# All points on the coordinate plane are described with reference to the origin. What is the origin, and what are its coordinates?

Save this PDF as:

Size: px
Start display at page:

Download "All points on the coordinate plane are described with reference to the origin. What is the origin, and what are its coordinates?"

## Transcription

1 Classwork Example 1: Extending the Axes Beyond Zero The point below represents zero on the number line. Draw a number line to the right starting at zero. Then, follow directions as provided by the teacher. Example 2: Components of the Coordinate Plane All points on the coordinate plane are described with reference to the origin. What is the origin, and what are its coordinates? To describe locations of points in the coordinate plane we use Order is important, so on the coordinate plane we use the form of numbers.. The first coordinate represents the point s location from zero on the axis, and the second coordinate represents the point s location from zero on the axis. Date: 4/1/14 S.54

2 Exercises 1. Use the coordinate plane below to answer parts (a) (c): a. Graph at least five points on the axis and label their coordinates. b. What do the coordinates of your points have in common? c. What must be true about any point that lies on the axis? Explain. 2. Use the coordinate plane to answer parts (a) (c): a. Graph at least five points on the axis and label their coordinates. b. What do the coordinates of your points have in common? c. What must be true about any point that lies on the axis? Explain. 3. If the origin is the only point with 0 for both coordinates, what must be true about the origin? Date: 4/1/14 S.55

3 Example 3: Quadrants of the Coordinate Plane Exercises 4. Locate and label each point described by the ordered pairs below. Indicate which of the quadrants the points lie in. a. 7,2 b. 3, 4 c. 1, 5 d. 3,8 e. 2, 1 Date: 4/1/14 S.56

4 5. Write the coordinates of at least one other point in each of the four quadrants. a. Quadrant I b. Quadrant II c. Quadrant III d. Quadrant IV 6. Do you see any similarities in the points within each quadrant? Explain your reasoning. Date: 4/1/14 S.57

5 Lesson Summary The axis and axis of the coordinate plane are number lines that intersect at zero on each number line. The axes create four quadrants in the coordinate plane. Points in the coordinate plane lie either on an axis or in one of the four quadrants. Problem Set 1. Name the quadrant in which each of the points lies. If the point does not lie in a quadrant, specify which axis the point lies on. a. 2,5 b. 9.2, 7 c. 0, 4 d. 8, 4 e. 1, 8 2. Jackie claims that points with the same and coordinates must lie in Quadrant I or Quadrant III. Do you agree or disagree? Explain your answer. 3. Locate and label each set of points on the coordinate plane. Describe similarities of the ordered pairs in each set and describe the points on the plane. a. 2,5, 2,2, 2,7, 2, 3, 2,.8 b. 9,9, 4,4, 2,2, 1, 1, 3, 3, 0,0 c. 7, 8, 5, 8, 0, 8, 10, 8, 3, 8 4. Locate and label at least five points on the coordinate plane that have an coordinate of 6. a. What is true of the coordinates below the axis? b. What is true of the coordinates above the axis? c. What must be true of the coordinates on the axis? Date: 4/1/14 S.58

### Lesson 19: Equations for Tangent Lines to Circles

Classwork Opening Exercise A circle of radius 5 passes through points ( 3, 3) and (3, 1). a. What is the special name for segment? b. How many circles can be drawn that meet the given criteria? Explain

### 4 th Grade Math Lesson Plan Coordinate Planes

Context: Objective: 4 th Grade Math Lesson Plan Coordinate Planes This lesson designed for a 4 th grade class at Kraft Elementary School. This class contains 16 students. No students have IEPs and none

### Graph Ordered Pairs on a Coordinate Plane

Graph Ordered Pairs on a Coordinate Plane Student Probe Plot the ordered pair (2, 5) on a coordinate grid. Plot the point the ordered pair (-2, 5) on a coordinate grid. Note: If the student correctly plots

### Lines That Pass Through Regions

: Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

### Patterns, Equations, and Graphs. Section 1-9

Patterns, Equations, and Graphs Section 1-9 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate

