Practice Problems for Midterm 2


 Teresa Mason
 1 years ago
 Views:
Transcription
1 Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y, P (, ) (b) f(x, y) = x y, P (5, 4) (c) f(x, y) = sin (x + y ), P (, ) (do not compute range) (d) f(x, y) = ln(x y), P ( e, 0) (e) f(x, y) = x y, P (, 0) (f) f(x, y, z) = ln(x + y + z), P (/3, /3, /3) (You do not need to sketch the domain) (g) f(x, y) = e xy, P (, 5) () Consider the function f(x, y) = e y x. (a) Find the domain and range of f(x, y). (b) For which values of c does the level curve f(x, y) = c have no points? (c) What do the level curves of f look like for valid values of c (namely, the ones not in (b)). (d) Sketch the level curve for c =. (3) Let g : R R be defined as g(x, y) = x y. (a) Find the domain and range of g. (b) What does the level curve of g at c = 0 look like? (c) Sketch the level curve of g going through (, ). (4) Let g : R R be defined as (a) Find the domain and range of g. g(x, y) = sin(x). y (b) What does the level curve of g at c = 0 look like? (c) Sketch the level curve of g with c =. (5) Consider the equation y = x 3 x. (a) Find a function f(x, y) with the above equation as one of its level curves. (b) Does f(x, y) = y x 3 x have the above equation as a level curve? Explain.
2 (6) Suppose the level curve to z = f(x, y) at c = is the curve y = x with a hole at (, 4) and the level curve at c = is the curve y = x + with a hole at (, 4) again. What is lim f(x, y)? (x,y) (,4) (7) Evaluate the limits of the following functions at the specified points (if they exist): (a) f(x, y) = x + e xy at (, 0) (b) f(x, y) = (c) f(x, y) = x at (3, ) x +y x at (0, 0) x +y (d) f(x, y) = ( (e) f(x, y) = sin(x) sin (f) f(x, y) = (g) f(x, y) = xy5 at (0, 0) x +y 0 x+y ) at (0, 0) (x )(y ) (x ) +(y ) at (, ) x y x +y at (0, 0) (h) f(x, y) = x + y ln(x + y ) at (0, 0) (i) f(x, y) = x +y +3z x +y at (0, 0, 0) (j) f(x, y) = xy xy+xz+yz at (,, ) (k) f(x, y) = x3 y 3 x 3 +y 3 at (0, 0) (l) f(x, y) = (x ) +(y 3) +4 (m) f(x, y) = (x ) +(y ) (x ) +(y ) +9 3 (n) f(x, y) = x y(x y) x 4 +y 4 at (0, 0) (o) f(x, y) = sin(x +y ) +x y 4 at (0, 0) (8) Consider the function at (, 3) at (, ) f(x, y) = tan (xy ). (a) What are the domain and range of f? (b) What is (c) What is lim f(x, y)? (x,y) (,) lim f(x, y)? (x,y) (0,0) (d) Show that f(x, y) is differentiable at every point in R. (e) Find the tangent planes to f(x, y) at (0, 0) and (, ) (that is, I want two different planes, one for each point).
