# Class 9 Coordinate Geometry

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 ID : in-9-coordinate-geometry [1] Class 9 Coordinate Geometry For more such worksheets visit Answer t he quest ions (1) Find the coordinates of the point shown in the picture. (2) Find the coordinates of points which lies on y-axis at a distance of 7 units f rom origin in the positive direction of y-axis. (3) Find the coordinate of point whose abscissa is 5 and which lies on x-axis. (4) Find the distance of point (7, 4) f rom x-axis. Choose correct answer(s) f rom given choice (5) Which of the points J(12, 0), K(-10, 0), L(0, 14) and M(0, 14) lie on y axis. a. M and L b. L and J c. K and J d. M and K

2 ID : in-9-coordinate-geometry [2] (6) Find the resultant shape obtained by connecting points (15, 25) (-10, 25) (0, 5) and (-25, 5). a. Square b. Rectangle c. Parallelogram d. Rhombus (7) Two distinct points in a plane determine line. a. Three b. Two c. Inf inite d. One unique (8) The points in which abscissa and ordinate have same sign will lie in a. Second and T hird quadrants b. First and Fourth quadrants c. First and T hird quadrants d. Second and Fourth quadrants (9) Point (6, 5) lies in which quadrant? a. Second quadrant b. Fourth quadrant c. First quadrant d. T hird quadrant (10) Find the coordinates of the point shown in the picture. a. (4, 3) b. (40, 30) c. (30, 40) d. (3, 4)

3 (11) If coordinates of the point shown in the picture are (p+35, p+15), f ind the value of p. ID : in-9-coordinate-geometry [3] a. -60 b. -40 c. -45 d. -50 (12) A point both of whose coordinates are negative will lie in a. Second quadrant b. T hird quadrant c. Fourth quadrant d. First quadrant (13) Signs of the abscissa and ordinate of a point in the second quadrant are respectively a. -, + b. +, + c. -, - d. +, - (14) Two distinct in a plane can not have more than one point in common. a. Planes b. Both lines and points c. Lines d. Points Fill in the blanks (15) Pranav and Ashish deposit some amount in joint back account such that total balance remains If amount deposited by Pranav and Ashish are plotted as linear graph on x-y plane, the area between this graph and coordinate axes =.

4 ID : in-9-coordinate-geometry [4] 2016 Edugain (www.edugain.com). All Rights Reserved Many more such worksheets can be generated at

5 Answers ID : in-9-coordinate-geometry [5] (1) (-4, 2.5) In order to f ind the coordinates of the point shown in the picture, let's draw a horizontal and a vertical line which connect this point to the y and x axis respectively. We can see that the vertical line intersects the x-axis at -4. Theref ore, the x-coordinate of the point is -4. Step 3 Similarly, the horizontal line intersects the y-axis at 2.5. T heref ore, the y-coordinate of the point is 2.5. Step 4 Hence the coordinates of the given point are (-4, 2.5) (2) (0, 7) Note that if the point lies on the y-axis, then the x coordinate will be 0. The value of the y coordinate will be 7 if it lies in the positive direction, and -7 if it lies in the negative direction.

6 (3) (5,0) ID : in-9-coordinate-geometry [6] The key to note is that the f irst value that represents a point is called the abscissa, and the second value is called the ordinate. The second point to remember is that if a point lies on the x-axis, then the ordinate value is 0. Here we are given the abscissa value, and told that the point lies on the x axis, so the answer is (5,0) (4) 4 The simplest way to solve it is to remember that the abscissa - the f irst value - is the position "on" the x axis, and the ordinate is the value "on" the y axis What this means is that the f irst value is the distance away f rom the y axis, and the ordinate is the distance away f rom the x axis. Also remember to remove the sign - the distance is always positive (5) a. M and L A point lying on the X axis will have the abscissa as 0, and a point lying on the Y axis will have the ordinate as 0. Looking at the points here, we see points M and L will theref ore lies on the y axis

7 (6) d. Rhombus ID : in-9-coordinate-geometry [7] We can draw these points and connect them on graph paper as f ollowing Now we notice f ollowing in this shape, 1. All sides are equal 2. Opposite sides are parallel to each other Step 3 These are the properties of Rhombus, theref ore this shape is a Rhombus

