EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD

Size: px
Start display at page:

Download "EXPERIMENT 16 THE MAGNETIC MOMENT OF A BAR MAGNET AND THE HORIZONTAL COMPONENT OF THE EARTH S MAGNETIC FIELD"

Transcription

1 THEORY EXPERMENT 16 THE MAGNETC MOMENT OF A BAR MAGNET AND THE HORZONTAL COMPONENT OF THE EARTH S MAGNETC FELD The uose of this exeiment is to measue the magnetic moment μ of a ba magnet and the hoizontal comonent B E of the eath's magnetic field. Since thee ae two unknown quantities, μ and B E, we need two indeendent equations containing the two unknowns. We will cay out two seaate ocedues: The fist ocedue will yield the atio of the two unknowns; the second will yield the oduct. We will then solve the two equations simultaneously. The ole stength of a ba magnet may be detemined by measuing the foce F exeted on one ole of the magnet by an extenal magnetic field B 0. The ole stength is then defined by = F/B 0 Note the similaity between this equation and q = F/E fo electic chages. n Exeiment we leaned that the magnitude of the magnetic field, B, due to a single magnetic ole vaies as the invese squae of the distance fom the ole. B = 2 in which k' is defined to be 10-7 N/A 2. Conside a ba magnet with oles a distance 2x aat. Conside also a oint P, located a distance fom the cente of the magnet, along a staight line which asses fom the cente of the magnet though the Noth ole. Assume that is much lage than x. The esultant magnetic field at P due to the magnet is the vecto sum of a field B N diected away fom the Noth ole, and a field B S diected towad the South ole. The distances fom P to the Noth and South oles ae - x and + x, esectively. The magnitude of the esultant field at P is B m = B N B S = ( x) 2 ( + x) 2 Putting the two tems ove a common denominato, we obtain = 4x 2 2 ( x ) 2

2 Since, x is small comaed to, we can neglect the x 2 in the denominato. 4x 4x = = 4 This can be witten in tems of the magnetic moment of the ba magnet, μ defined by the fomula μ 2x. 2 μ =. Note the similaity between the definition of the magnetic moment and the equation fo the field stength to the definition of the electic diole moment ( qd) and the equation fo the field stength of an electic diole a distance along the axis of the diole 2k ( E = ). n these equations, d is the seaation of the chages and k is Coulomb s constant. Ou fist exeimental ocedue will yield the atio of μ to B E. We will do this indiectly by comaing to B E, using a magnetomete. The magnetomete, which was also used in Exeiment, consists of a small magnetized disk attached to a long non-magnetic ointe, ivoted on a vetical axis. The ointe is mounted at ight angles to the diection of magnetization of the disk. With the ba magnet fa fom the magnetomete, the only significant magnetic field acting on the magnetized disk will be the hoizontal comonent B E of the eath's field. (The vetical comonent of the eath's field has no effect on the disk, because the disk cannot otate about a hoizontal axis.) n this case the Noth ole of the magnetized disk will oint towad magnetic noth, and the non-magnetic ointe will oint in the magnetic east-west diection. When the housing is oely oiented, the ointe will ead zeo, and a mete stick, attached to the housing, will be oiented in the magnetic east-west diection. f the ba magnet is laced on the mete stick with its Noth ole towad the magnetic east, a field, diected towad the magnetic east, will also act on the magnetized disk. The esultant field at the cente of the magnetomete is the vecto sum of BBe towad the magnetic noth and B mb towad the magnetic east. Let θ be the angle between BBe and the esultant field B. The disk and ointe must now otate clockwise though the angle θ until the Noth ole of the disk oints in the diection of the esultant field. Since the ointe oiginally ead zeo, it will now ead θ. A simle diagam shows that BBm = B E tan θ We now have an equation that will give us the atio of μ to B E.

