The Rectangular Coordinate System

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Rectangular Coordinate System"

Transcription

1 3.2 The Rectangular Coordinate Sstem 3.2 OBJECTIVES 1. Graph a set of ordered pairs 2. Identif plotted points 3. Scale the aes NOTE In the eighteenth centur, René Descartes, a French philosopher and mathematician, created a wa of graphing ordered pairs. In Chapter 1, we used a number line to locate and visualize real numbers. Such a line has been used b mathematicians for so man ears that we do not know who gets credit for creating the number line. Locating and visualizing ordered pairs is a different stor. A rectangular coordinate sstem consists of two perpendicular number lines, called aes, with the positive directions defined b up and right. If the two lines have the same scale, we sometimes refer to the sstem as a Cartesian coordinate sstem in honor of René Descartes. The positive direction. NOTE The development of the coordinate sstem was part of an effort to combine the knowledge of geometr with that of algebra. (0, 0) The positive direction. (0, 0) is called the origin. Definitions: Aes The horizontal line is called the ais. The vertical line is the ais. Together the are called the and aes (pronounced aees ). Definitions: Coordinate Plane The plane (a flat surface that continues forever in ever direction) containing the and aes is called the coordinate plane. Quadrant II Quadrant 4 III 6 8 Quadrant I Quadrant IV The and aes divide the coordinate plane into four parts called quadrants. Ever point in the coordinate plane can be described using an ordered pair of real numbers. And, conversel, ever ordered pair can be plotted as a point in the plane. Given an ordered pair (2, 4), 2 is called the coordinate and 4 is called the coordinate. If either coordinate of an ordered pair is equal to 0, the associated point lies on one of the aes. Ever point that does not lie on the or ais can be plotted in one of the four quadrants. 131

2 132 CHAPTER 3 THE COORDINATE PLANE AND FUNCTIONS Eample 1 Graphing Ordered Pairs Graph the ordered pair (3, 5). Beginning at the origin, we move 3 units in the direction (positive is to the right) and 5 units in the direction (negative is down). (3, 5) CHECK YOURSELF 1 Graph the ordered pairs {(0, 3), ( 2, 4), (3, 1)}. In general, the following pattern shows the quadrant in which a given point is located. Quadrant Sign Pattern I (, ) II (, ) III (, ) IV (, ) If a given point lies on an ais, it fits one of the following patterns: Ais Pattern (, 0) (0, ) We will use these patterns in Eample 2. Eample 2 Locating the Graph of an Ordered Pair Identif the quadrant or ais for the graph of each point. (a) 3, 1 4 The pattern indicates quadrant IV. (b) (0, 6) The pattern indicates the ais.

3 THE RECTANGULAR COORDINATE SYSTEM SECTION CHECK YOURSELF 2 Identif the quadrant or ais for the graph of each point. (a) ( 3, 0) (b) 7 (c) (p, 3) 2, 6 To find the ordered pair associated with a plotted point, we move verticall from the point to find the coordinate and horizontall from the point to find the coordinate. Eample 3 Identifing Plotted Points Find the ordered pair associated with each point. A C NOTE When no scale appears on the grid, we assume that each division on each ais is one unit. B D From point A, a vertical line meets the ais at 3. A horizontal line meets the ais at 4. The ordered pair is ( 3, 4). B is associated with (0, 4), C with (3, 3), and D with (3, 3). CHECK YOURSELF 3 Find the ordered pair associated with each point. C A D B

