page D) N perpendicular into the page Figure ) A rectangular loop of wire, with dimensions as shown in Figure 224, carrying a 2A current is placed in a magnetic field of 0.8 T. The loop rotates in the magnetic field and at one point makes a 30e angle with the magnetic field. What is the magnitude of the torque acting on the wire? A) 0.5 Nm B) 0.4 Nm C) 0.6 Nm D) 0.3 Nm 10) A solenoid of 200 turns carrying a current of 2 A has a length of 25 cm. What is the magnitude of the magnetic field at the center of the solenoid? A) 5 mt B) 3 mt C) 4 mt D) 2 mt 2
3 Figure ) Three particles travel through a region of space where the magnetic field is out of the page, as shown in Figure The electric charge of each of the three particles is, respectively, A) 1 is neutral, 2 is negative, and 3 is positive. B) 1 is negative, 2 is neutral, and 3 is positive. C) 1 is positive, 2 is negative, and 3 is neutral. D) 1 is positive, 2 is neutral, and 3 is negative. 12) An emf is induced in a wire by moving the wire near a magnet. Figure ) A cube whose edges are 0.10 m long has one corner at the origin of an xyzcoordinate system as shown in Figure A magnetic field with a strength of 0.40 T is applied along the +xaxis. What is the magnetic flux through the shaded face of the cube? A) Tœm2 B) Tœm2 C) Tœm2 D) Tœm2 14) The area of a rectangular loop of wire is m2. The loop is placed in a magnetic field that changes from 0.20 T to 1.2 T in 1.6 s. The plane of the loop is perpendicular to the direction of the magnetic field. What is the magnitude of the induced emf in that loop? A) V B) V C) 0 V D) V 3
4 15) The negative sign in the Faraday's equation for electromagnetic induction is related to the direction of the induced emf. Figure ) A bar magnet is placed with its north pole pointing toward a coil of wire that has a crosssectional area of 0.02 m2 and 6 turns, as shown in Figure 233(a). What is the magnitude of the induced emf in the coil of wire? A) 0.02 V B) 0.04 V C) 0.01 V D) 0 V Figure ) A conducting rod whose length is 25 cm is placed on a Ushaped metal wire that has a resistance R of 8 W as shown in Figure The wire and the rod are in the plane of the paper. A constant magnetic field of strength 0.4 T is applied perpendicular and into the paper. An applied force moves the rod to the right with a constant speed of 6 m/s. What is the magnitude of the induced emf in the wire? A) 0.5 V B) 0.6 V C) 0.2 V D) 0.4 V 4
5 Figure ) A rectangular coil of N turns, length L = 25 cm, and width w = 15 cm, as shown in Figure 239, is rotating in a magnetic field of 1.6 T with a frequency of 75 Hz. If the coil develops a sinusoidal emf of maximum value 56.9 V, what is the value of N? A) 8 B) 6 C) 4 D) 2 19) Which one of the following is the correct expression for the time constant of an RL circuit? A) R/L B) LR C) L/R D) None of the other answers is correct. 20) The primary coil of a transformer has 100 turns and its secondary coil has 400 turns. If the ac current in the secondary coil is 2 A, what is the current in its primary coil? A) 4 A B) 8 A C) 1/2 A D) 2 A Figure ) The two identical bar magnets in Figure are dropped from rest along a vertical line passing through the center of the rings, as shown. The two rings are identical in every respect except that the ring on the right has a small break in it. Calling al and ar the magnitude of the downward accelerations of the magnets on the left and right, respectively, you observe that A) al < ar. B) al = ar. C) al > ar. D) It is not possible to predict the outcome of this experiment with the data given. 22) An ac signal of a certain frequency is applied to a capacitor. The current leads the voltage by 90e. 5
