Save this PDF as:

Size: px
Start display at page:

## Transcription

2 Objectives The Unit Circle Terminal Points on the Unit Circle The Reference Number 2

3 The Unit Circle In this section we explore some properties of the circle of radius 1 centered at the origin. 3

4 The Unit Circle 4

5 The Unit Circle The set of points at a distance 1 from the origin is a circle of radius 1 (see Figure 1). The unit circle Figure 1 5

6 The Unit Circle The equation of this circle is x 2 + y 2 = 1. 6

7 Example 1 A Point on the Unit Circle Show that the point P is on the unit circle. Solution: We need to show that this point satisfies the equation of the unit circle, that is, x 2 + y 2 = 1. Since P is on the unit circle. 7

8 Terminal Points on the Unit Circle 8

9 Terminal Points on the Unit Circle Suppose t is a real number. Let s mark off a distance t along the unit circle, starting at the point (1, 0) and moving in a counterclockwise direction if t is positive or in a clockwise direction if t is negative (Figure 2). (a) Terminal point P(x, y) determined by t > 0 (b) Terminal point P(x, y) determined by t <0 Figure 2 9

10 Terminal Points on the Unit Circle In this way we arrive at a point P(x, y) on the unit circle. The point P(x, y) obtained in this way is called the terminal point determined by the real number t. The circumference of the unit circle is C = 2 (1) = 2. So if a point starts at (1, 0) and moves counterclockwise all the way around the unit circle and returns to (1, 0), it travels a distance of 2. To move halfway around the circle, it travels a distance of (2 ) =. To move a quarter of the distance around the circle, it travels a distance of (2 ) = /2. 10

11 Terminal Points on the Unit Circle Where does the point end up when it travels these distances along the circle? From Figure 3 we see, for example, that when it travels a distance of starting at (1, 0), its terminal point is ( 1, 0). Terminal points determined by t =,,, and 2 Figure 3 11

12 Example 3 Finding Terminal Points Find the terminal point on the unit circle determined by each real number t. (a) t = 3 (b) t = (c) t = Solution: From Figure 4 we get the following: Figure 4 12

13 Example 3 Solution cont d (a) The terminal point determined by 3 is ( 1, 0). (b) The terminal point determined by is ( 1, 0). (c) The terminal point determined by /2 is (0, 1). Notice that different values of t can determine the same terminal point. 13

14 Terminal Points on the Unit Circle The terminal point P(x, y) determined by t = /4 is the same distance from (1, 0) as (0, 1) from along the unit circle (see Figure 5). Figure 5 14

15 Terminal Points on the Unit Circle Since the unit circle is symmetric with respect to the line y = x, it follows that P lies on the line y = x. So P is the point of intersection (in the first quadrant) of the circle x 2 + y 2 = 1 and the line y = x. Substituting x for y in the equation of the circle, we get x 2 + x 2 = 1 2x 2 = 1 Combine like terms 15

16 Terminal Points on the Unit Circle x 2 = Divide by 2 x = Take square roots Since P is in the first quadrant x = 1/, and since y = x, we have y = 1/ also. Thus, the terminal point determined by /4 is 16

17 Terminal Points on the Unit Circle Similar methods can be used to find the terminal points determined by t = /6 and t = /3. Table 1 and Figure 6 give the terminal points for some special values of t. Table 1 Figure 6 17

18 Example 4 Finding Terminal Points Find the terminal point determined by each given real number t. (a) t = (b) t = (c) t = Solution: (a) Let P be the terminal point determined by /4, and let Q be the terminal point determined by /4. 18

19 Example 4 Solution cont d From Figure 7(a) we see that the point P has the same coordinates as Q except for sign. Since P is in quadrant IV, its x-coordinate is positive and its y-coordinate is negative. Thus, the terminal point is P( /2, /2). Figure 7(a) 19

20 Example 4 Solution cont d (b) Let P be the terminal point determined by 3 /4, and let Q be the terminal point determined by /4. From Figure 7(b) we see that the point P has the same coordinates as Q except for sign. Since P is in quadrant II, its x-coordinate is negative and its y-coordinate is positive. Thus, the terminal point is P( /2, /2). Figure 7(b) 20

21 Example 4 Solution cont d (c) Let P be the terminal point determined by 5 /6, and let Q be the terminal point determined by /6. From Figure 7(c) we see that the point P has the same coordinates as Q except for sign. Since P is in quadrant III, its coordinates are both negative. Thus, the terminal point is P. Figure 7(c) 21