4 134 CHAPTER 3 THE COORDINATE PLANE AND FUNCTIONS Eample 4 Reading Ordered Pairs Given Scaled Aes NOTE The same decisions must be made when ou are using a graphing calculator. When graphing this kind of relation on a calculator, ou must decide what the appropriate viewing window should be. A surve of residents in a large apartment building was recentl taken. The following points represent ordered pairs in which the first number is the number of ears of education a person has had, and the second number is his or her income (in thousands of dollars). Estimate, and interpret, each ordered pair represented. Thousands of dollars A D C B A is (9, 20), B is (16, 120), C is (15, 70), and D is (12, 30). Person A completed 9 ears of education and made $20,000 in Person B completed 16 ears of education and made $120,000 in Person C had 15 ears education and made $70,000. Person D had 12 ears and made $30, Years It is not obvious from this graph how to predict income from ears of education, but ou might suspect that in most cases, more education results in more income. CHECK YOURSELF 4 Each ear on his son s birthda, Armand records his son s weight. The following points represent ordered pairs in which the first number represents his son s age and the second number represents his weight. For eample, point A indicates that when his son was 1 ear old, the bo weighed 14 pounds. Estimate each ordered pair represented. 30 D Weight 20 A B C Age CHECK YOURSELF ANSWERS (a) ais; (b) quadrant II; (c) quadrant I (0,3) 3. A( 1, 4), B(5, 2), C( 5, 3), and D(1, 0) ( 2, 4) (3, 1) C 2 1 2, A(1, 14), B(2, 20),, and D(3, 28)

5 Name 3.2 Eercises Section Date In eercises 1 to 6, graph each set of ordered pairs. 1. 3, 5, 4, 6, 2, 6, 5, 6 ANSWERS , 1 2, (6, 0), ( 3, 4), ( 1, 4) 3. (0, 5), (2, 3), 1, 5 2, 5,

6 ANSWERS ( 1, 2), (5, 2), ( 3, 4), 1 2, , 6, 3, 5, 2, 5, 1, , 5, 2, 0, 0, 2, 1, 5 136

7 ANSWERS In eercises 7 to 18, give the quadrant in which each of the following points is located or the ais on which the point lies. 7. (4, 5) 8. ( 3, 2) ( 4, 3) 10. (2, 4) (5, 0) 12. ( 5, 7) ( 4, 7) 14. ( 3, 7) (0, 7) 16. ( 3, 0) , , In eercises 19 to 28, give the coordinates (ordered pairs) associated with the points indicated in the figure Q P 19. P 20. Q 21. R 28. R T S U V Y X W 22. S 23. T 24. U 25. V 26. W 27. X 28. Y 137

8 ANSWERS A compan has kept a record of the number of items produced b an emploee as the number of das on the job increases. In the following figure, points correspond to an ordered-pair relationship in which the first number represents das on the job and the second number represents the number of items produced. Estimate each ordered pair produced. In our own words, state the meaning of the graph. 100 Items Produced Das In the following figure, points correspond to an ordered-pair relationship between height and age in which the first number represents age and the second number represents height. Estimate each ordered pair represented. 100 Height Age

9 ANSWERS In eercises 31 and 32, plot the points whose coordinates are given in the table. Scale the aes appropriatel Grades. The table gives the time,, in hours invested in studing for four different algebra eams and the resulting grade, Grades Hours 32. Fuel efficienc. The table gives the speed,, of a car in miles per hour and the approimate fuel efficienc,, in miles per gallon Miles/Gallon Miles/Hour 139

10 ANSWERS 33. Graph the points with coordinates (1, 2), (2, 3), and (3, 4). What do ou observe? Give the coordinates of another point with the same propert Graph points with coordinates ( 1, 3), (0, 0), and (1, 3). What do ou observe? Give the coordinates of another point with the same propert. Answers Quadrant I 9. Quadrant III 11. ais 13. Quadrant II 15. ais 17. Quadrant IV 19. (3, 5) 21. ( 6, 0) 23. ( 5, 4) 25. (0, 4) 27. (6, 2) 29. Points are (1, 30), (2, 45), (3, 60), (4, 60), (5, 75), (6, 90), (7, 95) The coordinate is 1 more than the 160 coordinate; (4, 5) Grades Hours 140

The Rectangular Coordinate System

The Rectangular Coordinate System 6.2 The Rectangular Coordinate Sstem 6.2 OBJECTIVES 1. Give the coordinates of a set of points on the plane 2. Graph the points corresponding to a set of ordered pairs In Section 6.1, we saw that ordered

