PHYSICS 200 CLASS 12 SPRING 2004 (11 February 04) CONCEPTS: 1. Capacitor as a device for storing electric charge

Size: px
Start display at page:

Download "PHYSICS 200 CLASS 12 SPRING 2004 (11 February 04) CONCEPTS: 1. Capacitor as a device for storing electric charge"

Transcription

1 PHYSICS 200 CLASS 12 SPRING 2004 (11 February 04) ASSIGNMENT: HRW, Chapter 26 CONCEPTS: 1. Capacitor as a device for storing electric charge 2. The ability of a capacitor to store charge depends on its geometry and on the "dielectric" used 3. capacitors in series and parallel circuits RECOMMENDED QUESTIONS AND PROBLEMS: Concentrate on the problems for Sections 2 and 3, and on the sample problems. ON-LINE TUTORIALS: Chapter 26, Problems 13, 17, 27, 29, 39 TURN IN: Chapter 26, Problems 7, 9 1. The next exam will come after chapter Recommendation: I suspect many of you would find it helpful to begin keeping a problem notebook, in which you include your worked solutions to the sample problems, and to the problems you are doing in addition to the homework. 3. Remember that the lab meets today and tomorrow. Note the following lab schedule change, as described in my We will spend two weeks on this experiment. Please review carefully the material on graphing and curve fitting in the back of your Physics 191 lab manual.

2 PHYSICS 200 CLASS 13 SPRING 2004 (13 February 04) ASSIGNMENT: HRW, Chapter 26 CONCEPTS: 1. capacitors in series and parallel circuits 2. energy stored in a capacitor 3. Note that the energy stored can be written in terms of either the charge stored on the capacitor, or the electric field. Can one say where the energy "really" is? 4. Effect of a dielectric on capacitance. RECOMMENDED QUESTIONS AND PROBLEMS: Concentrate on the sample problems, questions and problems involving capacitors in series and parallel circuits. NOTE: Textbook authors often draw their circuit diagrams in ways that make it difficult to work out series and parallel combinations. It often helps to think carefully about the textbook diagrams, and then redraw them so that series and parallel combinations are more evident. TURN IN: Chapter 26, Question 5; Problems 13*, 17*, 20. In addition, for Problem 13, assume V = 100 volts and calculate the charge stored on each capacitor.

3 PHYSICS 200 CLASS 14 SPRING 2004 (17 February 04) ASSIGNMENT: Text, Chapters 26, 27 CONCEPTS: 1. energy stored in a capacitor 2. Effect of a dielectric on capacitance. 3. Electric current; note that one can define current independently of the atomic model used by the text. Note also that since we have charge in motion, we can relax our equilibrium result that the electric field is zero inside a conductor. Be sure you understand this point. RECOMMENDED QUESTIONS AND PROBLEMS: Do as many questions and problems as you have time for from Sections 5 and 6 of Chapter 26. TURN IN: Chapter 26, Question G-36; Problems 27*, 29*, 38, Remember that the next exam will come after Chapter 28. I am tentatively scheduling it for Thursday, 11 March. I think we can finish Chapter 28 on 27 February, just before the spring break. When we get back, be can review on Tuesday and have the exam on Thursday. 2. The laboratory will meet on Wednesday, Thursday and Friday of this week. The laboratory will not meet next week (week of 23 February).