8 (7) d. One unique ID : in-9-coordinate-geometry [8] Following f igure shows a line, that is drawn through two distinct points A and B. If we try to draw another line, it will not go through both A and B. Theref ore only one line can be drawn through two points (8) c. First and T hird quadrants There is a very simple mental map f or this. In the f irst quadrant, both the abscissa and ordinate (x,y) are positive. In the second quadrant, the abscissa is negative, and the ordinate is positive (-x,y). In the third quadrant, both numbers are negative (-x,-y). In the f ourth quadrant, the abscissa is positive and the ordinate is negative (-x,-y). Based on this, we f ind the answer to the question is First and Third quadrants

9 (9) c. First quadrant ID : in-9-coordinate-geometry [9] There is a very simple mental map f or this. You need to go in the anticlockwise direction f or this. If both the numbers are positive (i.e. in the f orm (x,y), then the point lies in the f irst quadrant. If the f irst number is negative, and the second is positive (-x,y), it lies in the second quadrant. If both numbers are negative (-x,-y), it lies in the 3rd quadrant. If the f irst is positive and the second is negative (x,-y), it lies in the 4th quadrant. Here the f irst number is positive, and the second is positive, so it lies in the First quadrant.

10 (10) b. (40, 30) ID : in-9-coordinate-geometry [10] In order to f ind the coordinates of the point shown in the picture, let's draw a horizontal and a vertical line which connect this point to the y and x axis respectively. We can see that the vertical line intersects the x-axis at 40. Theref ore, the x-coordinate of the point is 40. Step 3 Similarly, the horizontal line intersects the y-axis at 30. T heref ore, the y-coordinate of the point is 30. Step 4 Hence the coordinates of the given point are (40, 30). (11) d. -50 From observation we see that the point def ined is (-15,-35) We are told that -15 = p + 35, and -35 = p + 15 From either of these equations we can see that p = -50

### of its supplementary angle, then what is the value of that angle?

ID : gb-5-geometry [1] Grade 5 Geometry For more such worksheets visit www.edugain.com Answer t he quest ions (1) If you divide a circle into 9 equal parts by drawing radii, then what is the angle between

### Grade 6 Percentage: Ratio to Percent and Percent to Ratio conversion

ID : sg-6-percentage-ratio-to-percent-and-percent-to-ratio-conversion [1] Grade 6 Percentage: Ratio to Percent and Percent to Ratio conversion For more such worksheets visit www.edugain.com Fill in the

### Section 1.8 Coordinate Geometry

Section 1.8 Coordinate Geometry The Coordinate Plane Just as points on a line can be identified with real numbers to form the coordinate line, points in a plane can be identified with ordered pairs of

### Class 7 Multiplication and Division

ID : in-7-multiplication-and-division [1] Class 7 Multiplication and Division For more such worksheets visit www.edugain.com Fill in the blanks (1) Simplif y f ollowing and write answer in exponential

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### Patterns, Equations, and Graphs. Section 1-9

Patterns, Equations, and Graphs Section 1-9 Goals Goal To use tables, equations, and graphs to describe relationships. Vocabulary Solution of an equation Inductive reasoning Review: Graphing in the Coordinate

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### Review for Final. Transformations. Day 2

Review for Final Transformations Day 2 May 7 3:31 PM 1) If translation T maps point A(-3, 1) onto point A'(5,5), what is the translation T? 2) The transformation T -2,3 maps the point (7, 2) onto the point

### Chapter 8 Graphs and Functions:

Chapter 8 Graphs and Functions: Cartesian axes, coordinates and points 8.1 Pictorially we plot points and graphs in a plane (flat space) using a set of Cartesian axes traditionally called the x and y axes

### 2. THE x-y PLANE 7 C7

2. THE x-y PLANE 2.1. The Real Line When we plot quantities on a graph we can plot not only integer values like 1, 2 and 3 but also fractions, like 3½ or 4¾. In fact we can, in principle, plot any real

### Elements of a graph. Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

### Class 9 Herons Formula

ID : in-9-herons-formula [1] Class 9 Herons Formula For more such worksheets visit www.edugain.com Answer t he quest ions (1) Find the area of the parallelogram ABCD and the length of the altitude DE in

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704.