More information

P1. Plot the following points on the real. P2. Determine which of the following are solutions

P1. Plot the following points on the real. P2. Determine which of the following are solutions Section 1.5 Rectangular Coordinates and Graphs of Equations 9 PART II: LINEAR EQUATIONS AND INEQUALITIES IN TWO VARIABLES 1.5 Rectangular Coordinates and Graphs of Equations OBJECTIVES 1 Plot Points in

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review APPENDIX D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane Just as ou can represent real numbers b

More information

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review

D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its

More information

Math 40 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 40 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 0 Chapter Lecture Notes Professor Miguel Ornelas M. Ornelas Math 0 Lecture Notes Section. Section. The Rectangular Coordinate Sstem Plot each ordered pair on a Rectangular Coordinate Sstem and name

More information

C1: Coordinate geometry of straight lines

C1: Coordinate geometry of straight lines B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT

SLOPE OF A LINE 3.2. section. helpful. hint. Slope Using Coordinates to Find 6% GRADE 6 100 SLOW VEHICLES KEEP RIGHT . Slope of a Line (-) 67. 600 68. 00. SLOPE OF A LINE In this section In Section. we saw some equations whose graphs were straight lines. In this section we look at graphs of straight lines in more detail

More information

Coordinate Geometry. Positive gradients: Negative gradients:

Coordinate Geometry. Positive gradients: Negative gradients: 8 Coordinate Geometr Negative gradients: m < 0 Positive gradients: m > 0 Chapter Contents 8:0 The distance between two points 8:0 The midpoint of an interval 8:0 The gradient of a line 8:0 Graphing straight

More information

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS

Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.

More information

REVIEW OF ANALYTIC GEOMETRY

REVIEW OF ANALYTIC GEOMETRY REVIEW OF ANALYTIC GEOMETRY The points in a plane can be identified with ordered pairs of real numbers. We start b drawing two perpendicular coordinate lines that intersect at the origin O on each line.

More information

Linear Equations in Two Variables

Linear Equations in Two Variables Section. Sets of Numbers and Interval Notation 0 Linear Equations in Two Variables. The Rectangular Coordinate Sstem and Midpoint Formula. Linear Equations in Two Variables. Slope of a Line. Equations

More information

The Graph of a Linear Equation

The Graph of a Linear Equation 4.1 The Graph of a Linear Equation 4.1 OBJECTIVES 1. Find three ordered pairs for an equation in two variables 2. Graph a line from three points 3. Graph a line b the intercept method 4. Graph a line that

More information

Section 7.1 Graphing Linear Inequalities in Two Variables

Section 7.1 Graphing Linear Inequalities in Two Variables Section 7.1 Graphing Linear Inequalities in Two Variables Eamples of linear inequalities in two variables include + 6, and 1 A solution of a linear inequalit is an ordered pair that satisfies the

More information

The Slope-Intercept Form

The Slope-Intercept Form 7.1 The Slope-Intercept Form 7.1 OBJECTIVES 1. Find the slope and intercept from the equation of a line. Given the slope and intercept, write the equation of a line. Use the slope and intercept to graph

More information

4 Writing Linear Functions

4 Writing Linear Functions Writing Linear Functions.1 Writing Equations in Slope-Intercept Form. Writing Equations in Point-Slope Form.3 Writing Equations in Standard Form. Writing Equations of Parallel and Perpendicular Lines.5

More information

Graphing Nonlinear Systems

Graphing Nonlinear Systems 10.4 Graphing Nonlinear Sstems 10.4 OBJECTIVES 1. Graph a sstem of nonlinear equations 2. Find ordered pairs associated with the solution set of a nonlinear sstem 3. Graph a sstem of nonlinear inequalities

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

How can you construct and interpret a scatter plot? ACTIVITY: Constructing a Scatter Plot