4 PHYSICS 200 CLASS 15 SPRING 2004 (19 February 04) ASSIGNMENT: Text, Chapter 27; handout CONCEPTS: 1. Electric current; note that one can define current independently of the atomic model used by the text. Note also that since we have charge in motion, we can relax our equilibrium result that the electric field is zero inside a conductor. Be sure you understand this point. 2. current density 3. Ohm's Law Keep in mind that Ohm s Law is really not a law at all. It is a rule that describes the behavior of a large class of materials, but by no means all. We will see examples in the laboratory of materials that do not obey Ohm s Law. 4. electric energy is dissipated, and appears as heat, when a current goes through a resistance RECOMMENDED QUESTIONS AND PROBLEMS: Most of the problems are interesting. NOTE: Do not forget the green supplementary problem book. There are more worked examples; and in addition, many of the questions are more interesting than the ones in the text. ON-LINE TUTORIALS AVAILABLE FOR: Chapter 27, Problems 11, 19, 25, 35, 37 TURN IN: Chapter 27, Question G-26; Problems 8, 19*, 37*, 42; Extra Credit, Problem 10 (Hint: think about how you handled variable charge density in the context of Gauss s law.) DO BUT DO NOT TURN IN: G-59, G Remember that problems and questions prefaced with G are in the green supplementary problem book. Answers to odd-numbered problems are in the back. 2. I hope to spend only one day on this chapter. Don't let yourself get behind. 3. The essay on "Exponential Growth" is very important. I will probably not spend much time on it in class, but you should read it carefully it is material you will use many times in any area of science or engineering. At some point, I will ask you to turn in problem 2 on page 803. We will also use these ideas in chapter 28.

5 PHYSICS 200 CLASS 16 SPRING February 04 ASSIGNMENT: Text, Chapter 28 CONCEPTS: 1. emf as a "charge pump" that maintains a potential difference in a circuit. Read carefully the qualitative discussion on pages Kirchoff's Laws (or rules) for simple DC circuits--there are two of them 3. resistances in series 4. resistances in parallel RECOMMENDED QUESTIONS AND PROBLEMS: Concentrate on the questions, problems, and sample problems through Section 6. ON-LINE TUTORIALS AVAILABLE FOR: Chapter 28 7, 13, 33, 37, 47 TURN IN: Chapter 28, Question G-27; Problems 12, 13*, 17, G The second exam will be on Thursday, 11 March, and will cover chapters First-year students: Before you register for next fall's classes, be sure you find an advisor in your major department, and talk over your program with him/her, well before you register. For physics and most pre-engineering majors, your advisor should be in the Physics Department. (Students interested in chemical engineering should find an advisor in the Chemistry Department.) Any of us in the Physics Department would be happy to act as an advisor just ask! 3. The laboratory will not meet this cycle (26-27 February and 8 March). In the following cycle (12/15/16) March, we will do Experiment 5, RC Circuits.

6 PHYSICS 200 CLASS 17 SPRING 2004 (25 February 04) ASSIGNMENT: HRW, Chapter 28; "Exponential Growth " handout CONCEPTS: 1. voltmeters and ammeters 2. RC Circuits--be sure you review exponential functions and logarithms carefully. RECOMMENDED QUESTIONS AND PROBLEMS: Concentrate on the Questions and Problems for Sections 7 and 8. Problems 45 (Chapter 27), and its continuation, Problem 56 (Chapter 28) are also interesting. Remember that the simulations on the HRW web site are another good source for problems involving multi-loop circuits. Be sure that you understand how to solve this class of problems! TURN IN: Chapter 28, Question G-34; Problems, 31, 51, 52; "Exponential Growth" handout, problem 2 DO BUT DO NOT TURN IN: Question G-37; Problems 36, G The next exam will be on Thursday, 11 March. The exam will cover Chapters 26 through 28 in HRW. You may bring to the exam one sheet of paper with anything you like written on it except solved problems and worked examples (that is, sample problems ) from the text. The exam will consist of questions and problems similar to those at the end of the chapters in HRW. It often helps to give yourself a sample exam: Pick a problem from HRW (or from the green supplemental problem book) and see if you can do it under test conditions that is, in 10 or 15 minutes.

