Light ASSIGNMENT EDULABZ. A pin hole... is based on the principle that light travels in... lines.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Light ASSIGNMENT EDULABZ. A pin hole... is based on the principle that light travels in... lines."

Transcription

1 Light ASSIGNMENT 1. Fill in the blank spaces, by choosing the correct words from the list given below : List : large, high, moon, umbra, light, camera, transparent, straight, pass, curvature, convex, shaving, object, enlarged, behind, concave, infinity, principal focus, area, sphere (i) (ii) (iii) (iv) The bodies which give... energy of their own, are called luminous bodies. A... body allows most of the light energy to... through it. A pin hole... is based on the principle that light travels in... lines. The shadow cast by earth is very... and can completely cover the whole of... during lunar eclipse. (v) Birds flying very... do not cast their shadows, as... finishes in air. (vi) The centre of the hollow... of which the spherical mirror is a part, is called centre of.... (vii) Drivers prefer... mirror because it forms an erect, diminished and virtual image close to the eye and covers a wide... of road behind them. (viii) Concave mirror is used as... mirror because it forms... erect and virtual image. (ix) Image in a plane mirror is as far... as the... is in front of it. (x) A real, inverted and diminished image is formed in... mirror, when the object is in between... and the centre of curvature. (xi) An image diminished to a point and virtual and erect in nature, is formed by convex mirror, when object is situated at.... 1

2 2. Write T for true and F for false in front of the following statements : (i) The image formed in a pinhole camera, is always erect. (ii) Light is an invisible energy which causes in us the sensation of vision. (iii) A bird flying high in the sky does not cast its shadow on ground. (iv) Moon is a luminous body in the sky. (v) The size of image in the pinhole camera increases, if the object is moved towards pinhole. (vi) The light produced by a bulb is called shadowless light. (vii) Convex mirror always forms a virtual image. (viii) Concave mirror always forms a real image. (ix) Pole is the centre of sphere of which spherical mirror is a part. (x) In case of plane mirror, the image is of same size as the object. (xi) Any ray of light passing through the centre of curvature after reflection retraces its path. (xii) Concave mirrors are used as reflectors for street lights. (xiii) Plane mirror is a better rear-view mirror, as compared to convex mirror. (xiv) Concave mirror is used as shaving mirror, because it makes a better shave. (xv) Dentists use concave mirror, because it is curved and fits well behind teeth. (xvi) When an object is at infinity, the rays coming from it, are always parallel. 3. Statements given below are incorrect. Write the correct statements. (i) A region of total darkness is called penumbra. (ii) The image formed by a plane mirror is always inverted. (iii) (iv) Pole of a spherical mirror is the centre of curvature of the mirror. Solar eclipse is caused when the sun, the earth and the moon come in straight line, such that the earth is in the middle. (v) (vi) (vii) (viii) The image formed by a pinhole camera is always virtual, erect and diminished. Plane mirror is employed as rear-view mirror in automobiles. Two convex mirrors are employed in the construction of a periscope. When a ray of light strikes a plane mirror perpendicularly, the angle of incidence is 90. 2

3 (ix) A concave mirror forms a virtual image, when an object is between F and C. (x) A plane mirror can focus solar rays to a point. 4. Match the statements in column A, with those in column B : Column A Column B (i) Distance between the pole and the principal Solar eclipse focus of a convex mirror. (ii) Distance between the pole and centre of Focal length curvature of a convex mirror. (iii) A device used for seeing, over the heads of Plane mirror crowds. (iv) A mirror used in the solar cookers. Periscope (v) A spherical mirror used as a shaving mirror. Convex mirror (vi) A spherical mirror used as a rear-view mirror. Regular reflection (vii) A reflection in which reflected rays travel as Diffused reflection parallel beam. (viii) A reflection taking place from the walls of a Concave mirror building (ix) An eclipse formed on the full moon night. Radius of curvature (x) An eclipse formed on the new moon day. Lunar eclipse 5. Tick ( ) the most appropriate answer. (i) A region of total darkness, is called : (a) penumbra (b) umbra (c) shadow (ii) A ray of light travelling towards a polished surface is called : (a) normal (b) reflected ray (c) incident ray (iii) Image formed in a concave mirror is always : (a) inverted (b) erect (c) some times inverted and some times erect (iv) A medium which almost completely allows the light to pass through them, is called : (a) homogeneous medium (b) hetrogeneous medium (c) translucent medium (d) transparent medium 3