6 23) A total impedance of an RC circuit with a capacitance of 25.0 mf is 800 W. If the frequency of the applied ac voltage is 12.0 Hz, what is the resistance of the circuit? A) 399 W B) 699 W C) 599 W D) 499 W 24) What is the inductive reactance of a 20mH inductor at a frequency of 60 Hz? A) 7.5 mw B) 0.13 W C) 7.5 W D) W 25) A certain ac signal at 1000 Hz is applied across an inductor and a 100W resistor. If the power factor of the circuit is 0.400, what is the impedance of this circuit? A) 250 W B) 200 W C) 150 W D) 100 W 26) The phase angle of a series RL circuit with a 20.0mH inductor and a certain resistor at 1000 Hz is 20.0e. What is the value of the resistance in this circuit? A) 100 W B) 245 W C) 345 W D) 200 W Figure ) The figure shows a simple ac circuit composed of a capacitor connected across the terminals of an ac generator. If the frequency of the generator is doubled, what happens to the capacitive reactance of the capacitor? A) It decreases by a factor of 2. B) It increases by a factor of 2. C) It increases by a factor of 4. D) It decreases by a factor of 4. 28) What is the power factor of an RLC series circuit with an inductive reactance of 174 W, a capacitive reactance of 60 W and a resistance of 100 W? A) 0.76 B) 0.66 C) 0.46 D) ) A 120V rms voltage at 1000 Hz is applied to an inductor, a 2.00mF capacitor and a 100W resistor. If the rms value of the current in this circuit is A, what is the value of the inductor? A) 11.4 mh B) 22.8 mh C) 35.8 mh D) 34.2 mh 30) A series RLC circuit has a 300W resistor, a 12.0mH inductor and a mF capacitor connected across a 120V rms ac source at 30.0 khz. What is the phase angle of the circuit? A) 0e B) 47.3e C) 90.0e D) 82.4e 31) In a RLC circuit, the values of the inductance and capacitance are both doubled. In comparison with the resonance frequency of the original circuit, the new resonant frequency will be A) reduced to onequarter the original value. B) increased by a factor of two. C) reduced to onehalf the original value. D) the same as before. 6
7 32) The energy stored in a coil of selfinductance, L, and traversed by current I, is E1. A second coil is made with the same length of wire, but its radius is twice the radius of the first coil and it is twice as long as the first coil. If the second coil also has twice the current of the first coil, how does the energy stored in the first coil, E1, compare to the energy stored in the second coil, E2? A) E1 = 2 E2 B) E1 = E2 C) E1 = E2/2 D) E1 = 4 E2 7
8 Answer Key Testname: EXAM2.TST 1) FALSE 2) B 3) B 4) D 5) C 6) A 7) A 8) B 9) A 10) D 11) B 12) TRUE 13) B 14) D 15) TRUE 16) D 17) B 18) D 19) C 20) B 21) A 22) TRUE 23) C 24) C 25) A 26) C 27) A 28) B 29) C 30) D 31) C 32) A 1
104 Practice Exam 23/21/02
104 Practice Exam 23/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A nonzero
More informationPhysics 126 Practice Exam #3 Professor Siegel
Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationInduction. d. is biggest when the motor turns fastest.