7 PHYSICS 200 CLASS 18 SPRING 2004 (27 February 04) ASSIGNMENT: Text, Chapter 28; "Exponential Growth" handout CONCEPTS: 1. RC Circuits 2. exponential functions RECOMMENDED QUESTIONS AND PROBLEMS: In Chapter 28, be sure you have worked through all of the sample problems, and then try to do as many more as you have time for. Be sure you understand how to use Kirchhoff s laws to analyze the voltages and currents in a circuit. DO BUT DO NOT TURN IN: Chapter 28, Problems 37*, 43, 52, The second exam will be on Thursday, 11 March, and will cover Chapters 26 through 28. You may bring to the exam one sheet of paper with anything you like written on it except solved problems and worked examples from the text. The exam will consist of questions and problems similar to those at the end of the chapters in HRW, and in the supplementary problem book. As part of your preparation for the exam, do lots of problems! Concentrate on the more interesting ones--that is, do not concentrate on the problems that involve no more than plugging numbers into formulas. And try to do some problems under test conditions that is, pick a problem you have not done and try to do it in 10 minutes or so.

Tutorial 12 Solutions

Tutorial 12 Solutions PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws

Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws Physics 182 Summer 2013 Experiment #5 1 Experiment #5, Series and Parallel Circuits, Kirchhoff s Laws 1 Purpose Our purpose is to explore and validate Kirchhoff s laws as a way to better understanding

More information

People s Physics Book

People s Physics Book The Big Ideas: The name electric current is given to the phenomenon that occurs when an electric field moves down a wire at close to the speed of light. Voltage is the electrical energy density (energy

More information

Your Comments. This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively?

Your Comments. This was a very confusing prelecture. Do you think you could go over thoroughly how the LC circuits work qualitatively? Your omments I am not feeling great about this mierm...some of this stuff is really confusing still and I don't know if I can shove everything into my brain in time, especially after spring break. an you

More information

Measuring Electric Phenomena: the Ammeter and Voltmeter

Measuring Electric Phenomena: the Ammeter and Voltmeter Measuring Electric Phenomena: the Ammeter and Voltmeter 1 Objectives 1. To understand the use and operation of the Ammeter and Voltmeter in a simple direct current circuit, and 2. To verify Ohm s Law for

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information

Reading assignment: All students should read the Appendix about using oscilloscopes.

Reading assignment: All students should read the Appendix about using oscilloscopes. 10. A ircuits* Objective: To learn how to analyze current and voltage relationships in alternating current (a.c.) circuits. You will use the method of phasors, or the vector addition of rotating vectors

More information

Eðlisfræði 2, vor 2007

Eðlisfræði 2, vor 2007 [ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

More information

Lab E1: Introduction to Circuits

Lab E1: Introduction to Circuits E1.1 Lab E1: Introduction to Circuits The purpose of the this lab is to introduce you to some basic instrumentation used in electrical circuits. You will learn to use a DC power supply, a digital multimeter

More information

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE

CURRENT ELECTRICITY INTRODUCTION TO RESISTANCE, CAPACITANCE AND INDUCTANCE CURRENT ELECTRICITY INTRODUCTION TO RESI STANCE, CAPACITANCE AND INDUCTANCE P R E A M B L E This problem is adapted from an on-line knowledge enhancement module for a PGCE programme. It is used to cover

More information

Supplemental Activity

Supplemental Activity Materials: Test-Taking Skills Assessment on page 80 in this workbook (page 19 in the student workbook) Test-Taking Tips on page 81 in this workbook (page 20 in the student workbook) Tactics for Studying

More information

Lab 2: Resistance, Current, and Voltage

Lab 2: Resistance, Current, and Voltage 2 Lab 2: Resistance, Current, and Voltage I. Before you come to la.. A. Read the following chapters from the text (Giancoli): 1. Chapter 25, sections 1, 2, 3, 5 2. Chapter 26, sections 1, 2, 3 B. Read

More information

Series and Parallel Resistive Circuits Physics Lab VIII

Series and Parallel Resistive Circuits Physics Lab VIII Series and Parallel Resistive Circuits Physics Lab VIII Objective In the set of experiments, the theoretical expressions used to calculate the total resistance in a combination of resistors will be tested

