Integrals in cylindrical, spherical coordinates (Sect. 15.7)


 Marsha Bryan
 2 years ago
 Views:
Transcription
1 Integrals in clindrical, spherical coordinates (Sect. 15.7) Integration in clindrical coordinates. eview: Polar coordinates in a plane. Clindrical coordinates in space. Triple integral in clindrical coordinates. Net class: Integration in spherical coordinates. eview: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates. eview: Polar coordinates in plane Definition The polar coordinates of a point P is the ordered pair (r, θ) defined b the picture. r P = ( r, ) = (,) Theorem (Cartesianpolar transformations) The Cartesian coordinates of a point P = (r, θ) are given b = r cos(θ), = r sin(θ). The polar coordinates of a point P = (, ) in the first and fourth quadrant are r = ( ) +, θ = arctan.
2 ecall: Polar coordinates in a plane Eample Epress in polar coordinates the integral I = Solution: ecall: = r cos(θ) and = r sin(θ). More often than not helps to sketch the integration region. The outer integration limit: [, ]. d d. = Then, for ever [, ] the coordinate satisfies [, ]. = The upper limit for is the curve =. Now is simple to describe this domain in polar coordinates: The line = is θ = π/4; the line = is θ 1 = π/. ecall: Polar coordinates in a plane Eample Epress in polar coordinates the integral I = d d. Solution: ecall: = r cos(θ), = r sin(θ), θ = π/4, θ 1 = π/. The lower integration limit in r is r =. = = r sin ( ) The upper integration limit is =, that is, = = r sin(θ). Hence r = / sin(θ) We conclude: d d = π/ / sin(θ) π/4 r cos(θ)(r dr) dθ.
3 Integrals in clindrical, spherical coordinates (Sect. 15.7) Integration in clindrical coordinates. eview: Polar coordinates in a plane. Clindrical coordinates in space. Triple integral in clindrical coordinates. Clindrical coordinates in space Definition The clindrical coordinates of a point P 3 is the ordered triple (r, θ, ) defined b the picture. emark: Clindrical coordinates are just polar coordinates on the plane = together with the vertical coordinate. Theorem (Cartesianclindrical transformations) The Cartesian coordinates of a point P = (r, θ, ) in the first quadrant are given b = r cos(θ), = r sin(θ), and =. The clindrical coordinates of a point P = (,, ) in the first quadrant are given b r = +, θ = arctan(/), and =. r P
4 Clindrical coordinates in space Eample Use clindrical coordinates to describe the region = {(,, ) : + ( 1) 1, + }. Solution: We first sketch the region. The base of the region is at =, given b the disk + ( 1) 1. The top of the region is the paraboloid = +. In clindrical coordinates: = + = r, and = ( 1) = r r sin(θ) r sin(θ) Hence: = {(r, θ, ) : θ [, π], r [, sin(θ)], [, r ]}. Integrals in clindrical, spherical coordinates (Sect. 15.7) Integration in clindrical coordinates. eview: Polar coordinates in a plane. Clindrical coordinates in space. Triple integral in clindrical coordinates.