4 (v) The image formed by a convex mirror is always : (a) real (b) inverted (c) enlarged (d) diminished (vi) The image formed by a plane mirror is always : (a) erect (b) inverted (c) diminished (d) enlarged (vii) The mirrors used in a periscope are : (a) plane (b) convex (c) concave (viii) The mirror used as a rear-view mirror, in automobiles, is : (a) plane (b) convex (c) concave (ix) The mid point of a spherical mirror, is called : (a) aperture (b) centre of curvature (c) pole (d) principal focus (x) When the angle of incidence is zero, the rays of light strikes a plane mirror at an angle of : (a) zero degree (b) 90 (c) Find the odd one out. Give a reason for your choice. (a) For a plane mirror, the image is always : (i) real, (ii) erect, (iii) same size as the object, (iv) formed as far behind the mirror as the object is in front of it. (b) For a convex mirror, the image is always : (i) virtual, (ii) magnified, (iii) erect, (iv) formed behind the mirror. (c) For a concave mirror, the image when object is between P and F, is always : (i) virtual (ii) erect, (iii) magnified/diminished, (iv) formed in front of the mirror. 7. (i) What is light? (ii) By giving four examples each, define the following : (a) Luminous bodies (b) Non-luminous bodies 8. Pick out the luminous and non-luminous bodies from the list given below : (i) a lighted cigarette, (ii) marble, (iii) dial of watch, (iv) sun, (v) fire flies, (vi) diamond, (vii) red hot iron, (viii) bicycle, (ix) trees, (x) a radio set. 4

5 9. By giving at least four examples each, define the following terms : (i) Heterogeneous medium (ii) Transparent medium (iii) Opaque bodies (iv) Translucent bodies (v) Homogeneous medium 10. What do you understand by the following terms? Support your answer by drawing a diagram. (i) Ray of light (ii) Convergent beam of light (iii) Divergent beam of light (iv) Parallel beam of light 11. Draw a neat and labelled diagram to show that light travels in straight lines. 12. (i) What is a shadow? (ii) Name and define two kinds of shadows. (iii) State three conditions for the formation of shadow. 13. Show the formation of shadows in Figs. 1 and 2 : 14. By drawing a neat and labelled diagram, show, why flying birds do not cast their shadows. Explain briefly your answer. 5

6 15. (i) In the space provided below, are shown the sun, the moon and the earth. Complete a ray diagram to show the formation of eclipse. (ii) Name the eclipse illustrated by the diagram. (iii) On which day does this eclipse take place? (iv) Why does this eclipse last for a very short interval of time? Explain. 16. (i) Draw a neat and labelled diagram of lunar eclipse. (ii) Answer the following questions : (a) On which day does lunar eclipse take place? (b) Why is lunar eclipse generally total? (c) Why is lunar eclipse a frequent phenomenon? 17. (i) What is the principle of pinhole camera? (ii) Why is the interior of pinhole camera blackened? (iii) State three characteristics of an image formed by a pinhole camera. (iv) How the image formed in a pinhole camera affected, when : (a) Distance between the pinhole and the screen increases? (b) Distance between the pinhole and the screen decreases? 18. (i) What do you understand by the term reflection of light? (ii) By drawing diagrams, define : (a) Regular reflection (b) Diffused reflection (iii) State one use each of : (a) Regular reflection (b) Diffused reflection 6