3 (f) Find the linearization of f(x, y) at (, ), and use it to approximate f(.,.9) (you can leave you answer in terms of a decimal if you need to). (9) Calculate the partials f x, f y (and f z where appropriate) for the following functions. (a) f(x, y) = sin(x y). (b) f(x, y) = tan(xy) + e xy + ln(y) x (c) f(x, y, z) = y sin(xz) z. (d) f(x, y, z) = x yz. (0) If f(x, y) = e xy, find f xxy. That is, find 3 f y x x. () Find an equation for the set of all points in R 3 equidistant from the point (0, 0, ) and the plane z =. Classify the surface. () Suppose a surface S contains the parametric curves r (t) = + 5t, 3 t, + t t 3 and r (s) = 3s s, s + s 3 + s 4, s s + s 3. Find the equation of the tangent plane to S at (, 3, ). (3) (a) Classify the surface x + y z =. (b) Classify the surface x + y + z = 0. (c) Find and describe the intersection of the surfaces in (a) and (b). (4) Let z = f(x, y) = sin (x) y. (a) What are the domain and range of f(x, y)? (b) Sketch the level curve at c =. (c) Calculate (d) Calculate lim f(x, y). (x,y) (0,) lim f(x, y) (x,y) (0,0) along the yaxis and the line y = x. What can you conclude? (e) If we make the additional definition f(0, 0) = 0, can we say f(x, y) is continuous at (0, 0)? Explain. (f) Calculate f x, (g) Where is f(x, y) differentiable? Explain. f f, and y y x. 3
4 (h) Find the equation of the tangent plane to z = f(x, y) at the pont (π/4, ). (i) Find the linear approximation of f(x, y) at (π/4, ) and use it to approximate f(π/, ). (j) What is f(π/, )? (k) What is the derivative of f in the direction of u =, at (π/4, ). (l) Find the direction in which f(x, y) increases the most rapidly at (π/4, ). Give answer as a unit vector. (m) Find a unit vector tangent to the level curve at (π/4, ). (5) Consider the function f(x, y, z) = 3z + e x y. (a) What are the domain and range of f(x, y, z)? (b) Where is f(x, y, z) continuous? Explain. (c) Calculate lim f(x, y, z). (x,y,z) (0,0,) (d) What is the maximum rate of increase of f(x, y, z) at the point (0, 0, )? (e) Determine the set of all unit vectors u such that, at (0, 0, ), the function f(x, y, z) increases at /3 of its maximum rate (namely, /3 of the number you found in (d)) in the direction of u. (f) In three dimensional space, the set of vectors you found in (e) maps out a curve. What is the shape of that curve? (6) Consider the function (a) What is the domain of f(x, y)? f(x, y) = x y x + y. (b) By calculating the limit along different lines, show that does not exist. lim f(x, y) (x,y) (0,0) (c) If we make the additional definition f(0, 0) = 0, is f(x, y) differentiable at (0, 0)? NOTE: THE REMAINING PARTS DO NOT USE THIS EXTRA DEFINITION OF f(0, 0) = 0. (d) Explain why f(x, y) is continuous at every point of R except (0, 0). (e) Show f(x, y) is differentiable at every point of R other than (0, 0). (f) Find the equation of the tangent plane to f(x, y) at (, ). 4
5 (g) What is a vector perpendicular to the plane in (f). (h) Find the linear approximation to f(x, y) at (, ) and use it to approximate f(, ). (i) What is f(, )? How far off is the approximation in (h)? (j) At (, ), in which direction does f(x, y) increase most rapidly? How about decrease most rapidly? (k) What is the maximum rate of increase at (, )? (l) Sketch the level curves to f(x, y) at c =, 0, and. (m) Find the derivative of f(x, y) at (, ) in the direction of,. (n) Find all unit vectors u such that the directional derivative of f(x, y) at (, ) in the direction of u is 0. (o) Find a unit vector perpendicular to the level curve of f(x, y) at (, ). Sketch both the level curve and the vector. (Hint: you ve already graphed the level curve). (7) Approximate. tan(46 ). You can leave your answer in terms of π. (8) Find an equation for the surface consisting of all points P for which the distance between P and the xaxis is twice the distance from P to the yzplane. Classify this surface. (9) Show that f(x, y) = e x sin(y) is a solution to the Laplace equation f xx + f yy = 0. (0) Show that u(x, t) = sin(x at)+ln(x+at) is a solution to the wave equation u tt = a u xx, where a is a constant. () Suppose z = x + 3xy y. Estimate the change in the function as x changes from to.05 and y changes from 3 to.96. () The base and height of a right circular cone are measured to be 0 cm and 5 cm, respectively. The possible error in measurement for each is at most 0. cm. Estimate the maximum possible error in calculated volume of the cone. (3) If z = x y + xy 4, and x = sin(t), y = cos(t), find dz dt at