5 Triple integrals using clindrical coordinates Theorem If the function f : 3 is continuous, then the triple integral of function f in the region can be epressed in clindrical coordinates as follows, f dv = f (r, θ, ) r dr dθ d. emark: Clindrical coordinates are useful when the integration region is described in a simple wa using clindrical coordinates. Notice the etra factor r on the righthand side. Triple integrals using clindrical coordinates Eample Find the volume of a clinder of radius and height h. Solution: = {(r, θ, ) : θ [, π], r [, ], [, h]}. V = π h d (r dr) dθ, h V = h π V = h π r dr dθ, dθ, We conclude: V = π h. V = h π,
6 Triple integrals using clindrical coordinates Eample Find the volume of a cone of base radius and height h. { Solution: = θ [, π], r [, ], [, h ]} r + h. h We conclude: V = 1 3 π h. V = π h(1 r/) V = h V = h π π d (r dr) dθ, ( 1 r ) r dr dθ, (r r ( V = h 3 ) π 3 ) dr dθ, dθ = πh 1 6. Triple integrals using clindrical coordinates Eample Sketch the region with volume V = π/ 9 r rd dr dθ. Solution: The integration region is = {(r, θ, ) : θ [, π/], r [, ], [, 9 r ]}. We upper boundar is a sphere, = 9 r + + = 3. The upper limit for r is r =, so 3 = 9 r 5 = 9 =
7 Triple integrals using clindrical coordinates Eample Change the integration order and compute the integral I = π 3 /3 r 3 dr d dθ. Solution: First, sketch the integration region. Start from the outer limits to the inner limits. r = /3 3 I = π 1 3 V = π V = π 3r 1 ( 3 3r 1 d r 3 dr dθ ) r 3 dr 3(r 3 r 4 ) dr 1 ( r 4 V = 6π 4 r 5 ) 1 5. So, I = 6π 1 3π, that is, I = 1. Triple integrals using clindrical coordinates Eample Find the centroid vector r =,, of the region in space = {(,, ) : +, + 4}. Solution: = + The smmetr of the region implies = and =. (We verif this result later on.) We onl need to compute. Since = 1 dv, we start V computing the total volume V. 4 We use clindrical coordinates. V = π 4 r d rdr dθ = π ( 4 )rdr = π r (4r r 3 )dr.
8 Triple integrals using clindrical coordinates Eample Find the centroid vector r =,, of the region in space = {(,, ) : +, + 4}. Solution: V = π [ ( r (4r r 3 ) dr = π 4 ) ( r 4 4 Hence V = π(8 4), so V = 8π. Then, is given b, = 1 8π = 1 8 π 4 = 1 8 r d rdr dθ = π 8π )]. ( 4 ) rdr; r (16r r 5 ) dr = 1 [ ( r 16 ) ( r ( ) = = 8 3. )] ; Triple integrals using clindrical coordinates Eample Find the centroid vector r =,, of the region in space = {(,, ) : +, + 4}. Solution: We obtained = 8 3. It is simple to see that = and =. For eample, π 4 = 1 [ ] r cos(θ) d rdr dθ 8π r = 1 [ π ][ 4 cos(θ)dθ d r dr 8π r ]. But π cos(θ)dθ = sin(π) sin() =, so =. A similar calculation shows =. Hence r =,, 8/3.
Triple integrals in Cartesian coordinates (Sect. 15.4) Review: Triple integrals in arbitrary domains.
Triple integrals in Cartesian coordinates (Sect. 5.4 Review: Triple integrals in arbitrar domains. s: Changing the order of integration. The average value of a function in a region in space. Triple integrals
More informationTriple Integrals in Cylindrical or Spherical Coordinates
Triple Integrals in Clindrical or Spherical Coordinates. Find the volume of the solid ball 2 + 2 + 2. Solution. Let be the ball. We know b #a of the worksheet Triple Integrals that the volume of is given
More informationDouble Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
More informationFigure 1: u2 (x,y) D u 1 (x,y) yρ(x, y, z)dv. xρ(x, y, z)dv. M yz = E
Contiune on.7 Triple Integrals Figure 1: [ ] u2 (x,y) f(x, y, z)dv = f(x, y, z)dz da u 1 (x,y) Applications of Triple Integrals Let be a solid region with a density function ρ(x, y, z). Volume: V () =
More informationLines and planes in space (Sect. 12.5) Review: Lines on a plane. Lines in space (Today). Planes in space (Next class). Equation of a line
Lines and planes in space (Sect. 2.5) Lines in space (Toda). Review: Lines on a plane. The equations of lines in space: Vector equation. arametric equation. Distance from a point to a line. lanes in space
More informationMULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then
MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.