Basic Math Refresher A tutorial and assessment of basic math skills for students in PUBP704. The purpose of this Basic Math Refresher is to review basic math concepts so that students enrolled in PUBP704:

### GRAPHING (2 weeks) Main Underlying Questions: 1. How do you graph points?

GRAPHING (2 weeks) The Rectangular Coordinate System 1. Plot ordered pairs of numbers on the rectangular coordinate system 2. Graph paired data to create a scatter diagram 1. How do you graph points? 2.

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Section summaries. d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 1 + y 2. x1 + x 2

Chapter 2 Graphs Section summaries Section 2.1 The Distance and Midpoint Formulas You need to know the distance formula d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 and the midpoint formula ( x1 + x 2, y ) 1 + y 2

### BALTIC OLYMPIAD IN INFORMATICS Stockholm, April 18-22, 2009 Page 1 of?? ENG rectangle. Rectangle

Page 1 of?? ENG rectangle Rectangle Spoiler Solution of SQUARE For start, let s solve a similar looking easier task: find the area of the largest square. All we have to do is pick two points A and B and

### Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

### LINEAR EQUATIONS IN TWO VARIABLES

66 MATHEMATICS CHAPTER 4 LINEAR EQUATIONS IN TWO VARIABLES The principal use of the Analytic Art is to bring Mathematical Problems to Equations and to exhibit those Equations in the most simple terms that

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

### EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

### (Least Squares Investigation)

(Least Squares Investigation) o Open a new sketch. Select Preferences under the Edit menu. Select the Text Tab at the top. Uncheck both boxes under the title Show Labels Automatically o Create two points

### All points on the coordinate plane are described with reference to the origin. What is the origin, and what are its coordinates?

Classwork Example 1: Extending the Axes Beyond Zero The point below represents zero on the number line. Draw a number line to the right starting at zero. Then, follow directions as provided by the teacher.

### The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### Lines and Linear Equations. Slopes

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

### MATHEMATICS Y6 Geometry 6750 Use co-ordinates and extend to 4 quadrants Equipment MathSphere www.mathsphere.co.uk

MATHEMATICS Y6 Geometry 675 Use co-ordinates and etend to quadrants Paper, pencil, ruler Equipment MathSphere 675 Use co-ordinates and etend to quadrants. Page Concepts Children should be familiar with

### Graph Ordered Pairs on a Coordinate Plane

Graph Ordered Pairs on a Coordinate Plane Student Probe Plot the ordered pair (2, 5) on a coordinate grid. Plot the point the ordered pair (-2, 5) on a coordinate grid. Note: If the student correctly plots

5.1 The Unit Circle Copyright Cengage Learning. All rights reserved. Objectives The Unit Circle Terminal Points on the Unit Circle The Reference Number 2 The Unit Circle In this section we explore some

### Section 3.2. Graphing linear equations

Section 3.2 Graphing linear equations Learning objectives Graph a linear equation by finding and plotting ordered pair solutions Graph a linear equation and use the equation to make predictions Vocabulary:

### MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane.

MA.7.G.4.2 Predict the results of transformations and draw transformed figures with and without the coordinate plane. Symmetry When you can fold a figure in half, with both sides congruent, the fold line

### c sigma & CEMTL

c sigma & CEMTL Foreword The Regional Centre for Excellence in Mathematics Teaching and Learning (CEMTL) is collaboration between the Shannon Consortium Partners: University of Limerick, Institute of Technology,

Problem 1 The Parabola Examine the data in L 1 and L to the right. Let L 1 be the x- value and L be the y-values for a graph. 1. How are the x and y-values related? What pattern do you see? To enter the

### Applications of Integration Day 1

Applications of Integration Day 1 Area Under Curves and Between Curves Example 1 Find the area under the curve y = x2 from x = 1 to x = 5. (What does it mean to take a slice?) Example 2 Find the area under

### Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

1. sum the answer when you add Ex: 3 + 9 = 12 12 is the sum 2. difference the answer when you subtract Ex: 17-9 = 8 difference 8 is the 3. the answer when you multiply Ex: 7 x 8 = 56 56 is the 4. quotient

### Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space

IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728. Volume 5, Issue 5 (Mar. - Apr. 2013), PP 27-36 Graphing the Complex Roots of Quadratic Functions on a Three Dimensional Coordinate Space Aravind

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

### Transformational Geometry in the Coordinate Plane Rotations and Reflections

Concepts Patterns Coordinate geometry Rotation and reflection transformations of the plane Materials Student activity sheet Transformational Geometry in the Coordinate Plane Rotations and Reflections Construction

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### 2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style

The straight line 2.7 Introduction Probably the most important function and graph that you will use are those associated with the straight line. A large number of relationships between engineering variables

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### The Product Property of Square Roots states: For any real numbers a and b, where a 0 and b 0, ab = a b.