t = 0. (4) The temperature at a point is given by T (x, y), measured in Celsius. A bug crawls so that its position at t seconds is x = + t and y = + t, where x and y are in 3 centimeters. The temperature satisfies T x (, 3) = 4 and T y (, 3) = 3. How fast is the temperature rising on the bug s path after 3 seconds? (5) If w(x, y, z) = xy + yz + xz, x = r cos(θ), y = r sin(θ), z = rθ, find w r r = and θ = π/. w and θ when (6) Find all points at which the direction of fastest change of the function f(x, y) = x + y x 4y is i + j. (7) If f(x, y) = xy, find the gradient f(3, ) and use it to find the tangent line to the level curve f(x, y) = 6 at (3, ). Sketch the level curve, the tangent line, and the gradient vector. 5
6 (8) True/False: (a) If the angle between f(x 0, y 0 ) and u is acute, then f(x, y) is increasing in the direction of u at the point (x 0, y 0 ). (b) The gradient at a point is always tangent to the level curve passing through that point. (c) If f(x, y) is a continuous functions, then no two level curves of f(x, y) intersect. (d) To show lim (x,y) (x0,y 0 ) f(x, y) does not exist, we must exhibit two paths through (x 0, y 0 ) along which we get different limits. (e) If the function f(x, y) has different limits along the paths y = x and y = x + have different limits, then we can conclude that lim (x,y) (,0) f(x, y) does not exist. (f) The function f(x, y) at (x 0, y 0 decreases most rapidly in the direction of f(x 0, y 0 ). (g) If f(0, 0) = 3, 4, then there exists a vector u such that D u f(0, 0) = 0. (h) We can find a function f(x, y) such that f x = xy + sin(x) and f y = x + cos(y) for all points (x, y). (i) There were more true answers in this true/false section than there were in the true/false questions for the last practice midterm. 6
7 Answers: () (Sorry, sketches are not included, but type Domain of whatever function into WolframAlpha to see what they look like) (a) Domain: {(x, y) R : y }, Range: [, 3], f(, ) = (b) Domain: {(x, y) R : x y }, Range: [0, ), f(5, 4) = 3 (c) Domain: {(x, y) R : x + y 3}, f(, ) = 0 (d) Domain: {(x, y) R : y < x }, Range: R, f( e, 0) = (e) The domain is {(x, y) R : x + y }, and the range is {z R : 0 z }, f(, 0) =. (f) The domain is {(x, y, z) R 3 : x + y + z } and the range is the nonnegative reals: {z R : z 0}, f(/3, /3, /3) = 0 (g) The domain is {(x, y) R : xy 0} and the range is the positive real numbers greater or equal to {z R : z }, f(, 5) = e 0. () (a) The domain is all of R and the range is {z R : z > 0} (i.e. the positive real numbers). (b) Setting f(x, y) = c gives e y x = c. Since the range of the exponential function consists of positive real numbers, if c 0, then the level curve will have no points on it. (c) If c > 0, then the level curve is the parabola y = x + [ + ln(c)]. (d) When c =, we get ln(c) = 0, so your graph should be that of y = x +. (3) (a) The domain is {(x, y) R : y 0} (i.e. any point with y 0). The range is all of R. (b) The level curve at c = 0 looks like the vertical line x = 0 with the point (0, 0) removed (since y cannot equal 0). (c) It should be the graph of y = x with a hole at the origin (since y cannot equal 0). (4) (a) The domain is {(x, y) R : y 0} (i.e. any point with y 0). The range is all of R. (b) The level curve at c = 0 looks like a bunch of vertical lines at x = 0, ±π, ±π,..., except the point y = 0 is removed from each one. (c) It should be the graph of y = sin(x) minus the points where y = 0 (i.e. the points where graph of y = sin(x) crosses the xaxis should be removed, and there should just be a hole in the graph). (5) (a) f(x, y) = x 3 x y has the equation as a level curve at c = 0. (b) No, because (0, 0) is a solution to the equation which is not on the level curve at c =. 7
8 (6) The limit does not exist, because along the path y = x the limit is, and along y = x + the limit is. (7) (a) (b) 3/0 (c) DNE (check x = 0) (d) DNE (check x = 0 and x = y 5 ) (e) 0 (f) DNE (check x = and y = x + ) (g) 0 (h) 0 (i) DNE (j) /3 (k) DNE (l) DNE (m) 6 (n) DNE (o) 0 (8) (a) The domain of f(x, y) is all of R, and the range is the interval ( π/, π/ in R. (b) f(x, y) is continuous everywhere as g(x) = tan (x) is a continuous function in R, so to evaluate the limit we can just plug in the point, and tan () = π/4. (c) By the same logic as in (b), the limit is tan (0) = 0. (d) Observe that the partials are f x = y + x y, f 4 y = xy + x y, 4 which are both continuous everywhere as the denominator can never be 0 (the monomial x y 4 0 always). Therefore f is differentiable everywhere. (e) We calculate the partials already. We get f x (0, 0) = f y (0, 0) = 0, and since f(x, y) = 0, the plane at (0, 0) is simply z = 0. At (, ), f x (, ) =, and f y (, ) =, and since f(, ) = π/4, the plane is z π 4 = (x ) + (y ). (f) The linearization consists solely of isolating z in the previous part, so the linearization is z = L(x, y) = π 4 + (x ) + (y ). So L(.,.9) = π 4 + (. ) + (.9 ) = π