More information

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules

AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Direct-Current Series Circuits A series circuit is a circuit in which the components are connected in a line, one after the other, like railroad cars on a single track. There

More information

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 28 ELECTRIC CIRCUITS CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

More information

Electric Field Mapping Lab 3. Precautions

Electric Field Mapping Lab 3. Precautions HB 09-25-07 Electric Field Mapping Lab 3 1 Electric Field Mapping Lab 3 Equipment mapping board, U-probe, resistive boards, templates, dc voltmeter (431B), 4 long leads, 16 V dc for wall strip Reading

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals

More information

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

More information

Chapter 7. DC Circuits

Chapter 7. DC Circuits Chapter 7 DC Circuits 7.1 Introduction... 7-3 Example 7.1.1: Junctions, branches and loops... 7-4 7.2 Electromotive Force... 7-5 7.3 Electrical Energy and Power... 7-9 7.4 Resistors in Series and in Parallel...

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

Resistors in Series and Parallel Circuits

Resistors in Series and Parallel Circuits 69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

More information

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament

Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Resistance, Ohm s Law, and the Temperature of a Light Bulb Filament Name Partner Date Introduction Carbon resistors are the kind typically used in wiring circuits. They are made from a small cylinder of

More information

Parallel DC circuits

Parallel DC circuits Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Ohm's Law and Circuits

Ohm's Law and Circuits 2. Conductance, Insulators and Resistance A. A conductor in electricity is a material that allows electrons to flow through it easily. Metals, in general, are good conductors. Why? The property of conductance

More information

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

More information

TIME MANAGEMENT AND STUDY SKILLS

TIME MANAGEMENT AND STUDY SKILLS TIME MANAGEMENT AND STUDY SKILLS People aren t born knowing how to be good students. Adopting good study skills takes practice and dedication, but anyone can become a good student. The two most important

More information

= V peak 2 = 0.707V peak

= V peak 2 = 0.707V peak BASIC ELECTRONICS - RECTIFICATION AND FILTERING PURPOSE Suppose that you wanted to build a simple DC electronic power supply, which operated off of an AC input (e.g., something you might plug into a standard

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

Current, Resistance and Electromotive Force. Young and Freedman Chapter 25

Current, Resistance and Electromotive Force. Young and Freedman Chapter 25 Current, Resistance and Electromotive Force Young and Freedman Chapter 25 Electric Current: Analogy, water flowing in a pipe H 2 0 gallons/minute Flow Rate is the NET amount of water passing through a

More information

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu

Lab 1: DC Circuits. Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu Lab Date Lab 1: DC Circuits Student 1, student1@ufl.edu Partner : Student 2, student2@ufl.edu I. Introduction The purpose of this lab is to allow the students to become comfortable with the use of lab

More information

POWER AND VOLTAGE RATING

POWER AND VOLTAGE RATING POWER AND VOLTAGE RATING SCOPE: The purpose of this document is to take the confusion out of power and voltage ratings in specifications and in product information publications. This will be accomplished

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

DC Circuits (Combination of resistances)

DC Circuits (Combination of resistances) Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

More information

MATH 1900, ANALYTIC GEOMETRY AND CALCULUS II SYLLABUS

MATH 1900, ANALYTIC GEOMETRY AND CALCULUS II SYLLABUS MATH 1900, ANALYTIC GEOMETRY AND CALCULUS II SYLLABUS COURSE TITLE: Analytic Geometry and Calculus II CREDIT: 5 credit hours SEMESTER: Spring 2010 INSTRUCTOR: Shahla Peterman OFFICE: 353 CCB PHONE: 314-516-5826

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 12 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 19 1 Department

More information

Method 1: 30x50 30 50 18.75 15 18.75 0.8. 80 Method 2: 15

Method 1: 30x50 30 50 18.75 15 18.75 0.8. 80 Method 2: 15 The University of New South Wales School of Electrical Engineering and Telecommunications ELEC Electrical and Telecommunications Engineering Tutorial Solutions Q. In the figure below a voltage source and

More information

Unit: Charge Differentiated Task Light it Up!