3 B E 2μ = cot θ Fo this exeiment, we will measue the angle θ fo seveal diffeent values of. The atio of μ to B E can be calculated fom the sloe of a gah of cot θ vesus. The oduct of μ and B E may be found by susending the ba magnet fom a nealy tosion-fee sting, giving it a small angula dislacement fom equilibium, and allowing it to oscillate in simle hamonic motion. The eath's hoizontal field B E ovides the estoing toque. The toque exeted by a unifom magnetic field BBE on a ba magnet of magnetic moment μ is given by τ = μ BBE o τ = μb EB sinφ in which φ is the angle between μ and B E, which is the same as the angle between the instantaneous osition of the ba magnet and its equilibium osition. (The vetical comonent of the eath's magnetic field has no effect in this at of the exeiment eithe, because the ba magnet is not fee to otate about a hoizontal axis.) f the angle φ is small, then sin φ can be aoximated as φ and the estoing toque will be ootional to φ. f the magnet has a moment of inetia,, the angula acceleation is elated to this toque by μb α = μb Eφ o α = E φ. This equation descibes simle hamonic motion with angula fequency 2π eiod T = = 2π. ω μ B E μb ω = E and. LABORATORY PROCEDURE CAUTON: f you have a mechanical watch, kee it at some distance fom the ba magnet at all times. Use cae not to do the magnet. Jolts tend to demagnetize any magnet, educing its magnetic moment, which is one of the unknown quantities we ae measuing. 1. Place the magnetomete on to of an inveted wooden box to emove it fom feous metal in the laboatoy table. Do not tilt the magnetomete excessively, o the glass late (on some models) may fall out and beak. Place the level on to of the glass late of the magnetomete and level the instument. Remove the level some distance fom the magnetomete.

4 Remove the ba magnet some distance fom the magnetomete. Also emove any feous metals, such as the level and cetain mechanical encils. Tun the knob o wheel to aise the ivot until the ointe moves feely; howeve, do not aise the ivot so high that the ointe is ushed against the glass late. Rotate the housing so that both ends of the ointe ead zeo. f the ointe is somewhat bent, both ends should be off fom zeo by equal amounts.. f the magnetomete lacks a built-in mete stick, inset a thin mete stick into the backets, and cente it. 4. Place the ba magnet on the mete stick so that its cente is 20.0 cm fom the cente of the magnetomete. This is accomlished most easily by lacing the two ends of the magnet equally distant fom the 20.0 cm mak. The magnet must be aallel to the mete stick. Read and ecod both ends of the ointe, estimating to the neaest tenth of a degee. Teat all angles as ositive. Recod the data of stes 4-6 in tabula fom. 5. Reeat ste 4 fo distances of 22, 24, 26, 28 and 0 cm. 6. Reeat stes 4 and 5 with the ba magnet evesed in diection. 7. Remove the magnetomete a consideable distance fom the box. Set u a table clam, a vetical od, a ight angle clam, and a hoizontal od, with the hoizontal od above the box. Obtain two stings, one long and one shot, with loos at each end. Pass one loo of the long sting ove the hoizontal od. Pass the shot sting though the othe loo of the long sting. Pass the ba magnet though both loos of the shot sting. Adjust the ods and clams so that the ba magnet is susended in a hoizontal lane at the same osition as was eviously occuied by the cente of the magnetomete. (The same location is used because the Eath s magnetic field is not unifom thoughout the laboatoy oom.) 8. Twist the ba magnet 10 o 20 fom its equilibium osition, and elease it. t should oscillate in angula simle hamonic motion, twisting the sting (not simle endulum motion). Use a clock o watch to time 20 cycles. (Duing one cycle the magnet moves fom one side to the othe and back again.) t is sufficient to estimate time to the neaest second. Reeat and aveage. f the two times diffe by moe than 2%, eeat the timings. 9. Use one of the stings to susend the ba magnet above the an of the balance. Measue the mass to at least thee significant figues. Do not magnetize the an by lacing the magnet diectly on it. Do not discad the stings. 10. Use a venie calie to measue the length of the magnet. 11. f a mete stick was attached to the magnetomete in ste, emove it.