How can you construct and interpret a scatter plot? ACTIVITY: Constructing a Scatter Plot 9. Scatter Plots How can ou construct and interpret a scatter plot? ACTIVITY: Constructing a Scatter Plot Work with a partner. The weights (in ounces) and circumferences C (in inches) of several sports

More information

Section 0.3 Power and exponential functions

Section 0.3 Power and exponential functions Section 0.3 Power and eponential functions (5/6/07) Overview: As we will see in later chapters, man mathematical models use power functions = n and eponential functions =. The definitions and asic properties

More information

STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Axis Combining Transformations of Graphs

STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Axis Combining Transformations of Graphs 6 CHAPTER Analsis of Graphs of Functions. STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Ais Combining Transformations of Graphs In the previous

More information

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS G COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS RECTANGULAR COORDINATE SYSTEMS Just as points on a coordinate line can be associated with real numbers, so points in a plane can be associated with pairs

More information

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS

COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS a p p e n d i f COORDINATE PLANES, LINES, AND LINEAR FUNCTIONS RECTANGULAR COORDINATE SYSTEMS Just as points on a coordinate line can be associated with real numbers, so points in a plane can be associated

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Filling in Coordinate Grid Planes

Filling in Coordinate Grid Planes Filling in Coordinate Grid Planes A coordinate grid is a sstem that can be used to write an address for an point within the grid. The grid is formed b two number lines called and that intersect at the

More information

GRAPHING SYSTEMS OF LINEAR INEQUALITIES

GRAPHING SYSTEMS OF LINEAR INEQUALITIES 444 (8 5) Chapter 8 Sstems of Linear Equations and Inequalities GETTING MORE INVOLVED 5. Discussion. When asked to graph the inequalit, a student found that (0, 5) and (8, 0) both satisfied. The student

More information

THIS CHAPTER INTRODUCES the Cartesian coordinate

THIS CHAPTER INTRODUCES the Cartesian coordinate 87533_01_ch1_p001-066 1/30/08 9:36 AM Page 1 STRAIGHT LINES AND LINEAR FUNCTIONS 1 THIS CHAPTER INTRODUCES the Cartesian coordinate sstem, a sstem that allows us to represent points in the plane in terms

More information

Chapter 3A - Rectangular Coordinate System

Chapter 3A - Rectangular Coordinate System - Chapter A Chapter A - Rectangular Coordinate Sstem Introduction: Rectangular Coordinate Sstem Although the use of rectangular coordinates in such geometric applications as surveing and planning has been

More information

MULTIPLE REPRESENTATIONS through 4.1.7

MULTIPLE REPRESENTATIONS through 4.1.7 MULTIPLE REPRESENTATIONS 4.1.1 through 4.1.7 The first part of Chapter 4 ties together several was to represent the same relationship. The basis for an relationship is a consistent pattern that connects

More information

Translating Points. Subtract 2 from the y-coordinates

Translating Points. Subtract 2 from the y-coordinates CONDENSED L E S S O N 9. Translating Points In this lesson ou will translate figures on the coordinate plane define a translation b describing how it affects a general point (, ) A mathematical rule that

More information

8 Graphs of Quadratic Expressions: The Parabola

8 Graphs of Quadratic Expressions: The Parabola 8 Graphs of Quadratic Epressions: The Parabola In Topic 6 we saw that the graph of a linear function such as = 2 + 1 was a straight line. The graph of a function which is not linear therefore cannot be

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship

Direct Variation. 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship 6.5 Direct Variation 6.5 OBJECTIVES 1. Write an equation for a direct variation relationship 2. Graph the equation of a direct variation relationship Pedro makes $25 an hour as an electrician. If he works

More information

SECTION 2-2 Straight Lines

SECTION 2-2 Straight Lines - Straight Lines 11 94. Engineering. The cross section of a rivet has a top that is an arc of a circle (see the figure). If the ends of the arc are 1 millimeters apart and the top is 4 millimeters above

More information

Patterns, Equations, and Graphs. Section 1-9

Patterns, Equations, and Graphs. Section 1-9 Patterns, Equations, and Graphs Section 1-9 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