7 (iv) Name four substances, in each case, which cause : (a) Regular reflection (b) Diffused reflection 19. Define the following terms with reference to the reflection of light : (i) Mirror (ii) Incident ray (iii) Reflected ray (iv) Normal (v) Angle of incidence (vi) Angle of reflection (vii) Point of incidence 20. State two laws of reflection. 21. (i) What do you understand by the following terms? (a) Real image (b) Virtual image (ii) Name the kind of image (real or virtual) formed in case of plane mirror. 22. State four characteristics of an image formed in a plane mirror. 23. (i) A monkey sits at a distance of 4 m from a plane mirror. How much is the distance between the monkey and its image? (ii) If the monkey moves 1 m towards mirror, how much is the distance between the monkey and its image? 24. Give four practical uses of plane mirrors, other than periscope. 25. What is a reflecting periscope? 26. Define the following terms used for spherical mirrors : (i) Concave mirror (ii) Convex mirror (iii) Pole 7

8 (iv) (v) (vi) (vii) (viii) (ix) Centre of curvature Principal axis Radius of curvature Principal focus of concave mirror Principal focus of convex mirror Focal length 27. (i) State three rules for drawing images in case of convex mirror (ii) State three rules for drawing images in case of concave mirror. Trace the course of reflected rays in figure (a) and figure (b) and in each case, mark principal focus. The above diagram shows an object AB placed in front of a concave mirror. By drawing two-rays diagram, locate the position of image and state three characteristics of the image. 30. (i) Give three uses of concave mirrors. (ii) Give two uses of convex mirrors. 8

(c) eruption of volcanoes (d) none of these 5. A solar eclipse can occur only on a

(c) eruption of volcanoes (d) none of these 5. A solar eclipse can occur only on a 5 LIGHT I. Tick ( ) the most appropriate answer. 1. Light causes the (a) sensation of heat (b) sensation of sound (c) sensation of sight (d) sensation of touch 2. Objects which emit light of their own

More information

Page 1 Class 10 th Physics LIGHT REFLECTION AND REFRACTION

Page 1 Class 10 th Physics LIGHT REFLECTION AND REFRACTION Page 1 LIGHT Light is a form of energy, which induces the sensation of vision in our eyes and makes us able to see various things present in our surrounding. UNITS OF LIGHT Any object which has an ability

More information

(text on screen) VO In diffuse reflection, parallel incident light rays are reflected in different directions.

(text on screen) VO In diffuse reflection, parallel incident light rays are reflected in different directions. Physics 1401 Mirrors You ve probably heard the old saying, The end is in sight. Well, that saying applies doubly to our class. Not only do we start the final unit that ends our year of physics but today

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

More information

Light and its effects

Light and its effects Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

More information

Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors. Ray Diagram for Convex Mirror Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

More information

Chapter 23. The Reflection of Light: Mirrors

Chapter 23. The Reflection of Light: Mirrors Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted

More information

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same 1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object

More information

Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted

Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a

More information

Question 2: The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

Question 2: The radius of curvature of a spherical mirror is 20 cm. What is its focal length? Question 1: Define the principal focus of a concave mirror. ANS: Light rays that are parallel to the principal axis of a concave mirror converge at a specific point on its principal axis after reflecting

More information

Law of Reflection. The angle of incidence (i) is equal to the angle of reflection (r)

Law of Reflection. The angle of incidence (i) is equal to the angle of reflection (r) Light GCSE Physics Reflection Law of Reflection The angle of incidence (i) is equal to the angle of reflection (r) Note: Both angles are measured with respect to the normal. This is a construction line

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

It bends away from the normal, like this. So the angle of refraction, r is greater than the angle of incidence, i.

It bends away from the normal, like this. So the angle of refraction, r is greater than the angle of incidence, i. Physics 1403 Lenses It s party time, boys and girls, because today we wrap up our study of physics. We ll get this party started in a bit, but first, you have some more to learn about refracted light.