5 CALCULATONS 1. Calculate the moment of inetia of the magnet. 2. List the following quantities in tabula fom: (in metes),, θ, and cot θ. θ must be the aveage of the fou values measued at each distance.. Plot a gah of cot θ vesus. nclude the oigin on the gah. Use a staightedge to daw the staight line that best fits the lotted oints, and also asses though the oigin. Does cot θ aea to be diectly ootional to? 4. Use the Modified Least Squaes fomula to calculate the sloe of the gah. The fomula can be found in the ntoduction of this Lab Manual. 5. Fom the sloe, calculate the atio of the magnetic moment of the ba magnet to the hoizontal comonent of the Eath s magnetic field. 6. Calculate the aveage exeimental eiod of the ba magnet when oscillating in simle hamonic motion. Remembe, the eiod is the time fo one cycle. Calculate the oduct of the magnetic moment of the ba magnet and the hoizontal comonent of the Eath s magnetic field. 7. Calculate the magnetic moment of the ba magnet. 8. Calculate the hoizontal comonent of the eath's magnetic field at the location of the aaatus. Convet the esult to μt.

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section

Pre-lab Quiz/PHYS 224 Earth s Magnetic Field. Your name Lab section Pe-lab Quiz/PHYS 224 Eath s Magnetic Field You name Lab section. What do you investigate in this lab? 2. Fo a pai of Helmholtz coils descibed in this manual and shown in Figue 2, =.5 m, N = 3, I =.4 A,

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Chapter 16 Gyroscopes and Angular Momentum

Chapter 16 Gyroscopes and Angular Momentum Chapte 16 Gyoscopes and Angula Momentum 16.1 Gyoscopes o fa, most of the examples and applications we have consideed concened the otation of igid bodies about a fixed axis, o a moving axis the diection

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

10 Torque. Lab. What You Need To Know: Physics 211 Lab

10 Torque. Lab. What You Need To Know: Physics 211 Lab b Lab 10 Toque What You Need To Know: F (a) F F Angula Systems Evey lab up to this point has dealt with objects moving in the linea system. In othe wods, objects moving in a staight line. Now we ae going

More information

Lab 5: Circular Motion

Lab 5: Circular Motion Lab 5: Cicula motion Physics 193 Fall 2006 Lab 5: Cicula Motion I. Intoduction The lab today involves the analysis of objects that ae moving in a cicle. Newton s second law as applied to cicula motion

More information

Electric & Potential Fields

Electric & Potential Fields Electic & Potential Fields Pupose An electic field suounds any assemblage of chaged objects. To detemine the stength and diection of these fields, it is most convenient to fist map the electic potential

More information

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1)

So we ll start with Angular Measure. Consider a particle moving in a circular path. (p. 220, Figure 7.1) Lectue 17 Cicula Motion (Chapte 7) Angula Measue Angula Speed and Velocity Angula Acceleation We ve aleady dealt with cicula motion somewhat. Recall we leaned about centipetal acceleation: when you swing

More information

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E

Samples of conceptual and analytical/numerical questions from chap 21, C&J, 7E CHAPTER 1 Magnetism CONCEPTUAL QUESTIONS Cutnell & Johnson 7E 3. ssm A chaged paticle, passing though a cetain egion of space, has a velocity whose magnitude and diection emain constant, (a) If it is known

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Review Topics Lawrence B. Rees You may make a single copy of this document for personal use without written permission.