### N.CN.7, A.CED.1, 2, 3, N.Q.2, A.SSE.1,

Learning Targets: I can solve interpret key features of quadratic functions from different form. I can choose a method to solve, and then, solve a quadratic equation and explain my reasoning. #1 4 For

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Lesson 22: Solution Sets to Simultaneous Equations

Student Outcomes Students identify solutions to simultaneous equations or inequalities; they solve systems of linear equations and inequalities either algebraically or graphically. Classwork Opening Exercise

### The Coordinate System

Math 6 NOTES (.) Name The Coordinate Sstem A coordinate sstem, or coordinate plane, is used to locate points in a -dimensional plane. The horizontal number line is the. The vertical number line is the.

7.5 SYSTEMS OF INEQUALITIES Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of inequalities in two variables. Solve systems of inequalities. Use systems of inequalities

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Graphing Inequalities (Scaffolding Task)

Graphing Inequalities (Scaffolding Task) Introduction In this task, students will graph two separate inequalities in two variables and analyze the graph for solutions to each. The students will then graph

### LINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH

59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

### SCATTER PLOTS AND TREND LINES

1 SCATTER PLOTS AND TREND LINES INSTRUCTIONAL ACTIVITY Lesson 1 LEARNING GOAL Students will create a scatter plot with appropriately labeled and scaled axes and estimate new data values. The critical outcome

### c sigma & CEMTL

c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,

### Mathematics 1. Lecture 5. Pattarawit Polpinit

Mathematics 1 Lecture 5 Pattarawit Polpinit Lecture Objective At the end of the lesson, the student is expected to be able to: familiarize with the use of Cartesian Coordinate System. determine the distance

### MiSP Simple Machines/Inclined Plane Worksheet #2b L3 Modified from Making the Grade (AIMS Machine Shop)

MiSP Simple Machines/Inclined Plane Worksheet #2b L3 Modified from Making the Grade (AIMS Machine Shop) Name Date L 1, 2, 3 Key Question: How much force does it take to lift 400 grams 20 centimeters in

### Lesson 18 Student Outcomes Lesson Notes

Lesson 18 Analyzing Residuals Student Outcomes Students use a graphing calculator to construct the residual plot for a given data set. Students use a residual plot as an indication of whether or not the

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Georgia Department of Education Common Core Georgia Performance Standards Framework Fifth Grade Mathematics Unit 5

Practice Task: Air Traffic Controller Adapted from Paths-Activity 20.22 in Van de Walle s Elementary and Middle School Mathematics, Teaching Developmentally This task requires students to create travel

### Lesson 4: Solving and Graphing Linear Equations

Lesson 4: Solving and Graphing Linear Equations Selected Content Standards Benchmarks Addressed: A-2-M Modeling and developing methods for solving equations and inequalities (e.g., using charts, graphs,

### Lesson 1: Positive and Negative Numbers on the Number Line Opposite Direction and Value

Positive and Negative Numbers on the Number Line Opposite Direction and Value Student Outcomes Students extend their understanding of the number line, which includes zero and numbers to the right or above

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

### 4.1 Solving a System of Linear Inequalities

4.1 Solving a System of Linear Inequalities Question 1: How do you graph a linear inequality? Question : How do you graph a system of linear inequalities? In Chapter, we were concerned with systems of

### 10.1 Notes-Graphing Quadratics

Name: Period: 10.1 Notes-Graphing Quadratics Section 1: Identifying the vertex (minimum/maximum), the axis of symmetry, and the roots (zeros): State the maximum or minimum point (vertex), the axis of symmetry,

### 3x3 Linear Systems of Equations

Math Objectives Students will be able to describe the effects of the coefficients of a linear function in three variables on the graph of the function. Students will be able to identify the number of solutions

### Lesson 17: Graphing the Logarithm Function

Lesson 17 Name Date Lesson 17: Graphing the Logarithm Function Exit Ticket Graph the function () = log () without using a calculator, and identify its key features. Lesson 17: Graphing the Logarithm Function

### Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

### Class 9 Coordinate Geometry

ID : in-9-coordinate-geometry [1] Class 9 Coordinate Geometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) Find the coordinates of the point shown in the picture. (2) Find

### Objectives. score only one 2-point field goal and point field goals even though the ordered

Objectives Graph systems of linear inequalities Investigate the concepts of constraints and feasible polygons Activity 3 Introduction The graph of a system of linear inequalities can create a region defined

### Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

### In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

### Grade: 8. Learning Goals:

Title: Building with Tiles CCGPS Standards Addressed: Grade: 8 Learning Goals: BIG Idea: Linear Patterns & Algebraic Thinking MCC8.F.2 Compare properties of two functions each represented in a different

### Math. MCC5.OA.1 Use parentheses, brackets, or braces in. these symbols. 11/5/2012 1

MCC5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. 11/5/2012 1 MCC5.OA.2 Write simple expressions that record calculations with numbers,

### Chapter 12 Notes, Calculus I with Precalculus 3e Larson/Edwards. Contents Parabolas Ellipse Hyperbola...

Contents 1.1 Parabolas.............................................. 1. Ellipse................................................ 6 1.3 Hyperbola.............................................. 10 1 1.1 Parabolas

### A synonym is a word that has the same or almost the same definition of

Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A2c Time allotted for this Lesson: 5 Hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A2c Time allotted for this Lesson: 5 Hours Essential Question: LESSON 2 Absolute Value Equations and Inequalities How do you

### Vocabulary. S.ID.B.6b: Use Residuals to Assess Fit of a Function

S.ID.B.6b: Use Residuals to Assess Fit of a Function GRAPHS AND STATISTICS S.ID.B.6b: Use Residuals to Assess Fit of a Function B. Summarize, represent, and interpret data on two categorical and quantitative

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### Graphing Equations. Caution: We use parentheses to represent both an ordered pair

Graphing Equations Caution: We use parentheses to represent both an ordered pair and an open interval. You must know the difference between the two concepts! In this context, we are discussing ordered

### Tennessee Department of Education. Task: Sally s Car Loan

Tennessee Department of Education Task: Sally s Car Loan Sally bought a new car. Her total cost including all fees and taxes was \$15,. She made a down payment of \$43. She financed the remaining amount

### Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

### Number of Solutions to Simultaneous Equations

Worksheet 3.5 Simultaneous Equations Section 1 Number of Solutions to Simultaneous Equations In maths we are sometimes confronted with two equations in two variables and we want to find out which values

### Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### Introduction to Conics: Parabolas

Introduction to Conics: Parabolas MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize a conic as the intersection of a plane

### LINEAR EQUATIONS. MODULE - 1 Algebra OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE. Linear Equations. Notes

5 LINEAR EQUATIONS You have learnt about basic concept of a variable and a constant. You have also learnt about algebraic exprssions, polynomials and their zeroes. We come across many situations such as

### Hidden Treasure: A Coordinate Game. Assessment Management. Matching Number Stories to Graphs

Hidden Treasure: A Coordinate Game Objective To reinforce students understanding of coordinate grid structures and vocabulary. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM

### Activity 2. Tracing Paper Inequalities. Objective. Introduction. Problem. Exploration

Objective Graph systems of linear inequalities in two variables in the Cartesian coordinate plane Activity 2 Introduction A set of two or more linear equations is called a system of equations. A set of

### 5.2. Systems of linear equations and their solution sets

5.2. Systems of linear equations and their solution sets Solution sets of systems of equations as intersections of sets Any collection of two or more equations is called a system of equations. The solution

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### 6 Mathematics Curriculum

New York State Common Core 6 Mathematics Curriculum GRADE Table of Contents 1 Rational Numbers GRADE 6 MODULE 3 Module Overview... 3 Topic A: Understanding Positive and Negative Numbers on the Number Line

### 5.1: Rate of Change and Slope

5.1: Rate of Change and Slope Rate of Change shows relationship between changing quantities. On a graph, when we compare rise and run, we are talking about steepness of a line (slope). You can use and