9 (9) (a) f x = xy cos(x y), f y = x cos(x y) (b) f x = y sec (xy) + y e xy ln(y) x, f y = x sec (xy) + xye xy + xy. y[zx cos(xz) sin(xz)] z. (c) f x = y cos(xz), f y = sin(xz), f z z = (d) f x = yzx yz, f y = zx yz ln(x), f z = yx yz ln(x). (0) f xxy = 4y 3 e xy + xy 5 e xy. () z = x y + 3, an elliptic paraboloid. () 8(x ) 6(y 3) + 40(z ) = 0 (3) (a) Hyperboloid of one sheet (b) Sphere (c) The intersection can be described as the union of two circles: x + y =, z = 3, x + y =, z = 3. (4) (a) The domain of f(x, y) is the set of points (x, y) with y 0. In set notation {(x, y) R y 0}. Both sin (x) and y are nonnegative, so we expect the range to be a subset of the nonnegative reals. /y can be any positive number, and sin (x) can be 0, so the range is, in fact, all nonnegative reals: {z R : z 0}. (b) At c =, we get sin (x)/y =, so y can never be 0. Multiplying, we get y = sin (x), or y = ± sin(x). So you should graph both sin(x) and sin(x), with holes at every point where y = 0. (c) The function is continuous at (0, ), so we can plug in the point to get a limit of 0. (d) Along the yaxis, the limit is 0, and along y = x it is (need to use L Hopital s rule twice). Therefore the limit does not exist. (e) No, because the limit does not exist, so the second condition for continuity fails. sin(x) cos(x) (f) f x =, and since sin(x) cos(x) = sin(x), we can write this as f y x = sin(x). From this we get y f xy = y sin(x). 3 If you left f x in its original form, you would get f xy = 4 sin(x) cos(x), y3 both answers are acceptable. We also get f y = sin (x) y 3. 9
10 (g) We find f(x, y) is defined for (x, y) with y 0. In this region, both f x and f y are continuous, and so f is differentiable on its domain (namely, the one we found in (a)). (h) We found f x and f y in the previous part. f x (π/4, ) = and f y (π/4, ) =, and z 0 = f(π/4, ) = /, so the equation is (i) The linear approximation is We get L(π/, ) = + π 4. (j) f(π/, ) =. (k) 3/ 5 (l), (m), z = (x π ) (y ). 4 L(x, y) = + (x π ) (y ). 4 (5) (a) The domain is all of R 3, the range is all of R. (b) It is continuous everywhere as all functions involved are continuous, and the sum and composition of continuous functions are continuous. (c) Since f is continuous, we can just plug in the point (0, 0, ) to get 4. (d) 3 (e) u can be any vector x, y, /3 with x + y = 8/9. (f) A circle. (6) (a) Every point in R except the point (0, 0). (b) Along the line y = mx, we get a limit of m +m. m = yields a limit of 0, m = 0 yields a limit of, therefore limit does not exist. (c) No, because it s not continuous. (d) f(x, y) is a quotient of two polynomials and the denominator is not zero for (x, y) (0, 0). (e) We know f(x, y) is defined at all such points, so show that the partials are continuous at all points other than the origin. (f) z = x y, or z = (x ) (y ) if you don t simplify. (g),, or,, (h) L(x, y) = (x ) (y ), L(, ) =. 5 5 (i) f(, ) = 0, so the approximation was off by 5 =.04. 0
11 (j), and,, respectively. (k) /, or. (l) c = 0: the lines y = ±x, with a hole at the origin. c = : the yaxis with a hole at the origin, c = : the xaxis, with a hole at the origin. (m) 3/ 5 (n) /, /, /, / (o) /, or /, is the vector you want. You should sketch this vector at (, ) to the level curve at c = 0. (7).05 + π 90 (8) 4x = y + z, a cone. (9) f xx = e x sin(y) and f yy = e x sin(y), so f xx + f yy = 0. (0) If you compute both u xx and u tt correctly, it should work out. () 0.65 () 0π cm 3 (3) 4 (4) C/s (5) w r = π, w θ = π (6) All points on the line y = x + (7) f(3, ) =, 3, x + 3y =. (8) (a) True (b) False (c) True (d) False (e) False (f) False (g) False (h) False (i) True
Extra Problems for Midterm 2
Extra Problems for Midterm Sudesh Kalyanswamy Exercise (Surfaces). Find the equation of, and classify, the surface S consisting of all points equidistant from (0,, 0) and (,, ). Solution. Let P (x, y,
More informationSection 12.6: Directional Derivatives and the Gradient Vector
Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate
More informationPROBLEM SET. Practice Problems for Exam #2. Math 2350, Fall Nov. 7, 2004 Corrected Nov. 10 ANSWERS