Unit: Charge Differentiated Task Light it Up! The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved instructional plans are

More information

The Five Day Test Prep Plan: How to prepare for any exam

The Five Day Test Prep Plan: How to prepare for any exam The Five Day Test Prep Plan: How to prepare for any exam URI101 students: read this handout carefully, then pick a class of your own, and make your own five day plan. For most people, preparing for exams

More information

Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same

Circuits. The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuits The light bulbs in the circuits below are identical. Which configuration produces more light? (a) circuit I (b) circuit II (c) both the same Circuit II has ½ current of each branch of circuit

More information

HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE

HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE HOUSTON COMMUNITY COLLEGE NORTHWEST COLLEGE COURSE SYLLABUS FOR UNIVERSITY PHYSICS II Course Title: University Physics II Course Number : PHYS 2326-7 Class Number : 48053 Semester : Time and Location:

More information

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING

DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING SESSION WEEK COURSE: Physics II DEGREE: Bachelor's Degree in Industrial Electronics and Automation COURSE: 1º TERM: 2º WEEKLY PLANNING DESCRIPTION GROUPS (mark ) Indicate YES/NO If the session needs 2

More information

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING

DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING SESSION WEEK COURSE: Electronic Technology in Biomedicine DEGREE: Bachelor in Biomedical Engineering YEAR: 2 TERM: 2 WEEKLY PLANNING DESCRIPTION GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class

More information

Parallel Circuits. Objectives After studying this chapter, you will be able to answer these questions: 1. How are electrical components connected

Parallel Circuits. Objectives After studying this chapter, you will be able to answer these questions: 1. How are electrical components connected This sample chapter is for review purposes only. Copyright The Goodheart-Willcox Co., Inc. All rights reserved. Electricity Objectives After studying this chapter, you will be able to answer these questions:.

More information

MAC2233, Business Calculus Reference # 722957, RM 2216 TR 9:50AM 11:05AM

MAC2233, Business Calculus Reference # 722957, RM 2216 TR 9:50AM 11:05AM Instructor: Jakeisha Thompson Email: jthompso@mdc.edu Phone: 305-237-3347 Office: 1543 Office Hours Monday Tuesday Wednesday Thursday Friday 7:30AM 8:15AM 12:30PM 2:00PM 7:30AM 9:30AM 7:30AM 8:15AM 12:30PM

More information

Strategies for Winning at Math. Student Success Workshop

Strategies for Winning at Math. Student Success Workshop Strategies for Winning at Math Student Success Workshop Just the Facts Poor performance in math is NOT due to a lack of intelligence. The key to success in math is having the right approach to studying

More information

Experiment #3, Ohm s Law

Experiment #3, Ohm s Law Experiment #3, Ohm s Law 1 Purpose Physics 182 - Summer 2013 - Experiment #3 1 To investigate the -oltage, -, characteristics of a carbon resistor at room temperature and at liquid nitrogen temperature,

More information

Physics 221 Classical Physics II Lab Gustavus Adolphus College Spring 2007

Physics 221 Classical Physics II Lab Gustavus Adolphus College Spring 2007 Physics 221 Classical Physics II Lab Gustavus Adolphus College Spring 2007 Instructors: Thomas Huber James Miller Office: Olin Hall 209 Olin Hall 204 Telephone: 933-7036 933-6130 email: huber@gustavus.edu

More information

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)

Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.