### Lesson 24: Introduction to Simultaneous Equations

Classwork Exercises 1. Derek scored 30 points in the basketball game he played, and not once did he go to the free throw line. That means that Derek scored two-point shots and three-point shots. List as

### What Does Your Quadratic Look Like? EXAMPLES

What Does Your Quadratic Look Like? EXAMPLES 1. An equation such as y = x 2 4x + 1 descries a type of function known as a quadratic function. Review with students that a function is a relation in which

### The Rectangular Coordinate System

The Mathematics Competenc Test The Rectangular Coordinate Sstem When we write down a formula for some quantit,, in terms of another quantit,, we are epressing a relationship between the two quantities.

### ( ) # 0. SOLVING INEQUALITIES and Example 1. Example 2

SOLVING INEQUALITIES 9.1.1 and 9.1.2 To solve an inequality in one variable, first change it to an equation and solve. Place the solution, called a boundary point, on a number line. This point separates

### Lesson Plan. Preparation

Lesson Plan Course Title: Animation Session Title: Basic Orientation for 3D Animation Lesson Duration: Approximately one 90-minute class period plus time for quiz. [Lesson length is subjective and will

### Solve the linear programming problem graphically: Minimize w 4. subject to. on the vertical axis.

Do a similar example with checks along the wa to insure student can find each corner point, fill out the table, and pick the optimal value. Example 3 Solve the Linear Programming Problem Graphicall Solve

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### Symmetry and Molecular Spectroscopy

PG510 Symmetry and Molecular Spectroscopy Lecture no. 2 Group Theory: Molecular Symmetry Giuseppe Pileio 1 Learning Outcomes By the end of this lecture you will be able to:!! Understand the concepts of

### Activity 6. Inequalities, They Are Not Just Linear Anymore! Objectives. Introduction. Problem. Exploration

Objectives Graph quadratic inequalities Graph linear-quadratic and quadratic systems of inequalities Activity 6 Introduction What do satellite dishes, car headlights, and camera lenses have in common?

### Many different kinds of animals can change their form to help them avoid or

Slopes, Forms, Graphs, and Intercepts Connecting the Standard Form with the Slope-Intercept Form of Linear Functions Learning Goals In this lesson, you will: Graph linear functions in standard form. Transform

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### CHAPTER 35 GRAPHICAL SOLUTION OF EQUATIONS

CHAPTER 35 GRAPHICAL SOLUTION OF EQUATIONS EXERCISE 143 Page 369 1. Solve the simultaneous equations graphically: y = 3x 2 y = x + 6 Since both equations represent straight-line graphs, only two coordinates

### TIME VALUE OF MONEY PROBLEM #8: NET PRESENT VALUE Professor Peter Harris Mathematics by Sharon Petrushka

TIME VALUE OF MONEY PROBLEM #8: NET PRESENT VALUE Professor Peter Harris Mathematics by Sharon Petrushka Introduction Creativity Unlimited Corporation is contemplating buying a machine for \$100,000, which

### Grade 5 Common Core State Standard

2.1.5.B.1 Apply place value concepts to show an understanding of operations and rounding as they pertain to whole numbers and decimals. M05.A-T.1.1.1 Demonstrate an understanding that 5.NBT.1 Recognize

### CHAPTER 1 Linear Equations

CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or

### Mathematics Grade 5. Prepublication Version, April 2013 California Department of Education 32

Mathematics In, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions

10.9 Systems Of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems of Inequalities Systems of Linear Inequalities Application: Feasible Regions 2 Graphing

### Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

### Lesson 36 MA 152, Section 3.1

Lesson 36 MA 5, Section 3. I Quadratic Functions A quadratic function of the form y = f ( x) = ax + bx + c, where a, b, and c are real numbers (general form) has the shape of a parabola when graphed. The

### 1 BPS Math Year at a Glance (Adapted from A Story of Units Curriculum Maps in Mathematics P-5)

Grade 5 Key Areas of Focus for Grades 3-5: Multiplication and division of whole numbers and fractions-concepts, skills and problem solving Expected Fluency: Multi-digit multiplication Module M1: Whole