Chapter 9. Simplify Radical Expressions Any term under a radical sign is called a radical or a square root expression. The number or expression under the the radical sign is called the radicand. The radicand

What Does Your Quadratic Look Like? EXAMPLES 1. An equation such as y = x 2 4x + 1 descries a type of function known as a quadratic function. Review with students that a function is a relation in which

### Galena Park ISD. Friday, September 9, 2016 (Due Date) Summer Assignment. Pre-AP Geometry. (Name)

Summer Assignment (Name) Friday, September 9, 2016 (Due Date) Pre-AP Geometry Summer Assignment: Pre-AP Geometry This assignment should serve as a review of the skills necessary for success in Pre-AP Geometry.

### Carroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) August-September (12 days) Unit #1 : Geometry

Carroll County Public Schools Elementary Mathematics Instructional Guide (5 th Grade) Common Core and Research from the CCSS Progression Documents Geometry Students learn to analyze and relate categories

### Study Guide and Review - Chapter 4

State whether each sentence is true or false. If false, replace the underlined term to make a true sentence. 1. The y-intercept is the y-coordinate of the point where the graph crosses the y-axis. The

### 7.3 Volumes Calculus

7. VOLUMES Just like in the last section where we found the area of one arbitrary rectangular strip and used an integral to add up the areas of an infinite number of infinitely thin rectangles, we are

### Properties of Special Parallelograms

Properties of Special Parallelograms Lab Summary: This lab consists of four activities that lead students through the construction of a parallelogram, a rectangle, a square, and a rhombus. Students then

### The Cartesian Plane The Cartesian Plane. Performance Criteria 3. Pre-Test 5. Coordinates 7. Graphs of linear functions 9. The gradient of a line 13

6 The Cartesian Plane The Cartesian Plane Performance Criteria 3 Pre-Test 5 Coordinates 7 Graphs of linear functions 9 The gradient of a line 13 Linear equations 19 Empirical Data 24 Lines of best fit

### 4 th Grade Math Lesson Plan Coordinate Planes

Context: Objective: 4 th Grade Math Lesson Plan Coordinate Planes This lesson designed for a 4 th grade class at Kraft Elementary School. This class contains 16 students. No students have IEPs and none

### Integers (pages 294 298)

A Integers (pages 294 298) An integer is any number from this set of the whole numbers and their opposites: { 3, 2,, 0,, 2, 3, }. Integers that are greater than zero are positive integers. You can write

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### Chapter 1: Coordinates and Design

Chapter 1: Coordinates and Design TRUE/FALSE 1. A change in a figure that results in a different position or orientation is known as a transformation. T DIF: Easy OBJ: Section 1.3 NAT: SS5 KEY: transformation

### Math. MCC5.OA.1 Use parentheses, brackets, or braces in. these symbols. 11/5/2012 1

MCC5.OA.1 Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. 11/5/2012 1 MCC5.OA.2 Write simple expressions that record calculations with numbers,

### http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

### GRE MATH REVIEW #6. Geometry

GRE MATH REVIEW #6 Geometry As in the case of algera, you don t need to know much of the actual geometry you learned in your geometry class for the GRE. Here is a list of facts aout degrees and angles

### Student Lesson: Absolute Value Functions

TEKS: a(5) Tools for algebraic thinking. Techniques for working with functions and equations are essential in understanding underlying relationships. Students use a variety of representations (concrete,

### Section 8.1 The Inverse Sine, Cosine, and Tangent Functions

Section 8.1 The Inverse Sine, Cosine, and Tangent Functions You learned about inverse unctions in both college algebra and precalculus. The main characteristic o inverse unctions is that composing one

### Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis

Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >

### Exploring the Equation of a Circle

Math Objectives Students will understand the definition of a circle as a set of all points that are equidistant from a given point. Students will understand that the coordinates of a point on a circle

### Session 7 Symmetry. coordinates reflection rotation translation

Key Terms for This Session Session 7 Symmetry Previously Introduced coordinates reflection rotation translation New in This Session: frieze pattern glide reflection reflection or line symmetry rotation

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Example 1. Example 1 Plot the points whose polar coordinates are given by

Polar Co-ordinates A polar coordinate system, gives the co-ordinates of a point with reference to a point O and a half line or ray starting at the point O. We will look at polar coordinates for points

### Transformations Worksheet. How many units and in which direction were the x-coordinates of parallelogram ABCD moved? C. D.