More information

Lesson Plan. Parallel Resistive Circuits Part 1 Electronics

Lesson Plan. Parallel Resistive Circuits Part 1 Electronics Parallel Resistive Circuits Part 1 Electronics Lesson Plan Performance Objective At the end of the lesson, students will demonstrate the ability to apply problem solving and analytical techniques to calculate

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

xxx Lesson 11 1. Comprehend the writing process 2. Respond positively to the writing process

xxx Lesson 11 1. Comprehend the writing process 2. Respond positively to the writing process xxx Lesson 11 The Writing Process Overview: This lesson will focus on the writing process and how it relates to communication. Learners will be taught what the writing process is, its parts, and how they

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism

CLASS TEST GRADE 11. PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism CLASS TEST GRADE 11 PHYSICAL SCIENCES: PHYSICS Test 3: Electricity and magnetism MARKS: 45 TIME: 1 hour INSTRUCTIONS AND INFORMATION 1. Answer ALL the questions. 2. You may use non-programmable calculators.

More information

SYLLABUS. Semester: Spring 2009. Requirements: Text: General Chemistry. 9 th Edition, Chang, 2007

SYLLABUS. Semester: Spring 2009. Requirements: Text: General Chemistry. 9 th Edition, Chang, 2007 SYLLABUS Course: General Chemistry II: CHEM-1100-001 Lecture: 10:30 AM-12:00 PM Tues. & Thurs. in Room 6068 Recitation: 12:00 PM-12:50 PM in Room 3066 Laboratory: 01:00-03:50 PM Wed. in Room 3066 Semester:

More information

Statistics. 268 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org.

Statistics. 268 2016 The College Board. Visit the College Board on the Web: www.collegeboard.org. Statistics AP Statistics Exam Regularly Scheduled Exam Date: Thursday afternoon, May 12, 2016 Late-Testing Exam Date: Wednesday morning, May 18, 2016 Section I Total Time: 1 hr. 30 min. Section II Total

More information

El Camino College Chemistry 1B: General Chemistry II Instructor: Dr. Melvin Kantz Office: Chem 133 email: drmelk@verizon.net

El Camino College Chemistry 1B: General Chemistry II Instructor: Dr. Melvin Kantz Office: Chem 133 email: drmelk@verizon.net El Camino College Chemistry 1B: General Chemistry II Instructor: Dr. Melvin Kantz Office: Chem 133 Spring 2013 email: drmelk@verizon.net Section 1245 Lecture: Monday, Wednesday 06:00PM - 08:30PM, Chemistry,

More information

The Critical Length of a Transmission Line

The Critical Length of a Transmission Line Page 1 of 9 The Critical Length of a Transmission Line Dr. Eric Bogatin President, Bogatin Enterprises Oct 1, 2004 Abstract A transmission line is always a transmission line. However, if it is physically

More information

Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1

Objectives: Part 1: Build a simple power supply. CS99S Laboratory 1 CS99S Laboratory 1 Objectives: 1. Become familiar with the breadboard 2. Build a logic power supply 3. Use switches to make 1s and 0s 4. Use LEDs to observe 1s and 0s 5. Make a simple oscillator 6. Use

More information

Measuring Insulation Resistance of Capacitors

Measuring Insulation Resistance of Capacitors Application Note Measuring Insulation Resistance of Capacitors A common use of high resistance measuring instruments (often called megohmmeters or insulation resistance testers) is measuring the insulation

More information

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to

AP1 Electricity. 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to 1. A student wearing shoes stands on a tile floor. The students shoes do not fall into the tile floor due to (A) a force of repulsion between the shoes and the floor due to macroscopic gravitational forces.

More information

Current Electricity Lab Series/Parallel Circuits. Safety and Equipment Precautions!