PROBLEM SET Practice Problems for Exam #2 Math 2350, Fall 2004 Nov. 7, 2004 Corrected Nov. 10 ANSWERS i Problem 1. Consider the function f(x, y) = xy 2 sin(x 2 y). Find the partial derivatives f x, f y,
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationSolutions to old Exam 1 problems
Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More informationSOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve
SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives
More information(a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,
Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We
More informationMath 21a Review Session for Exam 2 Solutions to Selected Problems
Math 1a Review Session for Exam Solutions to Selected Problems John Hall April 5, 9 Note: Problems which do not have solutions were done in the review session. 1. Suppose that the temperature distribution
More informationSolutions to Homework 5
Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular
More informationReview Sheet for Third Midterm Mathematics 1300, Calculus 1
Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,
More information( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those
1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More information55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim
Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of
More informationHOMEWORK 4 SOLUTIONS. All questions are from Vector Calculus, by Marsden and Tromba
HOMEWORK SOLUTIONS All questions are from Vector Calculus, by Marsden and Tromba Question :..6 Let w = f(x, y) be a function of two variables, and let x = u + v, y = u v. Show that Solution. By the chain
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationCalculus 1: Sample Questions, Final Exam, Solutions
Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.
More informationFINAL EXAM SOLUTIONS Math 21a, Spring 03
INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationMath 265 (Butler) Practice Midterm II B (Solutions)
Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z
More informationSection 2.7 OnetoOne Functions and Their Inverses
Section. OnetoOne Functions and Their Inverses OnetoOne Functions HORIZONTAL LINE TEST: A function is onetoone if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.
More informationMath 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve. cosh y = x + sin y + cos y
Math 150, Fall 2009 Solutions to Practice Final Exam [1] The equation of the tangent line to the curve at the point (0, 0) is cosh y = x + sin y + cos y Answer : y = x Justification: The equation of the
More informationMATH 1231 S2 2010: Calculus. Section 1: Functions of severable variables.
MATH 1231 S2 2010: Calculus For use in Dr Chris Tisdell s lectures Section 1: Functions of severable variables. Created and compiled by Chris Tisdell S1: Motivation S2: Function of two variables S3: Visualising
More informationHomework 3 Model Solution Section
Homework 3 Model Solution Section 12.6 13.1. 12.6.3 Describe and sketch the surface + z 2 = 1. If we cut the surface by a plane y = k which is parallel to xzplane, the intersection is + z 2 = 1 on a plane,
More informationSolutions to Practice Problems for Test 4
olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1,
More informationDERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Realvalued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
More informationMath 209 Solutions to Assignment 7. x + 2y. 1 x + 2y i + 2. f x = cos(y/z)), f y = x z sin(y/z), f z = xy z 2 sin(y/z).
Math 29 Solutions to Assignment 7. Find the gradient vector field of the following functions: a fx, y lnx + 2y; b fx, y, z x cosy/z. Solution. a f x x + 2y, f 2 y x + 2y. Thus, the gradient vector field
More informationL 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
More information2 Topics in 3D Geometry
2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and
More informationAPPLICATIONS OF DIFFERENTIATION
4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION So far, we have been concerned with some particular aspects of curve sketching: Domain, range, and symmetry (Chapter 1) Limits, continuity,
More informationTOPIC 3: CONTINUITY OF FUNCTIONS
TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let
More informationTest # 2 Review. function y sin6x such that dx. per second. Find dy. f(x) 3x 2 6x 8 using the limiting process. dt = 2 centimeters. dt when x 7.