More informationSolutions to Practice Final Exam
Math V22. Calculus IV, ection, pring 27 olutions to Practice Final Exam Problem Consider the integral x 2 2x dy dx + 2x dy dx x 2 x (a) ketch the region of integration. olution: ee Figure. y (2, ) y =
More informationArea in Polar Coordinates
Area in Polar Coordinates If we have a circle of radius r, and select a sector of angle θ, then the area of that sector can be shown to be 1. r θ Area = (1/)r θ As a check, we see that if θ =, then the
More information1.7 Cylindrical and Spherical Coordinates
56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a twodimensional coordinate system in which the
More informationSolutions to Homework 10
Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x
More informationArea and Arc Length in Polar Coordinates
Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly
More informationParametric Surfaces. Solution. There are several ways to parameterize this. Here are a few.
Parametric Surfaces 1. (a) Parameterie the elliptic paraboloid = 2 + 2 + 1. Sketch the grid curves defined b our parameteriation. Solution. There are several was to parameterie this. Here are a few. i.
More informationMath 32B Practice Midterm 1
Math B Practice Midterm. Let be the region bounded b the curves { ( e)x + and e x. Note that these curves intersect at the points (, ) and (, e) and that e
More informationExample 1. Example 1 Plot the points whose polar coordinates are given by
Polar Coordinates A polar coordinate system, gives the coordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points
More informationSolutions for Review Problems
olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector
More information2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two or threedimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
More informationCross product and determinants (Sect. 12.4) Two main ways to introduce the cross product
Cross product and determinants (Sect. 12.4) Two main ways to introduce the cross product Geometrical definition Properties Expression in components. Definition in components Properties Geometrical expression.
More informationDot product and vector projections (Sect. 12.3) There are two main ways to introduce the dot product
Dot product and vector projections (Sect. 12.3) Two definitions for the dot product. Geometric definition of dot product. Orthogonal vectors. Dot product and orthogonal projections. Properties of the dot
More informationSection 2.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates
Section.6 Cylindrical and Spherical Coordinates A) Review on the Polar Coordinates The polar coordinate system consists of the origin O,the rotating ray or half line from O with unit tick. A point P in
More informationPROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS
PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving
More informationθ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn:
Trigonometr (A): Trigonometr Ratios You will learn: () Concept of Basic Angles () how to form simple trigonometr ratios in all 4 quadrants () how to find the eact values of trigonometr ratios for special
More information( ) ( ) 1. Let F = ( 1yz)i + ( 3xz) j + ( 9xy)k. Compute the following: A. div F. F = 1yz x. B. curl F. i j k. = 6xi 8yj+ 2zk F = z 1yz 3xz 9xy
. Let F = ( yz)i + ( 3xz) j + ( 9xy)k. Compute the following: A. div F F = yz x B. curl F + ( 3xz) y + ( 9xy) = 0 + 0 + 0 = 0 z F = i j k x y z yz 3xz 9xy = 6xi 8yj+ 2zk C. div curl F F = 6x x + ( 8y)
More informationPlotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time.
Plotting Polar Curves We continue to study the plotting of polar curves. Recall the family of cardioids shown last time. r = 1 cos(θ) r = 1 + cos(θ) r = 1 + sin(θ) r = 1 sin(θ) Now let us look at a similar
More informationAB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss
AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy and xzplanes, etc. are For example, z = f(x, y), x =
More informationChange of Coordinates in Two Dimensions
CHAPTER 5 Change of Coordinates in Two Dimensions Suppose that E is an ellipse centered at the origin. If the major and minor aes are horiontal and vertical, as in figure 5., then the equation of the ellipse
More informationPRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.
PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle
More informationM PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM
68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof
More information27.2. Multiple Integrals over Nonrectangular Regions. Introduction. Prerequisites. Learning Outcomes
Multiple Integrals over Nonrectangular Regions 7. Introduction In the previous Section we saw how to evaluate double integrals over simple rectangular regions. We now see how to etend this to nonrectangular
More informationWinter 2012 Math 255. Review Sheet for First Midterm Exam Solutions
Winter 1 Math 55 Review Sheet for First Midterm Exam Solutions 1. Describe the motion of a particle with position x,y): a) x = sin π t, y = cosπt, 1 t, and b) x = cost, y = tant, t π/4. a) Using the general
More informationChapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More informationv 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)
0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3space. This time the outcome will be a vector in 3space. Definition
More informationChapter 5 Applications of Integration
MA111 Application of Integration Asst.Prof.Dr.Supranee Lisawadi 1 Chapter 5 Applications of Integration Section 5.1 Area Between Two Curves In this section we use integrals to find areas of regions that
More informationSection 16.7 Triple Integrals in Cylindrical Coordinates
Section 6.7 Triple Integrals in Cylindrical Coordinates Integrating Functions in Different Coordinate Systems In Section 6.4, we used the polar coordinate system to help integrate functions over circular
More information15.1. Exact Differential Equations. Exact FirstOrder Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact FirstOrder Equations 09 SECTION 5. Eact FirstOrder Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
More informationSection 9.1 Vectors in Two Dimensions
Section 9.1 Vectors in Two Dimensions Geometric Description of Vectors A vector in the plane is a line segment with an assigned direction. We sketch a vector as shown in the first Figure below with an
More informationMath 21a Old Exam One Fall 2003 Solutions Spring, 2009
1 (a) Find the curvature κ(t) of the curve r(t) = cos t, sin t, t at the point corresponding to t = Hint: You ma use the two formulas for the curvature κ(t) = T (t) r (t) = r (t) r (t) r (t) 3 Solution:
More informationSupporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Calculus: Module 12. Applications of differentiation
1 Supporting Australian Mathematics Project 2 3 4 5 6 7 8 9 1 11 12 A guide for teachers Years 11 and 12 Calculus: Module 12 Applications of differentiation Applications of differentiation A guide for
More informationComplex Numbers. w = f(z) z. Examples
omple Numbers Geometrical Transformations in the omple Plane For functions of a real variable such as f( sin, g( 2 +2 etc ou are used to illustrating these geometricall, usuall on a cartesian graph. If
More informationPartial differentiation
Chapter 1 Partial differentiation Example 1.1 What is the maximal domain of the real function g defined b g(x) = x 2 + 3x + 2? : The ke point is that the square root onl gives a real result if the argument
More informationAffine Transformations
A P P E N D I X C Affine Transformations CONTENTS C The need for geometric transformations 335 C2 Affine transformations 336 C3 Matri representation of the linear transformations 338 C4 Homogeneous coordinates
More informationCalculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
More informationSection 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 2537, 40, 42, 44, 45, 47, 50
Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 537, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall
More informationFigure 1: Volume between z = f(x, y) and the region R.
3. Double Integrals 3.. Volume of an enclosed region Consider the diagram in Figure. It shows a curve in two variables z f(x, y) that lies above some region on the xyplane. How can we calculate the volume
More informationFundamental Theorems of Vector Calculus
Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use
More informationName Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155
Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate
More informationJune 2011 PURDUE UNIVERSITY Study Guide for the Credit Exams in Single Variable Calculus (MA 165, 166)
June PURDUE UNIVERSITY Stud Guide for the Credit Eams in Single Variable Calculus (MA 65, 66) Eam and Eam cover respectivel the material in Purdue s courses MA 65 (MA 6) and MA 66 (MA 6). These are two
More informationThe Quadratic Function
0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral
More informationSection 7.1 Graphing Linear Inequalities in Two Variables
Section 7.1 Graphing Linear Inequalities in Two Variables Eamples of linear inequalities in two variables include + 6, and 1 A solution of a linear inequalit is an ordered pair that satisfies the
More informationPhysics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus
Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations
More informationReview B: Coordinate Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B2 B.1.1 Infinitesimal Line Element... B4 B.1.2 Infinitesimal Area Element...