Review Topics Lawrence B. Rees You may make a single copy of this document for personal use without written permission. Review Topics Lawence. Rees 2006. You ma make a single cop of this document fo pesonal use without witten pemission. R.1 Vectos I assume that ou have alead studied vectos in pevious phsics couses. If ou

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

A current generates magnetic field I

A current generates magnetic field I > Magnetic field geneated by A long, staight cuent =μ o /2π A cuent loop =μ o /2 A cuent geneates magnetic field < N > S A long staight vetical segment of wie taveses a magnetic field of magnitude 2.0

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Course Updates. 2) This week: Finish Chap 27 (magnetic fields and forces)

Course Updates.  2) This week: Finish Chap 27 (magnetic fields and forces) Couse Updates http://www.phys.hawaii.edu/~vane/phys272-sp10/physics272.html Notes fo today: 1) Assignment #7 due Monday 2) This week: Finish Chap 27 (magnetic fields and foces) 3) Next week Chap 28 (Souces

More information

Chapter 24. The Electric Field

Chapter 24. The Electric Field Chapte 4. The lectic Field Physics, 6 th dition Chapte 4. The lectic Field The lectic Field Intensity 4-1. A chage of + C placed at a point P in an electic field epeiences a downwad foce of 8 1-4 N. What

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

Centripetal Force. F c

Centripetal Force. F c 18/P01 Laboatoy Objectives Centipetal Foce In this lab you will Equipment test Newton s nd Law as it applies to unifom cicula motion. detemine the eo in measuing peiod, adius, and mass and use these values

More information

8.4 Torque. Torque. Rotational Dynamics. Problem-Solving

8.4 Torque. Torque. Rotational Dynamics. Problem-Solving 8.4 oque oque otational Dynamics Poblem-Solving We began this couse with chaptes on kinematics, the desciption of motion without asking about its causes. We then found that foces cause motion, and used

More information

Faraday's Law ds B B r r Φ B B S d dφ ε B = dt

Faraday's Law ds B B r r Φ B B S d dφ ε B = dt ds Faaday's Law Φ ε ds dφ = Faaday s Law of Induction Recall the definition of magnetic flux is Φ = da Faaday s Law is the induced EMF in a closed loop equal the negative of the time deivative of magnetic

More information

Chapter 10. Dynamics of Rotational Motion

Chapter 10. Dynamics of Rotational Motion 10.1 Toque Chapte 10 Dynamics of Rotational Motion The wod toque comes fom the Latin wod that means twist. The toque! of a foce F about a point P in space is equal to the coss poduct (also called vecto

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 11 Rotational kinematics and unifom cicula motion Angula displacement Angula speed and acceleation http://www.physics.wayne.edu/~apetov/phy130/ Lightning Review Last lectue:

More information

AP Physics C: Mechanics 1999 Free-Response Questions

AP Physics C: Mechanics 1999 Free-Response Questions AP Physics C: Mechanics 1999 Fee-Response Questions The mateials included in these files ae intended fo non-commecial use by AP teaches fo couse and exam pepaation pemission fo any othe use must be sought

More information

Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits.

Problem Set 5: Universal Law of Gravitation; Circular Planetary Orbits. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.01T Fall Tem 2004 Poblem Set 5: Univesal Law of Gavitation; Cicula Planetay Obits. Available on-line Octobe 1; Due: Octobe 12 at 4:00

More information

AP Physics Test Magnetic Fields; Sources of Magnetic Field

AP Physics Test Magnetic Fields; Sources of Magnetic Field AP Physics Test Magnetic Fields; Souces of Magnetic Field Pat I. Multiple hoice (4 points each) hoose the one best answe to each of the following poblems. axis 2 A = 0.05 T 0.3 m 0.3 m 1 (AP). A squae

More information

Chapter 5. Dynamics of Uniform Circular Motion

Chapter 5. Dynamics of Uniform Circular Motion Chapte 5 Dynamics of Unifom Cicula Motion 5.1 Unifom Cicula Motion DEFINITION OF UNIFORM CIRCULAR MOTION Unifom cicula motion is the motion of an object taveling at a constant speed on a cicula path. 5.1

More information

3 The Electric Field Due to one or more Point Charges

3 The Electric Field Due to one or more Point Charges Chapte 3 The lectic Field Due to one o moe Point Chages 3 The lectic Field Due to one o moe Point Chages A chaged paticle (a.k.a. a point chage, a.k.a. a souce chage) causes an electic field to exist in