Name: ate: 1. Parallelogram ABC was translated to parallelogram A B C. 2. A shape is shown below. Which shows this shape transformed by a flip? A. B. How many units and in which direction were the x-coordinates

### Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

### Year 12 Pure Mathematics. C1 Coordinate Geometry 1. Edexcel Examination Board (UK)

Year 1 Pure Mathematics C1 Coordinate Geometry 1 Edexcel Examination Board (UK) Book used with this handout is Heinemann Modular Mathematics for Edexcel AS and A-Level, Core Mathematics 1 (004 edition).

Grade 6 First Quadrant Coordinate system 6.SS.8 Identify and plot points in the first quadrant of a Cartesian plane using whole-number ordered pairs. 1. Label the axes of the first quadrant of a Cartesian

1. Determine whether each quadrilateral is a Justify your answer. 3. KITES Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before

### Topic: Integers. Addition Subtraction Multiplication Division Same signs: Add & keep sign = = - 10.

Topic: Integers Examples: Addition Subtraction Multiplication Division Same signs: Add & keep sign + 6 + + 5 = + - 8 + - 2 = - 0 Different signs: Subtract & take sign of larger value + 9 + - 5 = + 4-6

### Grade 5 Math Curriculum Guide

Grade 5 Math Curriculum Guide Lesson 1 1 st Nine Weeks Unit 1: Number and Operations in Base Ten Understand Place Value 5.NBT.1. Recognize that in a multi-digit number, a digit in one place represents

### C1: Coordinate geometry of straight lines

B_Chap0_08-05.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x b is given by

MATH 42, Fall 29 Examples from Section, Tue, 27 Oct 29 1 The First Hour Area Between Curves. The idea: the area between curves y = f(x) and y = g(x) (if the graph of f(x) is above that of g(x)) for a x

### 7-3 Parallel and Perpendicular Lines

Learn to identify parallel, perpendicular, and skew lines, and angles formed by a transversal. 7-3 Parallel Insert Lesson and Perpendicular Title Here Lines Vocabulary perpendicular lines parallel lines

### www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

### Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

### Conic Sections in Cartesian and Polar Coordinates

Conic Sections in Cartesian and Polar Coordinates The conic sections are a family of curves in the plane which have the property in common that they represent all of the possible intersections of a plane

### Lines That Pass Through Regions

: Student Outcomes Given two points in the coordinate plane and a rectangular or triangular region, students determine whether the line through those points meets the region, and if it does, they describe

### Each pair of opposite sides of a parallelogram is congruent to each other.

Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. 2. Each pair of opposite

### 1. By how much does 1 3 of 5 2 exceed 1 2 of 1 3? 2. What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3.

1 By how much does 1 3 of 5 exceed 1 of 1 3? What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3 A ticket fee was \$10, but then it was reduced The number of customers

### Part 1: Background - Graphing

Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

### -2- Reason: This is harder. I'll give an argument in an Addendum to this handout.

LINES Slope The slope of a nonvertical line in a coordinate plane is defined as follows: Let P 1 (x 1, y 1 ) and P 2 (x 2, y 2 ) be any two points on the line. Then slope of the line = y 2 y 1 change in

### Activity 6 Graphing Linear Equations

Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be

### Determine If An Equation Represents a Function

Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

### Exhibit 7.5: Graph of Total Costs vs. Quantity Produced and Total Revenue vs. Quantity Sold

244 13. 7.5 Graphical Approach to CVP Analysis (Break-Even Chart) A break-even chart is a graphical representation of the following on the same axes: 1. Fixed costs 2. Total costs at various levels of

### 11-1 Areas of Parallelograms and Triangles. Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary.

Find the perimeter and area of each parallelogram or triangle. Round to the nearest tenth if necessary. 2. 1. Use the Pythagorean Theorem to find the height h, of the parallelogram. Each pair of opposite