Linear Inequalities, Systems, and Linear Programming

Linear Inequalities, Systems, and Linear Programming 8.8 Linear Inequalities, Sstems, and Linear Programming 481 8.8 Linear Inequalities, Sstems, and Linear Programming Linear Inequalities in Two Variables Linear inequalities with one variable were graphed

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

Math 152, Intermediate Algebra Practice Problems #1

Math 152, Intermediate Algebra Practice Problems #1 Math 152, Intermediate Algebra Practice Problems 1 Instructions: These problems are intended to give ou practice with the tpes Joseph Krause and level of problems that I epect ou to be able to do. Work

More information

Essential Question How can you describe the graph of the equation Ax + By = C? Number of adult tickets. adult

Essential Question How can you describe the graph of the equation Ax + By = C? Number of adult tickets. adult 3. Graphing Linear Equations in Standard Form Essential Question How can ou describe the graph of the equation A + B = C? Using a Table to Plot Points Work with a partner. You sold a total of $16 worth

More information

1.2 GRAPHS OF EQUATIONS

1.2 GRAPHS OF EQUATIONS 000_00.qd /5/05 : AM Page SECTION. Graphs of Equations. GRAPHS OF EQUATIONS Sketch graphs of equations b hand. Find the - and -intercepts of graphs of equations. Write the standard forms of equations of

More information

3 Rectangular Coordinate System and Graphs

3 Rectangular Coordinate System and Graphs 060_CH03_13-154.QXP 10/9/10 10:56 AM Page 13 3 Rectangular Coordinate Sstem and Graphs In This Chapter 3.1 The Rectangular Coordinate Sstem 3. Circles and Graphs 3.3 Equations of Lines 3.4 Variation Chapter

More information

Graphing Linear Inequalities in Two Variables

Graphing Linear Inequalities in Two Variables 5.4 Graphing Linear Inequalities in Two Variables 5.4 OBJECTIVES 1. Graph linear inequalities in two variables 2. Graph a region defined b linear inequalities What does the solution set look like when

More information

Review Exercises. Review Exercises 83

Review Exercises. Review Exercises 83 Review Eercises 83 Review Eercises 1.1 In Eercises 1 and, sketch the lines with the indicated slopes through the point on the same set of the coordinate aes. Slope 1. 1, 1 (a) (b) 0 (c) 1 (d) Undefined.,

More information

Analyzing the Graph of a Function

Analyzing the Graph of a Function SECTION A Summar of Curve Sketching 09 0 00 Section 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure 5 A Summar of Curve Sketching Analze and sketch the graph of a function Analzing the

More information

Essential Question How can you graph a system of linear inequalities?

Essential Question How can you graph a system of linear inequalities? 5.7 Sstems of Linear Inequalities Essential Question How can ou graph a sstem of linear inequalities? Graphing Linear Inequalities Work with a partner. Match each linear inequalit with its graph. Eplain

More information

13 Graphs, Equations and Inequalities

13 Graphs, Equations and Inequalities 13 Graphs, Equations and Inequalities 13.1 Linear Inequalities In this section we look at how to solve linear inequalities and illustrate their solutions using a number line. When using a number line,

More information

A Summary of Curve Sketching. Analyzing the Graph of a Function

A Summary of Curve Sketching. Analyzing the Graph of a Function 0_00.qd //0 :5 PM Page 09 SECTION. A Summar of Curve Sketching 09 0 00 Section. 0 0 00 0 Different viewing windows for the graph of f 5 7 0 Figure. 5 A Summar of Curve Sketching Analze and sketch the graph

More information

Essential Question How can you solve a system of linear equations? $15 per night. Cost, C (in dollars) $75 per Number of. Revenue, R (in dollars)

Essential Question How can you solve a system of linear equations? $15 per night. Cost, C (in dollars) $75 per Number of. Revenue, R (in dollars) 5.1 Solving Sstems of Linear Equations b Graphing Essential Question How can ou solve a sstem of linear equations? Writing a Sstem of Linear Equations Work with a partner. Your famil opens a bed-and-breakfast.