Induction 1. A uniform 4.5T magnetic field passes perpendicularly through the plane of a wire loop 0.10 m 2 in area. What flux passes through the loop? a. 5.0 T m 2 c. 0.25 T m 2 b. 0.45 T m 2 d. 0.135
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More informationTIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points
TIME OF COMPLETION NAME DEPARTMENT OF NATURAL SCIENCES PHYS 2212, Exam 2 Section 1 Version 1 April 16, 2014 Total Weight: 100 points 1. Check your examination for completeness prior to starting. There
More informationEinstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,
1 EMI & AC 1. Derive an expression for the impendance of a coil in AC ciruit. A current of 1.1 A flows through a coil when connected to a 110 V DC. When 110 V AC of 50 Hz is applied to the same coil, only
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationQuestion Details C14: Magnetic Field Direction Abbott [ ]
Phys 1114: Assignment 9 Abbott (5420633) Due: Mon Apr 7 2014 11:59 PM CDT Question 1 2 3 4 5 6 7 8 9 10 11 1. Question Details C14: Magnetic Field Direction Abbott [2861537] a) A wire is oriented horizontally
More informationMagnetism Conceptual Questions. Name: Class: Date:
Name: Class: Date: Magnetism 22.1 Conceptual Questions 1) A proton, moving north, enters a magnetic field. Because of this field, the proton curves downward. We may conclude that the magnetic field must
More informationChapter 14: Magnets and Electromagnetism
Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside
More informationCircuits with inductors and alternating currents. Chapter 20 #45, 46, 47, 49
Circuits with inductors and alternating currents Chapter 20 #45, 46, 47, 49 RL circuits Ch. 20 (last section) Symbol for inductor looks like a spring. An inductor is a circuit element that has a large
More informationObjectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More information1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
More informationChapter 14 Magnets and Electromagnetism
Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer
More information2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles
ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both
More informationDirection of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 23.1 Induced EMF 23.2 Magnetic Flux 23.3 Faraday s Law of Induction 23.4 Lenz s Law 23.5 Mechanical Work and Electrical Energy 23.6 Generators and
More informationPhysics 1214 Chapter 21: Electromagnetic Induction 02/15
Physics 1214 Chapter 21: Electromagnetic Induction 02/15 1 Induction Experiments emf or electromotive force: (from Chapter 19) the influence that moves charge from lower to higher potential. induced current:
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More informationChapter 19 Magnetic Forces and Fields
Chapter 19 Magnetic Forces and Fields Student: 3. The magnetism of the Earth acts approximately as if it originates from a huge bar magnet within the Earth. Which of the following statements are true?
More informationSCS 139 II.3 Induction and Inductance
SCS 139 II.3 Induction and Inductance Dr. Prapun Suksompong prapun@siit.tu.ac.th L d dt di L dt B 1 Office Hours: Library (Rangsit) Mon 16:2016:50 BKD 36017 Wed 9:2011:20 Review + New Fact Review Force
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationPhys222 Winter 2012 Quiz 4 Chapters 2931. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
More informationAP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations
AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction  induced current a metal wire moved in a uniform magnetic field  the charges (electrons)
More informationExtra Questions  1. 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A
Extra Questions  1 1. What current will flow in a 20Ω resistor when it is connected to a 50V supply? a) 0.4A b) 1.6A c) 2.5A 2. A current of 500mA flows in a resistance of 12Ω. What power is dissipated
More informationTuesday, 9 August 2016
Tuesday, 9 August 2016 Conceptual Problem 34.10 a When the switch on the left is closed, which direction does current flow in the meter on the right: 1. Right to left 2. Left to right 3. There is no induced
More informationExam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008
Prof. P. Kumar Prof. P. Avery March 5, 008 Exam Solutions 1. Two cylindrical resistors are made of the same material and have the same resistance. The resistors, R 1 and R, have different radii, r 1 and
More informationMOVING CHARGES AND MAGNETISM
MOVING CHARGES AND MAGNETISM 1. A circular Coil of 50 turns and radius 0.2m carries of current of 12A Find (a). magnetic field at the centre of the coil and (b) magnetic moment associated with it. 3 scores
More informationChapter 11. Inductors. Objectives
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationphysics 112N magnetic fields and forces
physics 112N magnetic fields and forces bar magnet & iron filings physics 112N 2 bar magnets physics 112N 3 the Earth s magnetic field physics 112N 4 electro magnetism! is there a connection between electricity
More informationLast Name: First Name: Physics 102 Spring 2006: Exam #2 MultipleChoice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged
More information) 0.7 =1.58 10 2 N m.