More information

Solution Derivations for Capa #13

Solution Derivations for Capa #13 Solution Derivations for Capa #13 1) A super nova releases 1.3 10 45 J of energy. It is 1540 ly from earth. If you were facing the star in question, and your face was a circle 7 cm in radius, how much

More information

MIRRORS AND REFLECTION

MIRRORS AND REFLECTION MIRRORS AND REFLECTION PART 1 ANGLE OF INCIDENCE, ANGLE OF REFLECTION In this exploration we will compare θ i (angle of incidence) and θ r (angle of reflection). We will also investigate if rays are reversed

More information

Light Energy OBJECTIVES

Light Energy OBJECTIVES 11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

Lenses. Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil.

Lenses. Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil. Lenses Notes_10_ SNC2DE_09-10 Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil. ) Most lenses are made of transparent glass

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft

1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from

More information

PHYSICS REFERENCE STUDY MATERIAL. for. Summative Assessment -II CLASS X

PHYSICS REFERENCE STUDY MATERIAL. for. Summative Assessment -II CLASS X PHYSICS REFERENCE STUDY MATERIAL for Summative Assessment -II CLASS X 2014 15 CHAPTER WISE CONCEPTS, FORMULAS AND NUMERICALS INLCUDING HOTS PROBLEMS Prepared by M. S. KUMARSWAMY, TGT(MATHS) M. Sc. Gold

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec. Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

Ray Tracing: the Law of Reflection, and Snell s Law

Ray Tracing: the Law of Reflection, and Snell s Law Ray Tracing: the Law of Reflection, and Snell s Law Each of the experiments is designed to test or investigate the basic ideas of reflection and the ray-like behavior of light. The instructor will explain

More information

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine

More information

Thin Lenses Drawing Ray Diagrams

Thin Lenses Drawing Ray Diagrams Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses

More information

15 Imaging ESSENTIAL IDEAS. How we see images. Option C. Understanding the human eye

15 Imaging ESSENTIAL IDEAS. How we see images. Option C. Understanding the human eye Option C 15 Imaging ESSENTIAL IDEAS The progress of a wave can be modelled using the ray or the wavefront. The change in wave speed when moving between media changes the shape of the wave. Optical microscopes

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Exam 1 is tomorrow, Wed. June 9, in class. Covers material from Chapter 1, pgs 1-25, Lectures and Homework 1-3. HW4 will be up soon. Due Thursday, 5PM Lecture 5: Shadows,

More information

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

More information

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d. Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

More information

19 - RAY OPTICS Page 1 ( Answers at the end of all questions )

19 - RAY OPTICS Page 1 ( Answers at the end of all questions ) 19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Exam 1 is finished, Avg: 84 +/- 10.5 Solutions on the web and scores on CULearn. HW4: Due Thursday, 5PM Lecture 6: Reflection, mirror images, and refraction. Reading: Chapter

More information

Lecture 5 Chapter 1. Topics for today. Phases of the Moon. Angular Measure and Parallax. Solar and Lunar Eclipses

Lecture 5 Chapter 1. Topics for today. Phases of the Moon. Angular Measure and Parallax. Solar and Lunar Eclipses Lecture 5 Chapter 1 Topics for today Phases of the Moon Angular Measure and Parallax Solar and Lunar Eclipses ! Day, year, seasons Our Calendar! How about months? Phases of the Moon Why do we see phases?!

More information

LASER OPTICAL DISK SET

LASER OPTICAL DISK SET LASER OPTICAL DISK SET LODS01 5 6 7 4 8 3 9 2 10 1 11 1. Description The laser Optical Disk Set includes a Laser Ray Box powered by a low voltage wall-mount power supply, a set of eight ray optics elements

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

More information

O5: Lenses and the refractor telescope

O5: Lenses and the refractor telescope O5. 1 O5: Lenses and the refractor telescope Introduction In this experiment, you will study converging lenses and the lens equation. You will make several measurements of the focal length of lenses and

More information

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/16 Optics 1 /11 GEOMETRIC OPTICS 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

More information

2/16/2016. Reflection and Refraction WHITEBOARD WHITEBOARD. Chapter 21 Lecture What path did the light follow to reach the wall?