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 3 Eponential and Logarithmic Functions Section 3.1 Eponential Functions and Their Graphs Objective: In this lesson ou learned how to recognize, evaluate, and graph eponential functions. Course

More information

Do NOT use a calculator. ( i ) x + 11 = 57 ( ii ) x - 13 = 14. ( iii ) 5x = 115 ( iv ) 5x + 8 = 33. ( v ) 4 x - 7 = 33 ( vi ) 8x + 3 = 7

Do NOT use a calculator. ( i ) x + 11 = 57 ( ii ) x - 13 = 14. ( iii ) 5x = 115 ( iv ) 5x + 8 = 33. ( v ) 4 x - 7 = 33 ( vi ) 8x + 3 = 7 INEQUALITIES These lesson notes are available from www.pilean.com The ma be freel duplicated and distributed but copright remains with the author. Martin Hansen Chapter.. Solving Simple Equations & Inequalities

More information

Graphing Linear Equations in Slope-Intercept Form

Graphing Linear Equations in Slope-Intercept Form 4.4. Graphing Linear Equations in Slope-Intercept Form equation = m + b? How can ou describe the graph of the ACTIVITY: Analzing Graphs of Lines Work with a partner. Graph each equation. Find the slope

More information

Graphing and transforming functions

Graphing and transforming functions Chapter 5 Graphing and transforming functions Contents: A B C D Families of functions Transformations of graphs Simple rational functions Further graphical transformations Review set 5A Review set 5B 6

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Chapter Section.1 Quadratic Functions Polnomial and Rational Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Course Number Instructor Date Important

More information

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

Introduction. Introduction

Introduction. Introduction Introduction Solving Sstems of Equations Let s start with an eample. Recall the application of sales forecasting from the Working with Linear Equations module. We used historical data to derive the equation

More information

2 3 Histograms, Frequency Polygons, and Ogives

2 3 Histograms, Frequency Polygons, and Ogives 48 Chapter 2 Frequenc Distributions and Graphs 4. In Data Analsis, select Histogram and click the [OK] button. 5. In the Histogram dialog bo, tpe A1:A5 as the Input Range. 6. Select New Worksheet Pl, and

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test 1 Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4

Identify a pattern and find the next three numbers in the pattern. 5. 5(2s 2 1) 2 3(s 1 2); s 5 4 Chapter 1 Test Do ou know HOW? Identif a pattern and find the net three numbers in the pattern. 1. 5, 1, 3, 7, c. 6, 3, 16, 8, c Each term is more than the previous Each term is half of the previous term;

More information

GASOLINE The graph represents the cost of gasoline at $3 per gallon.

GASOLINE The graph represents the cost of gasoline at $3 per gallon. 9-6 Slope-Intercept Form MAIN IDEA Graph linear equations using the slope and -intercept. New Vocabular slope-intercept form -intercept Math Online glencoe.com Etra Eamples Personal Tutor Self-Check Quiz

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM . Equations of Lines in Slope-Intercept and Standard Form ( ) 8 In this Slope-Intercept Form Standard Form section Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications (0,

More information

Rationale/Lesson Abstract: Students will graph exponential functions, identify key features and learn how the variables a, h and k in f x a b

Rationale/Lesson Abstract: Students will graph exponential functions, identify key features and learn how the variables a, h and k in f x a b Grade Level/Course: Algebra Lesson/Unit Plan Name: Graphing Eponential Functions Rationale/Lesson Abstract: Students will graph eponential functions, identif ke features h and learn how the variables a,

More information

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form

Let (x 1, y 1 ) (0, 1) and (x 2, y 2 ) (x, y). x 0. y 1. y 1 2. x x Multiply each side by x. y 1 x. y x 1 Add 1 to each side. Slope-Intercept Form 8 (-) Chapter Linear Equations in Two Variables and Their Graphs In this section Slope-Intercept Form Standard Form Using Slope-Intercept Form for Graphing Writing the Equation for a Line Applications