22 The Reference Number 22

23 The Reference Number From Examples 3 and 4 we see that to find a terminal point in any quadrant we need only know the corresponding terminal point in the first quadrant. We use the idea of the reference number to help us find terminal points. 23

24 The Reference Number Figure 8 shows that to find the reference number t, it s helpful to know the quadrant in which the terminal point determined by t lies. The reference number t for t Figure 8 24

25 The Reference Number If the terminal point lies in quadrants I or IV, where x is positive, we find t by moving along the circle to the positive x-axis. If it lies in quadrants II or III, where x is negative, we find t by moving along the circle to the negative x-axis. 25

26 Example 5 Finding Reference Numbers Find the reference number for each value of t. (a) t = (b) t = (c) t = (d) t = 5.80 Solution: From Figure 9 we find the reference numbers as follows: (a) (b) (c) (d) Figure 9 26

27 Example 5 Solution cont d (a) (b) (c) (d) 27

28 The Reference Number 28

29 Example 6 Using Reference Numbers to Find Terminal Points Find the terminal point determined by each given real number t. (a) t = (b) t = (c) t = Solution: The reference numbers associated with these values of t were found in Example 5. 29

30 Example 6 Solution cont d (a) The reference number is t = /6, which determines the terminal point from Table 1. 30

31 Example 6 Solution cont d Since the terminal point determined by t is in Quadrant II, its x-coordinate is negative and its y-coordinate is positive. Thus, the desired terminal point is (b) The reference number is t = /4, which determines the terminal point ( /2, /2) from Table 1. Since the terminal point is in Quadrant IV, its x-coordinate is positive and its y-coordinate is negative. 31

32 Example 6 Solution cont d Thus, the desired terminal point is (c) The reference number is t = /3, which determines the terminal point from Table 1. Since the terminal point determined by t is in Quadrant III, its coordinates are both negative. Thus, the desired terminal point is 32

33 The Reference Number Since the circumference of the unit circle is 2, the terminal point determined by t is the same as that determined by t + 2 or t 2. In general, we can add or subtract 2 any number of times without changing the terminal point determined by t. We use this observation in the next example to find terminal points for large t. 33

34 Example 7 Finding the Terminal Point for Large t Find the terminal point determined by Solution: Since we see that the terminal point of t is the same as that of 5 /6 (that is, we subtract 4 ). 34

35 Example 7 Solution cont d So by Example 6(a) the terminal point is. (See Figure 10.) Figure 10 35

5.2 Trigonometric Functions Of Real Numbers Copyright Cengage Learning. All rights reserved. Objectives The Trigonometric Functions Values of the Trigonometric Functions Fundamental Identities 2 Trigonometric

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

### Chapter 5: Trigonometric Functions of Real Numbers

Chapter 5: Trigonometric Functions of Real Numbers 5.1 The Unit Circle The unit circle is the circle of radius 1 centered at the origin. Its equation is x + y = 1 Example: The point P (x, 1 ) is on the

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Definition III: Circular Functions

SECTION 3.3 Definition III: Circular Functions Copyright Cengage Learning. All rights reserved. Learning Objectives 1 2 3 4 Evaluate a trigonometric function using the unit circle. Find the value of a

### Exploring the Equation of a Circle

Math Objectives Students will understand the definition of a circle as a set of all points that are equidistant from a given point. Students will understand that the coordinates of a point on a circle

### Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

1.5 ANALYZING GRAPHS OF FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals on which

### Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

### 6.3 Polar Coordinates

6 Polar Coordinates Section 6 Notes Page 1 In this section we will learn a new coordinate sstem In this sstem we plot a point in the form r, As shown in the picture below ou first draw angle in standard

### Patterns, Equations, and Graphs. Section 1-9

Patterns, Equations, and Graphs Section 1-9 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate

### Section 2.1 Intercepts; Symmetry; Graphing Key Equations

Intercepts: An intercept is the point at which a graph crosses or touches the coordinate axes. x intercept is 1. The point where the line crosses (or intercepts) the x-axis. 2. The x-coordinate of a point

### 4.1: Angles and Radian Measure

4.1: Angles and Radian Measure An angle is formed by two rays that have a common endpoint. One ray is called the initial side and the other is called the terminal side. The endpoint that they share is

10.9 Systems Of Inequalities Copyright Cengage Learning. All rights reserved. Objectives Graphing an Inequality Systems of Inequalities Systems of Linear Inequalities Application: Feasible Regions 2 Graphing