Current Electricity Lab Series/Parallel Circuits. Safety and Equipment Precautions! Current Electricity Lab Series/Parallel Circuits Name Safety and Equipment Precautions! Plug in your power supply and use ONLY the D.C. terminals of the power source, NOT the A. C. terminals. DO NOT touch

More information

12. Transformers, Impedance Matching and Maximum Power Transfer

12. Transformers, Impedance Matching and Maximum Power Transfer 1 1. Transformers, Impedance Matching and Maximum Power Transfer Introduction The transformer is a device that takes AC at one voltage and transforms it into another voltage either higher or lower than

More information

NEW YORK UNIVERSITY Department of Chemistry Summer 2013

NEW YORK UNIVERSITY Department of Chemistry Summer 2013 CHEM-UA 125 NEW YORK UNIVERSITY Department of Chemistry Summer 2013 Lecture Course Schedule and Outline * General Chemistry I & Laboratory Lectures: M, T, W 9:00-11:05 a.m. Recitations: M, W 11:15-12:30

More information

First Year (Electrical & Electronics Engineering)

First Year (Electrical & Electronics Engineering) Z PRACTICAL WORK BOOK For The Course EE-113 Basic Electrical Engineering For First Year (Electrical & Electronics Engineering) Name of Student: Class: Batch : Discipline: Class Roll No.: Examination Seat

More information

Measurement of Capacitance

Measurement of Capacitance Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

More information

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY

SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY SIMULATIONS OF PARALLEL RESONANT CIRCUIT POWER ELECTRONICS COLORADO STATE UNIVERSITY Page 1 of 25 PURPOSE: The purpose of this lab is to simulate the LCC circuit using MATLAB and ORCAD Capture CIS to better

More information

WORDS THEIR WAY. Thursday- FREE CHOICE: See the attached page with Free Choice options and assist your child in completing this activity.

WORDS THEIR WAY. Thursday- FREE CHOICE: See the attached page with Free Choice options and assist your child in completing this activity. WORDS THEIR WAY Dear Parents, Your child will be bringing home a collection of spelling words weekly that have been introduced in class. Each night of the week, your child is expected to do a different

More information

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011

( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011 Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q = - 4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force

More information

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current.

STUDY MATERIAL FOR CLASS 10+2 - Physics- CURRENT ELECTRICITY. The flow of electric charges in a particular direction constitutes electric current. Chapter : 3 Current Electricity Current Electricity The branch of Physics which deals with the study of electric charges in motion is called current electricity. Electric current The flow of electric charges

More information

V out. Figure 1: A voltage divider on the left, and potentiometer on the right.

V out. Figure 1: A voltage divider on the left, and potentiometer on the right. Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 gerry@me.pdx.edu Introduction Voltage dividers and potentiometers are passive circuit components

More information

Student Exploration: Circuits

Student Exploration: Circuits Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these

More information

Ohm s Law. George Simon Ohm

Ohm s Law. George Simon Ohm Ohm s Law George Simon Ohm The law which governs most simple and many complex electrical phenomena is known as Ohm s Law. It is the most important law in electricity. In 1827, a German locksmith and mathematician

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the voltage at a point in space is zero, then the electric field must be A) zero. B) positive.

More information

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

More information

FORCE ON A CURRENT IN A MAGNETIC FIELD

FORCE ON A CURRENT IN A MAGNETIC FIELD 7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v

More information

Odyssey of the Mind Technology Fair. Simple Electronics

Odyssey of the Mind Technology Fair. Simple Electronics Simple Electronics 1. Terms volts, amps, ohms, watts, positive, negative, AC, DC 2. Matching voltages a. Series vs. parallel 3. Battery capacity 4. Simple electronic circuit light bulb 5. Chose the right

More information

Electrical Fundamentals Module 3: Parallel Circuits

Electrical Fundamentals Module 3: Parallel Circuits Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310- Electrical Fundamentals 2 Module 3 Parallel Circuits Module

More information

FB-DC3 Electric Circuits: Series and Parallel Circuits

FB-DC3 Electric Circuits: Series and Parallel Circuits CREST Foundation Electrical Engineering: DC Electric Circuits Kuphaldt FB-DC3 Electric Circuits: Series and Parallel Circuits Contents 1. What are "series" and "parallel"? 2. Simple series circuits 3.