More information

Solving Absolute Value Equations and Inequalities Graphically

Solving Absolute Value Equations and Inequalities Graphically 4.5 Solving Absolute Value Equations and Inequalities Graphicall 4.5 OBJECTIVES 1. Draw the graph of an absolute value function 2. Solve an absolute value equation graphicall 3. Solve an absolute value

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

Section C Non Linear Graphs

Section C Non Linear Graphs 1 of 8 Section C Non Linear Graphs Graphic Calculators will be useful for this topic of 8 Cop into our notes Some words to learn Plot a graph: Draw graph b plotting points Sketch/Draw a graph: Do not plot,

More information

Fluid Pressure and Fluid Force

Fluid Pressure and Fluid Force 0_0707.q //0 : PM Page 07 SECTION 7.7 Section 7.7 Flui Pressure an Flui Force 07 Flui Pressure an Flui Force Fin flui pressure an flui force. Flui Pressure an Flui Force Swimmers know that the eeper an

More information

The Quadratic Function

The Quadratic Function 0 The Quadratic Function TERMINOLOGY Ais of smmetr: A line about which two parts of a graph are smmetrical. One half of the graph is a reflection of the other Coefficient: A constant multiplied b a pronumeral

More information

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0

LINEAR FUNCTIONS. Form Equation Note Standard Ax + By = C A and B are not 0. A > 0 LINEAR FUNCTIONS As previousl described, a linear equation can be defined as an equation in which the highest eponent of the equation variable is one. A linear function is a function of the form f ( )

More information

Solving Special Systems of Linear Equations

Solving Special Systems of Linear Equations 5. Solving Special Sstems of Linear Equations Essential Question Can a sstem of linear equations have no solution or infinitel man solutions? Using a Table to Solve a Sstem Work with a partner. You invest

More information

Alex and Morgan were asked to graph the equation y = 2x + 1

Alex and Morgan were asked to graph the equation y = 2x + 1 Which is better? Ale and Morgan were asked to graph the equation = 2 + 1 Ale s make a table of values wa Morgan s use the slope and -intercept wa First, I made a table. I chose some -values, then plugged

More information

Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button.

Reteaching Masters. To jump to a location in this book. 1. Click a bookmark on the left. To print a part of the book. 1. Click the Print button. Reteaching Masters To jump to a location in this book. Click a bookmark on the left. To print a part of the book. Click the Print button.. When the Print window opens, tpe in a range of pages to print.

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

c sigma & CEMTL

c sigma & CEMTL c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,

More information

ALGEBRA. Generate points and plot graphs of functions

ALGEBRA. Generate points and plot graphs of functions ALGEBRA Pupils should be taught to: Generate points and plot graphs of functions As outcomes, Year 7 pupils should, for eample: Use, read and write, spelling correctl: coordinates, coordinate pair/point,

More information

2.1. Radical Functions and Transformations. Investigate a Radical Function

2.1. Radical Functions and Transformations. Investigate a Radical Function .1 Radical Functions and Transformations Focus on... investigating the function = using a table of values and a graph graphing radical functions using transformations identifing the domain and range of

More information

Graph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION:

Graph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION: - Root Functions Graph each function. Compare to the parent graph. State the domain and range...5.. 5. 6 is multiplied b a value greater than, so the graph is a vertical stretch of. Another wa to identif

More information

2.3 Writing Equations of Lines

2.3 Writing Equations of Lines . Writing Equations of Lines In this section ou will learn to use point-slope form to write an equation of a line use slope-intercept form to write an equation of a line graph linear equations using the

More information

2.4 Inequalities with Absolute Value and Quadratic Functions

2.4 Inequalities with Absolute Value and Quadratic Functions 08 Linear and Quadratic Functions. Inequalities with Absolute Value and Quadratic Functions In this section, not onl do we develop techniques for solving various classes of inequalities analticall, we

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

MODERN APPLICATIONS OF PYTHAGORAS S THEOREM UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

More information

Symmetry. A graph is symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

Symmetry. A graph is symmetric with respect to the y-axis if, for every point (x, y) on the graph, the point (-x, y) is also on the graph. Symmetry When we graphed y =, y = 2, y =, y = 3 3, y =, and y =, we mentioned some of the features of these members of the Library of Functions, the building blocks for much of the study of algebraic functions.