More information

CHAPTER 5 DYNAMIC OF UNIFORM CIRCULAR MOTION

CHAPTER 5 DYNAMIC OF UNIFORM CIRCULAR MOTION CHAPER 5 DYAMIC OF UIFORM CIRCULAR MOIO 5.1 UIFORM CIRCULAR MOIO: Unifom cicula motion is the motion of an object taeling at a constant o unifom speed on a cicula path. If the peiod is the time equied

More information

Review Module: Cross Product

Review Module: Cross Product MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of hysics 801 Fall 2009 Review Module: Coss oduct We shall now intoduce ou second vecto opeation, called the coss poduct that takes any two vectos and geneates

More information

Magnetic Forces. Physics 231 Lecture 7-1

Magnetic Forces. Physics 231 Lecture 7-1 Magnetic Foces Physics 231 Lectue 7-1 Magnetic Foces Chaged paticles expeience an electic foce when in an electic field egadless of whethe they ae moving o not moving Thee is anothe foce that chaged paticles

More information

Gauss s Law. Gauss s law and electric flux. Chapter 24. Electric flux. Electric flux. Electric flux. Electric flux

Gauss s Law. Gauss s law and electric flux. Chapter 24. Electric flux. Electric flux. Electric flux. Electric flux Gauss s law and electic flux Gauss s Law Chapte 4 Gauss s law is based on the concept of flux: You can think of the flux though some suface as a measue of the numbe of field lines which pass though that

More information

UNIT 6 INTRODUCTION TO BALANCING

UNIT 6 INTRODUCTION TO BALANCING UNIT 6 INTRODUCTION TO BLNCING Intoduction to Balancing Stuctue 6.1 Intoduction Objectives 6. Foce on Shaft and Beaing due to Single Revolving ass 6.3 Balancing of a Single Revolving ass 6.4 Pocedue fo

More information

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions

Physics 111 Fall 2007 Electrostatic Forces and the Electric Field - Solutions Physics 111 Fall 007 Electostatic Foces an the Electic Fiel - Solutions 1. Two point chages, 5 µc an -8 µc ae 1. m apat. Whee shoul a thi chage, equal to 5 µc, be place to make the electic fiel at the

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Chapter 23. The Electric Force

Chapter 23. The Electric Force Chapte 3. The Electic oce Chapte 3. The Electic oce Coulomb's Law 3-1. Two balls each having a chage of 3 C ae sepaated by mm. What is the foce of epulsion between them? (9 x 1 N m /C )(3 x 1 C)(3 x 1

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Revision Guide for Chapter 11

Revision Guide for Chapter 11 Revision Guide fo Chapte 11 Contents Student s Checklist Revision Notes Momentum... 4 Newton's laws of motion... 4 Gavitational field... 5 Gavitational potential... 6 Motion in a cicle... 7 Summay Diagams

More information

! definition of moment and moment arm. ! conventions for defining moment direction. ! addition of moments, moments due to force

! definition of moment and moment arm. ! conventions for defining moment direction. ! addition of moments, moments due to force oment and Toque Ozkaya and Nodin, Ch. 3 (p. 31-46) Outline! definition of moment and moment am! conventions fo defining moment diection! addition of moments, moments due to foce components! moments due

More information

Objects can have translational energy Objects can have rotational energy Objects can have both K = ½ m v 2 + ½ I ω 2

Objects can have translational energy Objects can have rotational energy Objects can have both K = ½ m v 2 + ½ I ω 2 Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Use Wok Enegy elationships Intoduce toque Equilibium of objects in esponse to foces & toques Assignment: HW7 due

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

EP 106 General Physics II

EP 106 General Physics II EP 06 Geneal Physics II Chapte : Electic Chage and Coulomb Law Electic chage Electic chage is a fundamental quantity. The unit of electic chage is called the coulomb (C), name afte Chales Coulomb, a ench

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Conservation of Momentum

Conservation of Momentum Physics 7 Consevation of Momentum Intoduction Collisions occu all aound us and on many size scales. We obseve them in ou eveyday wold as ca accidents, battes hitting a baseball out of the ballpak, aindops

More information

Basics of Cutting Tool Geometry

Basics of Cutting Tool Geometry D. Vikto P. Astakhov, Tool Geomet: Basics Basics of Cutting Tool Geomet Vikto P. Astakhov Fo man eas thee wee diffeent sstems used to define a geat vaiet of angles of faces and edges of cutting tools.