Exam 2 Solutions Prof. Paul Avery Prof. Andrey Korytov Oct. 29, 2014 1. A loop of wire carrying a current of 2.0 A is in the shape of a right triangle with two equal sides, each with length L = 15 cm as
More informationChapter 34 Faraday s Law & Electromagnetic Induction
Chapter 34 Faraday s Law & Electromagnetic Induction Faraday s Discovery (~ 1831) Faraday found that a changing magnetic field creates a current in a wire. This is an informal statement of Faraday s law.
More information2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?
Extra Questions  2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux
More informationChap 21. Electromagnetic Induction
Chap 21. Electromagnetic Induction Sec. 1  Magnetic field Magnetic fields are produced by electric currents: They can be macroscopic currents in wires. They can be microscopic currents ex: with electrons
More informationMagnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.
Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.
More informationPhysics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings
Signed in as Richard Sonnenfeld, Instructor Help Sign Out Physics 122 (Sonnenfeld), Spring 2013 ( MPSONNENFELDS2013 ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library Essential
More informationCopyright 2014 Edmentum  All rights reserved.
Copyright 2014 Edmentum  All rights reserved. Science Physics Electromagnetic Blizzard Bag 20142015 1. Two coils of insulated wire are placed side by side, as shown in the illustration. The blue lines
More information1 of 7 10/1/2012 3:17 PM
Assignment Previewer http://www.webassign.net/v4cgijfederici@njit/control.pl 1 of 7 10/1/2012 3:17 PM HW11Faraday (2861550) Question 1 2 3 4 5 6 7 8 9 10 1. Question Details SerPSE8 31.P.011.WI. [1742725]
More informationphysics 112N electromagnetic induction
physics 112N electromagnetic induction experimental basis of induction! seems we can induce a current in a loop with a changing magnetic field physics 112N 2 magnetic flux! useful to define a quantity
More informationBasic Electrical Theory
Basic Electrical Theory Impedance PJM State & Member Training Dept. PJM 2014 10/24/2013 Objectives Identify the components of Impedance in AC Circuits Calculate the total Impedance in AC Circuits Identify
More informationCh 21: Induction. Electromagnetic Induction. Lenz s Law 6/1/2016
Ch 21: Induction Faraday s Experiment Trying to induce a current using magnetic fields No induced current in Y loop with a DC circuit Saw a current when opening and closing the switch (changing the magnetic
More informationNAME. and 2I o. (1) Two long wires carry magnetic fields I o. , where I o
(1) Two long wires carry magnetic fields I o and 2I o, where I o is a constant. The two wires cross at the origin (but without making any electrical connection), and lie in the xy plane. (a) Find the
More informationElectromagnetic Induction
Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can knowledge
More informationI d s r ˆ. However, this law can be difficult to use. If there. I total enclosed by. carrying wire using Ampere s Law B d s o
Physics 241 Lab: Solenoids http://bohr.physics.arizona.edu/~leone/ua/ua_spring_2010/phys241lab.html Name: Section 1: 1.1. A current carrying wire creates a magnetic field around the wire. This magnetic
More informationMIDTERM REVIEW Chapters PHYSICS 1402 Brooks
MIDTERM REVIEW Chapters 15 24 PHYSICS 1402 Brooks 1) The electric field shown in Figure 153 Figure 153 A) decreases to the right. B) is uniform. C) increases down. D) decreases down. E) increases to
More informationReading Quiz. 1. Currents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called?