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is

NAME DATE PERIOD. 11. Is the relation (year, percent of women) a function? Explain. Yes; each year is - NAME DATE PERID Functions Determine whether each relation is a function. Eplain.. {(, ), (0, 9), (, 0), (7, 0)} Yes; each value is paired with onl one value.. {(, ), (, ), (, ), (, ), (, )}. No; in the

More information

Graphing Patterns: Student Activity Lesson Plan

Graphing Patterns: Student Activity Lesson Plan : Student Activity Lesson Plan Subject/Strand/Topic: Math Geometry & Spatial Sense Grade(s) / Course(s): 7 Ontario Epectations: 7m54 Key Concepts: graphing coordinates (, y) on a Cartesian plane Link:

More information

Quadratic Equations and Functions

Quadratic Equations and Functions Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

More information

Given a branch of an hyperbola in the 1st quadrant defined by the equation y =. Consider the

Given a branch of an hyperbola in the 1st quadrant defined by the equation y =. Consider the One Hyperbola Time required 45 minutes Teaching Goals: 1. Students interpret the given word problem and complete geometric constructions according to the condition of the problem. 2. Students choose an

More information

4 Non-Linear relationships

4 Non-Linear relationships NUMBER AND ALGEBRA Non-Linear relationships A Solving quadratic equations B Plotting quadratic relationships C Parabolas and transformations D Sketching parabolas using transformations E Sketching parabolas

More information

Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10

Chapter 3 & 8.1-8.3. Determine whether the pair of equations represents parallel lines. Work must be shown. 2) 3x - 4y = 10 16x + 8y = 10 Chapter 3 & 8.1-8.3 These are meant for practice. The actual test is different. Determine whether the pair of equations represents parallel lines. 1) 9 + 3 = 12 27 + 9 = 39 1) Determine whether the pair

More information

1.4 RECTANGULAR COORDINATES, TECHNOLOGY, AND GRAPHS

1.4 RECTANGULAR COORDINATES, TECHNOLOGY, AND GRAPHS .4 Rectangular Coordinates, Technolog, and Graphs 5 34. What is the smallest integer that is greater than 348 37 35. What is the smallest even integer that is greater than 5? 36. What is the largest prime

More information

GRAPHS OF RATIONAL FUNCTIONS

GRAPHS OF RATIONAL FUNCTIONS 0 (0-) Chapter 0 Polnomial and Rational Functions. f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0) 0. GRAPHS OF RATIONAL FUNCTIONS In this section Domain Horizontal and Vertical Asmptotes Oblique

More information

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System. Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

More information

Final Graphing Practice #1

Final Graphing Practice #1 Final Graphing Practice #1 Beginning Algebra / Math 100 Fall 2013 506 (Prof. Miller) Student Name/ID: Instructor Note: Assignment: Set up a tutoring appointment with one of the campus tutors or with me.

More information

THE PARABOLA section. Developing the Equation

THE PARABOLA section. Developing the Equation 80 (-0) Chapter Nonlinear Sstems and the Conic Sections. THE PARABOLA In this section Developing the Equation Identifing the Verte from Standard Form Smmetr and Intercepts Graphing a Parabola Maimum or

More information

Linear Inequality in Two Variables

Linear Inequality in Two Variables 90 (7-) Chapter 7 Sstems of Linear Equations and Inequalities In this section 7.4 GRAPHING LINEAR INEQUALITIES IN TWO VARIABLES You studied linear equations and inequalities in one variable in Chapter.

More information