### Solutions to Exercises, Section 5.2

Instructor s Solutions Manual, Section 5.2 Exercise 1 Solutions to Exercises, Section 5.2 In Exercises 1 8, convert each angle to radians. 1. 15 Start with the equation Divide both sides by 360 to obtain

### This function is symmetric with respect to the y-axis, so I will let - /2 /2 and multiply the area by 2.

INTEGRATION IN POLAR COORDINATES One of the main reasons why we study polar coordinates is to help us to find the area of a region that cannot easily be integrated in terms of x. In this set of notes,

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### 5.2 Unit Circle: Sine and Cosine Functions

Chapter 5 Trigonometric Functions 75 5. Unit Circle: Sine and Cosine Functions In this section, you will: Learning Objectives 5..1 Find function values for the sine and cosine of 0 or π 6, 45 or π 4 and

### Parametric Equations and the Parabola (Extension 1)

Parametric Equations and the Parabola (Extension 1) Parametric Equations Parametric equations are a set of equations in terms of a parameter that represent a relation. Each value of the parameter, when

### Lesson 19: Equations for Tangent Lines to Circles

Student Outcomes Given a circle, students find the equations of two lines tangent to the circle with specified slopes. Given a circle and a point outside the circle, students find the equation of the line

1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

### Tons of Free Math Worksheets at:

Topic : Equations of Circles - Worksheet 1 form which has a center at (-6, 4) and a radius of 5. x 2-8x+y 2-8y-12=0 circle with a center at (4,-4) and passes through the point (-7, 3). center located at

### The equation of the axis of symmetry is. Therefore, the x-coordinate of the vertex is 2.

1. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex for f (x) = 2x 2 + 8x 3. Then graph the function by making a table of values. Here, a = 2, b = 8, and c

### 6.1 - Introduction to Periodic Functions

6.1 - Introduction to Periodic Functions Periodic Functions: Period, Midline, and Amplitude In general: A function f is periodic if its values repeat at regular intervals. Graphically, this means that

### MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane.

MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane. Symmetry When you can fold a figure in half, with both sides congruent, the fold line

### 7.1 LINEAR AND NONLINEAR SYSTEMS OF EQUATIONS

7.1 LINEAR AND NONLINEAR SYSTEMS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the method of substitution to solve systems of linear equations in two variables.

### Pre-Calculus II. where 1 is the radius of the circle and t is the radian measure of the central angle.

Pre-Calculus II 4.2 Trigonometric Functions: The Unit Circle The unit circle is a circle of radius 1, with its center at the origin of a rectangular coordinate system. The equation of this unit circle

### 7 th Grade Pre Algebra A Vocabulary Chronological List

SUM sum the answer to an addition problem Ex. 4 + 5 = 9 The sum is 9. DIFFERENCE difference the answer to a subtraction problem Ex. 8 2 = 6 The difference is 6. PRODUCT product the answer to a multiplication

### Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.

Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts

### Analyzing Piecewise Functions

Connecting Geometry to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 04/9/09 Analyzing Piecewise Functions Objective: Students will analyze attributes of a piecewise function including

### MATHEMATICS Unit Pure Core 1

General Certificate of Education June 2009 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 1 MPC1 Wednesday 20 May 2009 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer book

### Mathematics. Circles. hsn.uk.net. Higher. Contents. Circles 119 HSN22400

hsn.uk.net Higher Mathematics UNIT OUTCOME 4 Circles Contents Circles 119 1 Representing a Circle 119 Testing a Point 10 3 The General Equation of a Circle 10 4 Intersection of a Line an a Circle 1 5 Tangents

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### 2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### Math 115 Spring 2014 Written Homework 10-SOLUTIONS Due Friday, April 25

Math 115 Spring 014 Written Homework 10-SOLUTIONS Due Friday, April 5 1. Use the following graph of y = g(x to answer the questions below (this is NOT the graph of a rational function: (a State the domain

### 7. The solutions of a quadratic equation are called roots. SOLUTION: The solutions of a quadratic equation are called roots. The statement is true.