2/16/2016. Reflection and Refraction WHITEBOARD WHITEBOARD. Chapter 21 Lecture What path did the light follow to reach the wall? Chapter 21 Lecture What path did the light follow to reach the wall? Reflection and Refraction Represent the path from the laser to the wall with an arrow. Why can t you see the beam of light itself but

More information

1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM 1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Chapter 22: Mirrors and Lenses

Chapter 22: Mirrors and Lenses Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;

More information

Your Comments. Also, that 30/60/90 triangle prism question on the last homework...holy geometry batman!

Your Comments. Also, that 30/60/90 triangle prism question on the last homework...holy geometry batman! Your Comments Also, that 30/60/90 triangle prism question on the last homework...holy geometry batman! o thats why I'm always up side down when I look at the inside o my cereal spoon, regardless o how

More information

PROPERTIES OF THIN LENSES. Paraxial-ray Equations

PROPERTIES OF THIN LENSES. Paraxial-ray Equations PROPERTIES OF THIN LENSES Object: To measure the focal length of lenses, to verify the thin lens equation and to observe the more common aberrations associated with lenses. Apparatus: PASCO Basic Optical

More information

Introduction to Light, Color, and Shadows

Introduction to Light, Color, and Shadows Introduction to Light, Color, and Shadows What is light made out of? -waves, photons, Electromagnetic waves (don t know this one) How do you get color? - different wavelengths of light. What does it mean

More information

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase.

Phases of the Moon. The next phase, at about day 10, we can see roughly three quarters of the moon. This is called the waxing gibbous phase. Phases of the Moon Though we can see the moon s size change throughout the month, it is really always the same size. Yet we see these different sizes or moon phases at regular intervals every month. How

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

Lab 9. Optics. 9.1 Introduction

Lab 9. Optics. 9.1 Introduction Lab 9 Name: Optics 9.1 Introduction Unlike other scientists, astronomers are far away from the objects they want to examine. Therefore astronomers learn everything about an object by studying the light

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Lenses and Telescopes

Lenses and Telescopes Notes for teachers on Module 3 Lenses and Telescopes Lenses are a basic optical component. However, understanding how they work is non-trivial! They have a wide variety of applications. One such use is

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

7/06 Geometric Optics GEOMETRIC OPTICS JUPITER THROUGH A REPLICA OF GALILEO'S TELESCOPE

7/06 Geometric Optics GEOMETRIC OPTICS JUPITER THROUGH A REPLICA OF GALILEO'S TELESCOPE GEOMETRIC OPTICS JUPITER THROUGH A REPLICA OF GALILEO'S TELESCOPE The four Galilean moons of Jupiter (from left: Europa, Callisto, Io and Ganymede): a 6 sec exposure taken on Nov. 28, 2002 at approximately

More information

Lecture Notes for Chapter 34: Images

Lecture Notes for Chapter 34: Images Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject

More information

Three Lasers Converging at a Focal Point : A Demonstration

Three Lasers Converging at a Focal Point : A Demonstration Three Lasers Converging at a Focal Point : A Demonstration Overview In this activity, students will see how we can use the property of refraction to focus parallel rays of light. Students will observe

More information

GEOMETRICAL OPTICS. Lens Prism Mirror

GEOMETRICAL OPTICS. Lens Prism Mirror GEOMETRICAL OPTICS Geometrical optics is the treatment of the passage of light through lenses, prisms, etc. by representing the light as rays. A light ray from a source goes in a straight line through