Name: Class: Date: ID: A Test # 2 Review Short Answer 1. Find the slope m of the line tangent to the graph of the function g( x) 9 x 2 at the point 4, 7ˆ. 2. A man 6 feet tall walks at a rate of 2 ft per
More informationRecitation 4. 24xy for 0 < x < 1, 0 < y < 1, x + y < 1 0 elsewhere
Recitation. Exercise 3.5: If the joint probability density of X and Y is given by xy for < x
More informationx 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationChapter 1 Vectors, lines, and planes
Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.
More informationMATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.
MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin
More informationMidterm Exam I, Calculus III, Sample A
Midterm Exam I, Calculus III, Sample A 1. (1 points) Show that the 4 points P 1 = (,, ), P = (, 3, ), P 3 = (1, 1, 1), P 4 = (1, 4, 1) are coplanar (they lie on the same plane), and find the equation of
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationcorrectchoice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
More informationInverse Functions and Logarithms
Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a onetoone function if it never takes on the same value twice; that
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationDetermine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s
Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,
More informationCalculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
More informationReview Sheet for Test 1
Review Sheet for Test 1 Math 26100 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And
More informationMath Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
More informationMultivariable Calculus Practice Midterm 2 Solutions Prof. Fedorchuk
Multivariable Calculus Practice Midterm Solutions Prof. Fedorchuk. ( points) Let f(x, y, z) xz + e y x. a. (4 pts) Compute the gradient f. b. ( pts) Find the directional derivative D,, f(,, ). c. ( pts)
More informationPreCalculus Review Lesson 1 Polynomials and Rational Functions
If a and b are real numbers and a < b, then PreCalculus Review Lesson 1 Polynomials and Rational Functions For any real number c, a + c < b + c. For any real numbers c and d, if c < d, then a + c < b
More informationLIMITS AND CONTINUITY The following tables show values of f(x, y) and g(x, y), correct to three decimal places, for points (x, y) near the origin.
LIMITS AND Let s compare the behavior of the functions 14. Limits and Continuity In this section, we will learn about: Limits and continuity of various types of functions. sin( ) f ( x, y) and g( x, y)
More informationName Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
More informationFree Response Questions Compiled by Kaye Autrey for facetoface student instruction in the AP Calculus classroom
Free Response Questions 1969005 Compiled by Kaye Autrey for facetoface student instruction in the AP Calculus classroom 1 AP Calculus FreeResponse Questions 1969 AB 1 Consider the following functions
More information106 Chapter 5 Curve Sketching. If f(x) has a local extremum at x = a and. THEOREM 5.1.1 Fermat s Theorem f is differentiable at a, then f (a) = 0.
5 Curve Sketching Whether we are interested in a function as a purely mathematical object or in connection with some application to the real world, it is often useful to know what the graph of the function
More informationPROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
More informationSection 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 2537, 40, 42, 44, 45, 47, 50
Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 537, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall
More information1 3 4 = 8i + 20j 13k. x + w. y + w
) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations
More informationSolution. a) The line in question has parameterization γ(t) = (0, t, t). Plugging this into the equation of the surface yields
Emory University Department of Mathematics & CS Math 211 Multivariable Calculus Spring 2012 Midterm # 1 (Tue 21 Feb 2012) Practice Exam Solution Guide Practice problems: The following assortment of problems
More informationVector Calculus Solutions to Sample Final Examination #1
Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing
More informationSOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253
SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)
More informationMATH 381 HOMEWORK 2 SOLUTIONS
MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More informationSection 2.1 Rectangular Coordinate Systems
P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is
More informationProblem 1 (10 pts) Find the radius of convergence and interval of convergence of the series
1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,
More informationSAT Subject Math Level 2 Facts & Formulas
Numbers, Sequences, Factors Integers:..., 3, 2, 1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses
More informationThis makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5
1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,
More informationScalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
More informationx(x + 5) x 2 25 (x + 5)(x 5) = x 6(x 4) x ( x 4) + 3
CORE 4 Summary Notes Rational Expressions Factorise all expressions where possible Cancel any factors common to the numerator and denominator x + 5x x(x + 5) x 5 (x + 5)(x 5) x x 5 To add or subtract 
More informationTechniques of Differentiation Selected Problems. Matthew Staley
Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4
More informationBlue Pelican Calculus First Semester
Blue Pelican Calculus First Semester Teacher Version 1.01 Copyright 20112013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function
More informationMidterm I Review:
Midterm I Review: 1.1 .1 Monday, October 17, 016 1 1.11. Functions Definition 1.0.1. Functions A function is like a machine. There is an input (x) and an output (f(x)), where the output is designated
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More informationAdding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors
1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationLinear and quadratic Taylor polynomials for functions of several variables.
ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 010, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is
More information3. Double Integrals 3A. Double Integrals in Rectangular Coordinates
3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2
More information2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two or threedimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationVectors, Gradient, Divergence and Curl.
Vectors, Gradient, Divergence and Curl. 1 Introduction A vector is determined by its length and direction. They are usually denoted with letters with arrows on the top a or in bold letter a. We will use
More information100. In general, we can define this as if b x = a then x = log b
Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,
More informationCopyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
More informationa. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More information1 Lecture 19: Implicit differentiation
Lecture 9: Implicit differentiation. Outline The technique of implicit differentiation Tangent lines to a circle Examples.2 Implicit differentiation Suppose we have two quantities or variables x and y
More informationMath 53 Worksheet Solutions Minmax and Lagrange
Math 5 Worksheet Solutions Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial
More informationThe Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationPractice Problems for Midterm 1
Practice Problems for Midterm 1 Here are some problems for you to try. A few I made up, others I found from a variety of sources, including Stewart s Multivariable Calculus book. (1) A boy throws a football
More information4 More Applications of Definite Integrals: Volumes, arclength and other matters
4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the
More informationCALCULUS 2. 0 Repetition. tutorials 2015/ Find limits of the following sequences or prove that they are divergent.
CALCULUS tutorials 5/6 Repetition. Find limits of the following sequences or prove that they are divergent. a n = n( ) n, a n = n 3 7 n 5 n +, a n = ( n n 4n + 7 ), a n = n3 5n + 3 4n 7 3n, 3 ( ) 3n 6n
More informationDraft Material. Determine the derivatives of polynomial functions by simplifying the algebraic expression lim h and then
CHAPTER : DERIVATIVES Specific Expectations Addressed in the Chapter Generate, through investigation using technology, a table of values showing the instantaneous rate of change of a polynomial function,
More informationMcMurry University Pretest Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).
1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find
More informationTwo vectors are equal if they have the same length and direction. They do not
Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must
More informationPartial Derivatives. @x f (x; y) = @ x f (x; y) @x x2 y + @ @x y2 and then we evaluate the derivative as if y is a constant.
Partial Derivatives Partial Derivatives Just as derivatives can be used to eplore the properties of functions of 1 variable, so also derivatives can be used to eplore functions of 2 variables. In this
More informationQuadratic curves, quadric surfaces
Chapter 3 Quadratic curves, quadric surfaces In this chapter we begin our study of curved surfaces. We focus on the quadric surfaces. To do this, we also need to look at quadratic curves, such as ellipses.
More informationAlgebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
More informationx 2 + y 2 = 25 and try to solve for y in terms of x, we get 2 new equations y = 25 x 2 and y = 25 x 2.
Lecture : Implicit differentiation For more on the graphs of functions vs. the graphs of general equations see Graphs of Functions under Algebra/Precalculus Review on the class webpage. For more on graphing
More informationDifferentiation of vectors
Chapter 4 Differentiation of vectors 4.1 Vectorvalued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where
More informationFUNCTIONS. Introduction to Functions. Overview of Objectives, students should be able to:
FUNCTIONS Introduction to Functions Overview of Objectives, students should be able to: 1. Find the domain and range of a relation 2. Determine whether a relation is a function 3. Evaluate a function 4.
More information10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
More informationCalculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM
NAME: Calculus with Analytic Geometry I Exam 5Take Home Part Due: Monday, October 3, 2011; 12PM INSTRUCTIONS. As usual, show work where appropriate. As usual, use equal signs properly, write in full sentences,
More information