More informationSolutions  Homework sections 17.717.9
olutions  Homework sections 7.77.9 7.7 6. valuate xy d, where is the triangle with vertices (,, ), (,, ), and (,, ). The three points  and therefore the triangle between them  are on the plane x +
More information3. Double Integrals 3A. Double Integrals in Rectangular Coordinates
3. Double Integrals 3A. Double Integrals in ectangular Coordinates 3A1 Evaluate each of the following iterated integrals: c) 2 1 1 1 x 2 (6x 2 +2y)dydx b) x 2x 2 ydydx d) π/2 π 1 u (usint+tcosu)dtdu u2
More informationSolutions for Math 311 Assignment #1
Solutions for Math 311 Assignment #1 (1) Show that (a) Re(iz) Im(z); (b) Im(iz) Re(z). Proof. Let z x + yi with x Re(z) and y Im(z). Then Re(iz) Re( y + xi) y Im(z) and Im(iz) Im( y + xi) x Re(z). () Verify
More informationCore Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
More informationTHE COMPLEX EXPONENTIAL FUNCTION
Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
More informationLecture 1 Introduction 1. 1.1 Rectangular Coordinate Systems... 1. 1.2 Vectors... 3. Lecture 2 Length, Dot Product, Cross Product 5. 2.1 Length...
CONTENTS i Contents Lecture Introduction. Rectangular Coordinate Sstems..................... Vectors.................................. 3 Lecture Length, Dot Product, Cross Product 5. Length...................................
More informationPhysics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3D We have defined the velocit and acceleration of a particle as the first and second
More informationex) What is the component form of the vector shown in the picture above?
Vectors A ector is a directed line segment, which has both a magnitude (length) and direction. A ector can be created using any two points in the plane, the direction of the ector is usually denoted by
More informationVector Calculus Solutions to Sample Final Examination #1
Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing
More informationC1: Coordinate geometry of straight lines
B_Chap0_0805.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More information2 Topics in 3D Geometry
2 Topics in 3D Geometry In two dimensional space, we can graph curves and lines. In three dimensional space, there is so much extra space that we can graph planes and surfaces in addition to lines and
More informationMath 241, Exam 1 Information.
Math 241, Exam 1 Information. 9/24/12, LC 310, 11:1512:05. Exam 1 will be based on: Sections 12.112.5, 14.114.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)
More informationGraphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph firstdegree equations. Similar methods will allow ou to graph quadratic equations
More information6.3 Polar Coordinates
6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard
More informationD.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
More information8. Bilateral symmetry
. Bilateral smmetr Our purpose here is to investigate the notion of bilateral smmetr both geometricall and algebraicall. Actuall there's another absolutel huge idea that makes an appearance here and that's
More informationMagnetic Dipoles. Magnetic Field of Current Loop. B r. PHY2061 Enriched Physics 2 Lecture Notes
Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to
More informationReview A: Vector Analysis
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Review A: Vector Analysis A... A0 A.1 Vectors A2 A.1.1 Introduction A2 A.1.2 Properties of a Vector A2 A.1.3 Application of Vectors
More informationCHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often
7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.
More informationMath 2443, Section 16.3
Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the
More informationEE2 Mathematics : Vector Calculus
EE2 Mathematics : Vector alculus J. D. Gibbon Professor J. D Gibbon, Dept of Mathematics) j.d.gibbon@ic.ac.uk http://www2.imperial.ac.uk/ jdg These notes are not identical wordforword with m lectures
More informationINVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
More information6.1 Area between curves
6. Area between curves 6.. Area between the curve and the ais Definition 6.. Let f() be continuous on [a, b]. The area of the region between the graph of f() and the ais is A = b a f()d Let f() be continuous
More informationInverse Trigonometric Functions
Inverse Trigonometric Functions I. Four Facts About Functions and Their Inverse Functions:. A function must be onetoone (an horizontal line intersects it at most once) in order to have an inverse function..