More information

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics

7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change

More information

Light and Other Radiations

Light and Other Radiations Light and Other Radiations Visible light is a form of electromagnetic radiation. X-rays, infrared, microwaves and gamma rays are other forms of this type of radiation which make up the electromagnetic

More information

Physics 6C Summer 2006 Homework 3 Solutions by Michael Gary

Physics 6C Summer 2006 Homework 3 Solutions by Michael Gary Physics 6C Summer 2006 Homework 3 Solutions by Michael Gary All problems are from the 2 nd etion of Walker. Numerical values are fferent for each student. 1. Chapter 26, Problem 1: A laser beam is reflected

More information

Study Guide: Sun, Earth and Moon Relationship Assessment

Study Guide: Sun, Earth and Moon Relationship Assessment I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around

More information

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

More information

Eighth Grade Electromagnetic Radiation and Light Assessment

Eighth Grade Electromagnetic Radiation and Light Assessment Eighth Grade Electromagnetic Radiation and Light Assessment 1a. Light waves are the only waves that can travel through. a. space b. solids 1b. Electromagnetic waves, such as light, are the only kind of

More information

The Motion of the Moon: Phases & Eclipses

The Motion of the Moon: Phases & Eclipses The Motion of the Moon: Phases & Eclipses Last class, we talked about the motion of the stars and the Sun as seen from the Earth. We ll talk about the motion the planets in the next class. Today, we ll

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

Reflection Lesson Plan

Reflection Lesson Plan Lauren Beal Seventh Grade Science AMY-Northwest Middle School Three Days May 2006 (45 minute lessons) 1. GUIDING INFORMATION: Reflection Lesson Plan a. Student and Classroom Characteristics These lessons

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

SNC 2D Grade 10 Science, Academic Unit: Light and Geometric Optics

SNC 2D Grade 10 Science, Academic Unit: Light and Geometric Optics Page 1 SNC 2D Grade 10 Science, Academic Unit: Light and Geometric Optics The Big Ideas: Light has characteristics and properties that can be manipulated with mirrors and lenses for a range of uses. Society

More information

7 Light and Geometric Optics

7 Light and Geometric Optics 7 Light and Geometric Optics By the end of this chapter, you should be able to do the following: Use ray diagrams to analyse situations in which light reflects from plane and curved mirrors state the law

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Earth's Revolution and its Seasons

Earth's Revolution and its Seasons NAME PER PART 1 - Earth's Revolution: Earth's Revolution and its Seasons Examine the Figure 1 above. Answer these questions. 1. True/False: As Earth revolves around the Sun it is always tilted toward the

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

OUR SOLAR SYSTEM TEACHER NOTES LESSON 1

OUR SOLAR SYSTEM TEACHER NOTES LESSON 1 Resources needed light source football tennis ball globe selection of luminous and non-luminous objects A4 blank paper laptop and data projector or access to network room and screen seeingscience CD-ROM

More information

12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another?

12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another? 12.1 What is Refraction pg. 515 Light travels in straight lines through air. What happens to light when it travels from one material into another? Bending Light The light traveling from an object in water

More information

OPTICAL IMAGES DUE TO LENSES AND MIRRORS *

OPTICAL IMAGES DUE TO LENSES AND MIRRORS * 1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are

More information

Thin Lenses. Physics 102 Workshop #7. General Instructions

Thin Lenses. Physics 102 Workshop #7. General Instructions Thin Lenses Physics 102 Workshop #7 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

OPTICS LENSES AND TELESCOPES

OPTICS LENSES AND TELESCOPES ASTR 1030 Astronomy Lab 97 Optics - Lenses & Telescopes OPTICS LENSES AND TELESCOPES SYNOPSIS: In this lab you will explore the fundamental properties of a lens and investigate refracting and reflecting

More information

Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133

Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133 Color and Light T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and