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The axis of symmetry of a quadratic function can be found by using the equation x =. The

### Section 2.1 Rectangular Coordinate Systems

P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

### IB Practice Exam: 11 Paper 2 Zone 1 90 min, Calculator Allowed. Name: Date: Class:

IB Math Standard Level Year 2: May 11, Paper 2, TZ 1 IB Practice Exam: 11 Paper 2 Zone 1 90 min, Calculator Allowed Name: Date: Class: 1. The following diagram shows triangle ABC. AB = 7 cm, BC = 9 cm

4.5 GRAPHS OF SINE AND COSINE FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch the graphs of basic sine and cosine functions. Use amplitude and period to help sketch

### THE DISTANCE FORMULA

THE DISTANCE FORMULA In this activity, you will develop a formula for calculating the distance between any two points in a coordinate plane. Part 1: Distance Along a Horizontal or Vertical Line To find

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### Trigonometry LESSON TWO - The Unit Circle Lesson Notes

(cosθ, sinθ) Trigonometry Example 1 Introduction to Circle Equations. a) A circle centered at the origin can be represented by the relation x 2 + y 2 = r 2, where r is the radius of the circle. Draw each

### Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by

MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

### The x-intercepts of the graph are the x-values for the points where the graph intersects the x-axis. A parabola may have one, two, or no x-intercepts.

Chapter 10-1 Identify Quadratics and their graphs A parabola is the graph of a quadratic function. A quadratic function is a function that can be written in the form, f(x) = ax 2 + bx + c, a 0 or y = ax

### Evaluating trigonometric functions

MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

### Chapter 4. Trigonometric Functions. 4.1 Angle and Radian Measure /45

Chapter 4 Trigonometric Functions 4.1 Angle and Radian Measure 1 /45 Chapter 4 Homework 4.1 p290 13, 17, 21, 35, 39, 43, 49, 53, 57, 65, 73, 75, 79, 83, 89, 91 2 /45 Chapter 4 Objectives Recognize and

### POLAR COORDINATES DEFINITION OF POLAR COORDINATES

POLAR COORDINATES DEFINITION OF POLAR COORDINATES Before we can start working with polar coordinates, we must define what we will be talking about. So let us first set us a diagram that will help us understand

### 5-3 Polynomial Functions. not in one variable because there are two variables, x. and y

y. 5-3 Polynomial Functions State the degree and leading coefficient of each polynomial in one variable. If it is not a polynomial in one variable, explain why. 1. 11x 6 5x 5 + 4x 2 coefficient of the

### Section 7.5 Unit Circle Approach; Properties of the Trigonometric Functions. cosθ a. = cosθ a.

Section 7.5 Unit Circle Approach; Properties of the Trigonometric Functions A unit circle is a circle with radius = 1 whose center is at the origin. Since we know that the formula for the circumference

### 100 Math Facts 6 th Grade

100 Math Facts 6 th Grade Name 1. SUM: What is the answer to an addition problem called? (N. 2.1) 2. DIFFERENCE: What is the answer to a subtraction problem called? (N. 2.1) 3. PRODUCT: What is the answer

### Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Analytic Geometry Section 2-6: Circles

Analytic Geometry Section 2-6: Circles Objective: To find equations of circles and to find the coordinates of any points where circles and lines meet. Page 81 Definition of a Circle A circle is the set

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

### Class 9 Coordinate Geometry

ID : in-9-coordinate-geometry [1] Class 9 Coordinate Geometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) Find the coordinates of the point shown in the picture. (2) Find

### 5-6 The Remainder and Factor Theorems

Use synthetic substitution to find f (4) and f ( 2) for each function. 1. f (x) = 2x 3 5x 2 x + 14 Divide the function by x 4. The remainder is 58. Therefore, f (4) = 58. Divide the function by x + 2.

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

### Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### KEY POINT: Numbers can be divided up into two groups, positive and negative. If you say

~ FUNCTIONS ~ ( MULTI-VALUED v.s. SINGLE-VALUED FUNCTIONS) I like to think of functions a little differently than most teachers because I believe it helps students understand: A function is single-valued

### 1.7 Cylindrical and Spherical Coordinates

56 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE 1.7 Cylindrical and Spherical Coordinates 1.7.1 Review: Polar Coordinates The polar coordinate system is a two-dimensional coordinate system in which the

### MATHEMATICS PAPER 2/2 GRADE 12 JUNE EXAMINATION 2014 MEMORANDUM

MATHEMATICS PAPER / GRADE 1 JUNE EXAMINATION 014 MEMORANDUM Question 1 MATHEMATICS PAPER / GRADE 1 JUNE EXAMINATION 014 MEMORANDUM 1.1.1 1.1. 1. 1.3 Average 789 30 6,3 1 for the total 789 divide with 30

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### EE602 Algorithms GEOMETRIC INTERSECTION CHAPTER 27