More informationTrigonometry Review Workshop 1
Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions
More informationThe Distance Formula and the Circle
10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,
More informationMath 1B, lecture 5: area and volume
Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in
More informationPractice Problems for Midterm 2
Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,
More informationReview Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.
Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u
More informationChapter 9 Circular Motion Dynamics
Chapter 9 Circular Motion Dynamics 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon... 9.. Universal Law of Gravitation... 3
More informationChapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
More informationD.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
More informationWe d like to explore the question of inverses of the sine, tangent, and secant functions. We ll start with f ( x)
Inverse Trigonometric Functions: We d like to eplore the question of inverses of the sine, tangent, and secant functions. We ll start with f ( ) sin. Recall the graph: MATH 30 Lecture 0 of 0 Well, we can
More informationModule 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems
Module 1 : A Crash Course in Vectors Lecture 2 : Coordinate Systems Objectives In this lecture you will learn the following Define different coordinate systems like spherical polar and cylindrical coordinates
More informationThe Polar Coordinate System
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 71008 The Polar Coordinate System Alisa Favinger University
More information3.1 Quadratic Functions
Section 3.1 Quadratic Functions 1 3.1 Quadratic Functions Functions Let s quickl review again the definition of a function. Definition 1 A relation is a function if and onl if each object in its domain
More information2.4 Orthogonal Coordinate Systems
8/25/2005 section 2_4Orthogonal_Coordinate_Sstems_empt.doc 1/6 2.4 Orthogonal Coordinate Sstems Reading Assignment: pp.1633 We live in a 3dimensional world! Meaning: 1) 2) Q: What 3 scalar values and
More informationSection 5: The Jacobian matrix and applications. S1: Motivation S2: Jacobian matrix + differentiability S3: The chain rule S4: Inverse functions
Section 5: The Jacobian matri and applications. S1: Motivation S2: Jacobian matri + differentiabilit S3: The chain rule S4: Inverse functions Images from Thomas calculus b Thomas, Wier, Hass & Giordano,
More informationSolutions to Final Practice Problems
s to Final Practice Problems Math March 5, Change the Cartesian integral into an equivalent polar integral and evaluate: I 5 x 5 5 x ( x + y ) dydx The domain of integration for this integral is D {(x,
More informationStokes' Theorem Examples
Stokes' Theorem Eamples Stokes' Theorem relates surface integrals and line integrals. STOKES' TEOREM Let F be a vector field. Let be an oriented surface, and let be the boundar curve of, oriented using
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More informationGradient, Divergence and Curl in Curvilinear Coordinates
Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.
More information1. x = 2 t, y = 1 3t, z = 3 2t. 4. x = 2+t, y = 1 3t, z = 3+2t. 5. x = 1 2t, y = 3 t, z = 2 3t. x = 1+2t, y = 3 t, z = 2+3t
Version 1 Homework 4 gri (11111) 1 This printout should have 1 questions. Multiplechoice questions ma continue on the net column or page find all choices before answering. CalC13e11b 1 1. points A line
More informationMATH Area Between Curves
MATH  Area Between Curves Philippe Laval September, 8 Abstract This handout discusses techniques used to nd the area of regions which lie between two curves. Area Between Curves. Theor Given two functions
More informationHigher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
More information10 Polar Coordinates, Parametric Equations
Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates
More informationD.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b
More informationThis file is /conf/snippets/setheader.pg you can use it as a model for creating files which introduce each problem set.
Jason Hill Math24 3 WeBWorK assignment number Exameview is due : 5/9/212 at 5:am MDT. The (* replace with url for the course home page *) for the course contains the syllabus, grading policy other information.
More informationC3: Functions. Learning objectives
CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms oneone and manone mappings understand the terms domain and range for a mapping understand the
More information