Reading Quiz 1. Currents circulate in a piece of metal that is pulled through a magnetic field. What are these currents called? A. Induced currents B. Displacement currents C. Faraday s currents D. Eddy
More informationElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
More informationTest  A2 Physics. Primary focus Magnetic Fields  Secondary focus electric fields (including circular motion and SHM elements)
Test  A2 Physics Primary focus Magnetic Fields  Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010
More informationPHYS 155: Final Tutorial
Final Tutorial Saskatoon Engineering Students Society eric.peach@usask.ca April 13, 2015 Overview 1 2 3 4 5 6 7 Tutorial Slides These slides have been posted: sess.usask.ca homepage.usask.ca/esp991/ Section
More informationMultiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields
Multiple Choice Questions for Physics 1 BA113 Chapter 23 Electric Fields 63 When a positive charge q is placed in the field created by two other charges Q 1 and Q 2, each a distance r away from q, the
More informationChapter 14 Magnets and
Chapter 14 Magnets and Electromagnetism How do magnets work? What is the Earth s magnetic field? Is the magnetic force similar to the electrostatic force? Magnets and the Magnetic Force! We are generally
More informationAS91526: Demonstrate understanding of electrical systems Level 3 Credits 6
AS956: Demonstrate understanding of electrical systems Level 3 redits 6 This achievement standard involves demonstrating understanding of electrical systems. Achievement riteria Achievement Achievement
More informationPhysics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
More informationReview Questions PHYS 2426 Exam 2
Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.
More informationDavid J. Starling Penn State Hazleton PHYS 212
and and The term inductance was coined by Oliver Heaviside in February 1886. David J. Starling Penn State Hazleton PHYS 212 and and Objectives (a) Determine the EMF and electric field induced by a changing
More informationFaraday s Law and Inductance
Historical Overview Faraday s Law and Inductance So far studied electric fields due to stationary charges and magentic fields due to moving charges. Now study electric field due to a changing magnetic
More informationElectromagnetic Induction
Electromagnetic Induction PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html previously: electric currents generate magnetic field. If a current
More informationSolution Derivations for Capa #10
Solution Derivations for Capa #10 1) A 1000turn loop (radius = 0.038 m) of wire is connected to a (25 Ω) resistor as shown in the figure. A magnetic field is directed perpendicular to the plane of the
More informationInductance. Motors. Generators
Inductance Motors Generators Selfinductance Selfinductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due
More informationPhysics 6C, Summer 2006 Homework 2 Solutions
Physics 6C, Summer 006 Homework Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter 3 Problems. Figure 330 below shows a circuit containing
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More information1 of 7 4/13/2010 8:05 PM
Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field
More informationFaraday s Law of Induction
Faraday s Law of Induction Potential drop along the closed contour is minus the rate of change of magnetic flu. We can change the magnetic flu in several ways including changing the magnitude of the magnetic
More informationPhysics 30 Worksheet #10 : Magnetism From Electricity
Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron
More informationPhysics 202: Lecture 10, Pg 1
Physics 132: Lecture e 21 Elements of Physics II Forces on currents Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationPhysics 2220 Module 09 Homework
Physics 2220 Module 09 Homework 01. A potential difference of 0.050 V is developed across the 10cmlong wire of the figure as it moves though a magnetic field perpendicular to the page. What are the strength
More informationChapter 20.1 Induced EMF and magnetic flux
Chapter 20.1 nduced EMF and magnetic flux Electric current gives rise to magnetic fields Can a magnetic field give rise to a current? Michael Faraday 17911867 The answer is yes as discovered by Michael
More informationLesson 27. (1) Root Mean Square. The emf from an AC generator has the time dependence given by
Lesson 27 () Root Mean Square he emf from an AC generator has the time dependence given by ℇ = ℇ "#$% where ℇ is the peak emf, is the angular frequency. he period is he mean square value of the emf is
More informationINTRODUCTION SELF INDUCTANCE. Introduction. Self inductance. Mutual inductance. Transformer. RLC circuits. AC circuits
Chapter 13 INDUCTANCE Introduction Self inductance Mutual inductance Transformer RLC circuits AC circuits Magnetic energy Summary INTRODUCTION Faraday s important contribution was his discovery that achangingmagneticflux
More informationConceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions
Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge
More informationPhys 102 Spg Exam No. 2 Solutions