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

### TImath.com Algebra 1. Graphing Quadratic Functions

Graphing Quadratic Functions ID: 9186 Time required 60 minutes Activity Overview In this activity, students will graph quadratic functions and study how the constants in the equations compare to the coordinates

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### Basic Understandings

Activity: TEKS: Exploring Transformations Basic understandings. (5) Tools for geometric thinking. Techniques for working with spatial figures and their properties are essential to understanding underlying

### Review Session #5 Quadratics

Review Session #5 Quadratics Discriminant How can you determine the number and nature of the roots without solving the quadratic equation? 1. Prepare the quadratic equation for solving in other words,

### Algebra I: Strand 1. Foundations of Functions; Topic 3. Changing Perimeter; Task 1.3.1

1 TASK 1.3.1: CHANGING PERIMETER TEACHER ACTIVITY Solutions On a sheet of grid paper create one set of axes. Label the axes for this situation perimeter vs. multiplier. Graph your prediction data for changing

### Name Period Date MATHLINKS: GRADE 7 STUDENT PACKET 1 FRACTIONS AND DECIMALS

Name Period Date 7- STUDENT PACKET MATHLINKS: GRADE 7 STUDENT PACKET FRACTIONS AND DECIMALS. Terminating Decimals Convert between fractions and terminating decimals. Compute with simple fractions.. Repeating

### Applications of Integration Day 1

Applications of Integration Day 1 Area Under Curves and Between Curves Example 1 Find the area under the curve y = x2 from x = 1 to x = 5. (What does it mean to take a slice?) Example 2 Find the area under

### SCATTER PLOTS AND TREND LINES

Name SCATTER PLOTS AND TREND LINES VERSION 2 Lessons 1 3 1. You have collected the following data while researching the Winter Olympics. You are trying to determine if there is a relationship between the

### Calling Plans Lesson Part 1 Algebra

Calling Plans Lesson Part 1 Algebra Overview: In this lesson students compare two linear relationships in the context of phone calling plans. Students are required to construct and interpret a table, a

### 6th Grade Vocabulary Words

1. sum the answer when you add Ex: 3 + 9 = 12 12 is the sum 2. difference the answer when you subtract Ex: 17-9 = 8 difference 8 is the 3. the answer when you multiply Ex: 7 x 8 = 56 56 is the 4. quotient

### 12.5 Equations of Lines and Planes

Instructor: Longfei Li Math 43 Lecture Notes.5 Equations of Lines and Planes What do we need to determine a line? D: a point on the line: P 0 (x 0, y 0 ) direction (slope): k 3D: a point on the line: P

### Section 3.2. Graphing linear equations

Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

### Quadratic Function Parabola Shape

Axis of Symmetry MA 158100 Lesson 8 Notes Summer 016 Definition: A quadratic function is of the form f(x) = y = ax + bx + c; where a, b, and c are real numbers and a 0. This form of the quadratic function

### Distances in the Coordinate Plane

About the Lesson In this activity, students will explore distances in the coordinate plane. Students will substitute the coordinates of a segment s endpoints into the distance formula and compare the results

### INSTRUCTIONAL STRATEGY (direct instruction, cooperative groups, individual practice, whole-class discussion)

Unit: Quadratic Functions (Algebra1) Grade/Class 9th Academic Content Standard(s) _21.0: Students graph quadratic functions and know that their roots are the x-intercepts. 23.0: Students apply quadratic

### Write the Equation of the Line Review

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

### acute angle acute triangle Cartesian coordinate system concave polygon congruent figures

acute angle acute triangle Cartesian coordinate system concave polygon congruent figures convex polygon coordinate grid coordinates dilatation equilateral triangle horizontal axis intersecting lines isosceles

### Standards for Mathematical Practice

Common Core State Standards Mathematics Student: Teacher: 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively Standards for Mathematical Practice 3. Construct