More information

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13 CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

More information

COURSE SYLLABUS CHEM 103: General Chemistry- Fall 2010 University of Wisconsin-Eau Claire

COURSE SYLLABUS CHEM 103: General Chemistry- Fall 2010 University of Wisconsin-Eau Claire COURSE SYLLABUS CHEM 103: General Chemistry- Fall 2010 University of Wisconsin-Eau Claire Instructor Dr. Sudeep Bhattacharyay Office P-452 Office Phone 715 836 2278 Office Hours By appointment E-mail bhattas@uwec.edu

More information

UNL71 Physics Neil Lister; BSc, Dip, Ed.

UNL71 Physics Neil Lister; BSc, Dip, Ed. UNL71 Physics Your Teacher for Unilearn Physics is Neil Lister; BSc, Dip, Ed. Neil has taught at least 1 physics course at Sunnybank S.H.S. every year from 1971 until he retired from full time teaching

More information

Chapter 13: Electric Circuits

Chapter 13: Electric Circuits Chapter 13: Electric Circuits 1. A household circuit rated at 120 Volts is protected by a fuse rated at 15 amps. What is the maximum number of 100 watt light bulbs which can be lit simultaneously in parallel

More information

What is Characteristic Impedance?

What is Characteristic Impedance? Dr. Eric Bogatin 26235 W 110 th Terr. Olathe, KS 66061 Voice: 913-393-1305 Fax: 913-393-1306 eric@bogent.com www.bogatinenterprises.com Training for Signal Integrity and Interconnect Design Reprinted with

More information

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off.

Diode Applications. As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Diode Applications Diode Switching As we have already seen the diode can act as a switch Forward biased or reverse biased - On or Off. Voltage Rectifier A voltage rectifier is a circuit that converts an

More information

Episode 126: Capacitance and the equation C =Q/V

Episode 126: Capacitance and the equation C =Q/V Episode 126: Capacitance and the equation C =Q/V Having established that there is charge on each capacitor plate, the next stage is to establish the relationship between charge and potential difference

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction...7-7. Electromotive Force...7-3 7.3 Resistors in Series and in Parallel...7-5 7.4 Kirchhoff s Circuit Rules...7-7 7.5 Voltage-Current Measurements...7-9

More information

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26. Inductance. 2011 by Bryan Pflueger Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

More information

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section

ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section ENGR-4300 Electronic Instrumentation Quiz 4 Spring 2011 Name Section Question I (20 points) Question II (20 points) Question III (20 points) Question IV (20 points) Question V (20 points) Total (100 points)

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

COURSE AND GRADING POLICY

COURSE AND GRADING POLICY MONTGOMERY COLLEGE Chemistry Department Rockville Campus Summer II 2015 CHEM131-: General Chemistry I Lecture Section (10462 CH131) MTWR 9:00-10:35 am, Room SC-462 (Science Center). Discussion Sections

More information

How To Use Multiisim On A Computer Or A Circuit Design Suite 10.0 (Aero)

How To Use Multiisim On A Computer Or A Circuit Design Suite 10.0 (Aero) MULTISIM TUTORIAL Start Click on Start All Programs National Instruments Circuit Design Suite 10.0 Multisim. Component Toolbar Ammeter/ Voltmeter Toolbar Virtual Component Toolbar Simulation Toolbar Instrument

More information

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331)

Equipment: Power Supply, DAI, Transformer (8341), Variable resistance (8311), Variable inductance (8321), Variable capacitance (8331) Lab 5: Single-phase transformer operations. Objective: to examine the design of single-phase transformers; to study the voltage and current ratios of transformers; to study the voltage regulation of the

More information

Experiment #4, Ohmic Heat

Experiment #4, Ohmic Heat Experiment #4, Ohmic Heat 1 Purpose Physics 18 - Fall 013 - Experiment #4 1 1. To demonstrate the conversion of the electric energy into heat.. To demonstrate that the rate of heat generation in an electrical

More information