Phys 102 Spg. 2008 Exam No. 2 Solutions I. (20 pts) A 10turn wire loop measuring 8.0 cm by 16.0 cm carrying a current of 2.0 A lies in the horizontal plane and is free to rotate about a horizontal axis
More informationChapter 27 Magnetic Induction. Copyright 2008 Pearson Education Inc., publishing as Pearson AddisonWesley
Chapter 27 Magnetic Induction Motional EMF Consider a conductor in a Bfield moving to the right. In which direction will an electron in the bar experience a magnetic force? V e  V The electrons in the
More information6. ELECTROMAGNETIC INDUCTION
6. ELECTROMAGNETIC INDUCTION Questions with answers 1. Name the phenomena in which a current induced in coil due to change in magnetic flux linked with it. Answer: Electromagnetic Induction 2. Define electromagnetic
More informationLecture PowerPoints. Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli
Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching
More informationMagnetic Forces and Magnetic Fields
1 Magnets Magnets are metallic objects, mostly made out of iron, which attract other iron containing objects (nails) etc. Magnets orient themselves in roughly a north  south direction if they are allowed
More informationMASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics. Problem Set 9 Solution
MASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics 8. with Kai Spring 3 Problem 1: 37 and 8 Problem Set 9 Solution A conductor consists of a circular loop of radius R =.1 m and two straight, long sections,
More informationChapter 15 10/14/2014
Chapter 15 Analyze series and parallel ac circuits to find Voltage Current Power Total impedance, admittance Apply known circuit theories Kirchhoff s current, voltage laws Voltage or current divider rule
More informationCourse Syllabus: AP Physics C Electricity and Magnetism
Course Syllabus: AP Physics C Electricity and Magnetism Course Description: AP Physics C is offered as a second year physics course to students who are planning to major in the physical sciences or in
More information12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance?
12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance? From Equation 325, L = E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard
More informationALTERNATING CURRENTS
ALTERNATING CURRENTS VERY SHORT ANSWER QUESTIONS Q1. What is the SI unit of? Q2. What is the average value of alternating emf over one cycle? Q3. Does capacitor allow ac to pass through it? Q4. What
More informationThe purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 171 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
More informationPractice Problems  Chapter 33 Alternating Current Circuits
Multiple Choice Practice Problems  Chapter 33 Alternating Current Circuits 4. A highvoltage powerline operates at 500 000 Vrms and carries an rms current of 500 A. If the resistance of the cable is
More informationPH 212 07312015 Physics 212 Exam3 Solution NAME: Write down your name also on the back of the package of sheets you turn in.
PH 1 73115 Physics 1 Exam3 Solution NAME: Write down your name also on the back of the package of sheets you turn in. SIGNATURE and ID: Return this hard copy exam together with your other answer sheets.
More informationLRC Circuits. Purpose. Principles PHYS 2211L LAB 7
Purpose This experiment is an introduction to alternating current (AC) circuits. Using the oscilloscope, we will examine the voltage response of inductors, resistors and capacitors in series circuits driven
More informationPHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
More informationDiodes have an arrow showing the direction of the flow.
The Big Idea Modern circuitry depends on much more than just resistors and capacitors. The circuits in your computer, cell phone, Ipod depend on circuit elements called diodes, inductors, transistors,
More informationChapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles
Chapter 19 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar
More informationPHYS 189 Final Exam: Practice March, 2014
PHYS 189 Final Exam: Practice March, 2014 Name: Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page. Multiple choice
More informationPHY2049 Exam #2 Solutions Fall 2012
PHY2049 Exam #2 Solutions Fall 2012 1. The diagrams show three circuits consisting of concentric circular arcs (either half or quarter circles of radii r, 2r, and 3r) and radial segments. The circuits
More informationChapter 30 Inductance
Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and selfinductance. An inductor is formed by taken
More informationFaraday's Law and Inductance
Page 1 of 8 test2labh_status.txt Use Internet Explorer for this laboratory. Save your work often. NADN ID: guest49 Section Number: guest All Team Members: Your Name: SP212 Lab: Faraday's Law and Inductance
More informationPhysics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
More informationInduction and Inductance
Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2010
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 1 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Friday 18
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More information