More information

Chapter 1 Telescopes 1.1 Lenses

Chapter 1 Telescopes 1.1 Lenses Chapter 1 Telescopes 1.1 Lenses Learning objectives: What is a converging lens and what is its focal length? How does a converging lens form an image? How can we predict the position and magnification

More information

Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

HAROLD CAMPING i ii iii iv v vi vii viii ix x xi xii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

More information

VIII. Optics. Warm-Up Exercises. Conflicting Contentions. 1. Lens cover-up 2. How long is a full length mirror? 3. How to spear a fish

VIII. Optics. Warm-Up Exercises. Conflicting Contentions. 1. Lens cover-up 2. How long is a full length mirror? 3. How to spear a fish VIII. Optics Warm-Up Exercises Conflicting Contentions 1. Lens cover-up 2. How long is a full length mirror? 3. How to spear a fish Qualitative Reasoning 1. How many reflections? 2. Image in a spoon 3.

More information

PHYSICS 534 (Revised Edition 2001)

PHYSICS 534 (Revised Edition 2001) Student Study Guide PHYSICS 534 (Revised Edition 2001) Leonardo da Vinci 1452-1519 Student Study Guide Physics 534 (Revised Edition - 2000) This Study Guide was written by a committee of Physics teachers

More information

Determination of Focal Length of A Converging Lens and Mirror

Determination of Focal Length of A Converging Lens and Mirror Physics 41- Lab 5 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex)

More information

521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics. Exercise 2 & course schedule change 521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

Geometrical Optics - Grade 11

Geometrical Optics - Grade 11 OpenStax-CNX module: m32832 1 Geometrical Optics - Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative

More information

Chapter 23. The Refraction of Light: Lenses and Optical Instruments

Chapter 23. The Refraction of Light: Lenses and Optical Instruments Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging

More information

Planetary Energy Balance

Planetary Energy Balance Planetary Energy Balance Electromagnetic Spectrum Different types of radiation enter the Earth s atmosphere and they re all a part of the electromagnetic spectrum. One end of the electromagnetic (EM) spectrum

More information

Amplitude Y is the maximum value of the wave variable ( displacement in this case ).

Amplitude Y is the maximum value of the wave variable ( displacement in this case ). NATURE OF VISIBLE LIGHT: Our current knowledge is that light exhibits a dual nature or behavior. It behaves as electromagnetic ( EM for short ) waves or as a particles ( photons ). General description

More information

Moon Phases Model-Evidence Link Diagram (MEL)

Moon Phases Model-Evidence Link Diagram (MEL) A C o n t e n t S e c o n d a r y S c i e n c e N e w s l e t t e r f r o m t h e Southo u t h ern r n Nevada e v a d a R egional g i o n a l Professional r o f e s s i o n a l Development e v e l o p

More information

Chapter 8, Astronomy

Chapter 8, Astronomy Chapter 8, Astronomy Model some of the ways in which scientists observe the planets. Relate evidence that Earth rotates and define revolution. Scientists use many tools to observe and study the universe.

More information

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i.

Schneps, Leila; Colmez, Coralie. Math on Trial : How Numbers Get Used and Abused in the Courtroom. New York, NY, USA: Basic Books, 2013. p i. New York, NY, USA: Basic Books, 2013. p i. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=2 New York, NY, USA: Basic Books, 2013. p ii. http://site.ebrary.com/lib/mcgill/doc?id=10665296&ppg=3 New

More information

Introduction (Read Before Lab up to Experimental Procedure) Snell s Law

Introduction (Read Before Lab up to Experimental Procedure) Snell s Law GEOMETRIC OPTICS Introduction (Read Before Lab up to Experimental Procedure) In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric

More information

Physical; Ch. 12 Test; Earth, Moon, & Sun

Physical; Ch. 12 Test; Earth, Moon, & Sun Physical; Ch. 12 Test; Earth, Moon, & Sun Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When are tides highest? a. during the moon s first quarter phase

More information