EE602 Algorithms GEOMETRIC INTERSECTION CHAPTER 27 The Problem Given a set of N objects, do any two intersect? Objects could be lines, rectangles, circles, polygons, or other geometric objects Simple to

### CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 2012, Brooks/Cole

### Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space

IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728. Volume 5, Issue 5 (Mar. - Apr. 2013), PP 27-36 Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space Aravind

### Copy each polygon and point K. Then use a protractor and ruler to draw the specified rotation of each figure about point K

Copy each polygon and point K. Then use a protractor and ruler to draw the specified rotation of each figure about point K. 1. 45 Step 1: Draw a segment from G to K. Step 2: Draw a 45 angle using. Step

### The domain is all real numbers. The range is all real numbers greater than or equal to the minimum value, or {y y 8}.

Use a table of values to graph each equation. State the domain and range. 1. y = 2x 2 + 4x 6 x y = 2x 2 + 4x 6 (x, y) 3 y = 2( 3) 2 + 4( 3) 6 = 0 ( 3,0) 2 y = 2( 2) 2 + 4( 2) 6 = ( 2, 6) 6 1 y = 2( 1)

### Transformational Geometry in the Coordinate Plane Rotations and Reflections

Concepts Patterns Coordinate geometry Rotation and reflection transformations of the plane Materials Student activity sheet Transformational Geometry in the Coordinate Plane Rotations and Reflections Construction

### Session 7 Symmetry. coordinates reflection rotation translation

Key Terms for This Session Session 7 Symmetry Previously Introduced coordinates reflection rotation translation New in This Session: frieze pattern glide reflection reflection or line symmetry rotation

### Area. Area Overview. Define: Area:

Define: Area: Area Overview Kite: Parallelogram: Rectangle: Rhombus: Square: Trapezoid: Postulates/Theorems: Every closed region has an area. If closed figures are congruent, then their areas are equal.

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### MA Lesson 19 Summer 2016 Angles and Trigonometric Functions

DEFINITIONS: An angle is defined as the set of points determined by two rays, or half-lines, l 1 and l having the same end point O. An angle can also be considered as two finite line segments with a common

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### Quadratic Functions. vertex. a > 0 opens up. a < 0 opens down. Definition: If a, b, c, h, and k are real numbers with a 0, then the functions

Math 141-copyright Joe Kahlig Page 1 Quadratic Functions Definition: If a, b, c, h, and k are real numbers with a 0, then the functions y = ax 2 +bx+c y = a(x h) 2 +k standard form vertex form both represent

### DRAFT. New York State Testing Program Grade 8 Common Core Mathematics Test. Released Questions with Annotations

DRAFT New York State Testing Program Grade 8 Common Core Mathematics Test Released Questions with Annotations August 2013 THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY,

### 10.3: Examples of Arc Lengths and Areas of Polar Curves

1.3: Examples of Arc Lengths and Areas of Polar Curves Instructor: Dr. Steven Rayan Lecture Date & Time: Friday 3 March 1, 1.1 pm 1 pm Venue: Sir Sandford Fleming Building, Room # These notes coincide

### Section 13.5 Equations of Lines and Planes

Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.

### MATHEMATICS Unit Pure Core 2

General Certificate of Education June 2006 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Monday 22 May 2006 9.00 am to 10.30 am For this paper you must have: * an 8-page answer book

### 7.4A/7.4B STUDENT ACTIVITY #1

7.4A/7.4B STUDENT ACTIVITY #1 Write a formula that could be used to find the radius of a circle, r, given the circumference of the circle, C. The formula in the Grade 7 Mathematics Chart that relates the

### 2.5 Zeros of a Polynomial Functions

.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

74 In the Herb Business, Part III Factoring and Quadratic Equations In the herbal medicine business, you and your partner sold 120 bottles of your best herbal medicine each week when you sold at your original

### Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

### Readings this week. 1 Parametric Equations Supplement. 2 Section 10.1. 3 Sections 2.1-2.2. Professor Christopher Hoffman Math 124

Readings this week 1 Parametric Equations Supplement 2 Section 10.1 3 Sections 2.1-2.2 Precalculus Review Quiz session Thursday equations of lines and circles worksheet available at http://www.math.washington.edu/

### 8.9 Intersection of Lines and Conics

8.9 Intersection of Lines and Conics The centre circle of a hockey rink has a radius of 4.5 m. A diameter of the centre circle lies on the centre red line. centre (red) line centre circle INVESTIGATE &