More information

CHAPTER GRAVITATION

CHAPTER GRAVITATION Solutions--Ch. 1 (Gavitation) CHAPTER 1 -- GRAVITATION 1.1) Accoding to Newton, the magnitude of the gavitational foce between any two bodies will always be equal to Gm 1 m /. a.) The gavitation foce you

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation Newton, who extended the concept of inetia to all bodies, ealized that the moon is acceleating and is theefoe subject to a centipetal foce. He guessed that the foce that keeps the

More information

Lesson 33: Horizontal & Vertical Circular Problems

Lesson 33: Horizontal & Vertical Circular Problems Lesson 33: Hoizontal & Vetical Cicula Poblems Thee ae a wide vaiety of questions that you do if you apply you knowledge of cicula motion coectly. The tough pat is figuing out how to set them up. You need

More information

TRIGONOMETRY REVIEW. The Cosines and Sines of the Standard Angles

TRIGONOMETRY REVIEW. The Cosines and Sines of the Standard Angles TRIGONOMETRY REVIEW The Cosines and Sines of the Standad Angles P θ = ( cos θ, sin θ ) . ANGLES AND THEIR MEASURE In ode to define the tigonometic functions so that they can be used not only fo tiangula

More information

Vectors in three dimensions

Vectors in three dimensions Vectos in thee dimensions The concept of a vecto in thee dimensions is not mateially diffeent fom that of a vecto in two dimensions. It is still a quantity with magnitude and diection, except now thee

More information

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M

Problems on Force Exerted by a Magnetic Fields from Ch 26 T&M Poblems on oce Exeted by a Magnetic ields fom Ch 6 TM Poblem 6.7 A cuent-caying wie is bent into a semicicula loop of adius that lies in the xy plane. Thee is a unifom magnetic field B Bk pependicula to

More information

Version 001 Review 4 Electric Force, Magnetic fields tubman (19112) 1

Version 001 Review 4 Electric Force, Magnetic fields tubman (19112) 1 Vesion 001 Review 4 Electic Foce, Magnetic fields tubman (19112) 1 This pint-out should have 42 questions. Multiple-choice questions may continue on the next column o page find all choices befoe answeing.

More information

TANGENTS IN POLAR COORDINATES

TANGENTS IN POLAR COORDINATES TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS. Pola-coodinate equations fo lines A pola coodinate system in the plane is detemined by a Pole P and a half-line called the pola

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page 1 1 ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( 1 / ) M and a body C of mass ( / ) M. The cente of mass of bodies

More information

Gauss's Law. EAcos (for E = constant, surface flat ) 1 of 11

Gauss's Law. EAcos (for E = constant, surface flat ) 1 of 11 1 of 11 Gauss's Law Gauss's Law is one of the 4 funmental laws of electicity and magnetism called Maxwell's quations. Gauss's law elates chages and electic fields in a subtle and poweful way, but befoe

More information

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90

2.2. Trigonometric Ratios of Any Angle. Investigate Trigonometric Ratios for Angles Greater Than 90 . Tigonometic Ratios of An Angle Focus on... detemining the distance fom the oigin to a point (, ) on the teminal am of an angle detemining the value of sin, cos, o tan given an point (, ) on the teminal

More information

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur

Module 8. Three-phase Induction Motor. Version 2 EE IIT, Kharagpur Module 8 Thee-phase Induction Moto Lesson 30 Constuction and Pinciple of Opeation of IM In the pevious, i.e. fist, lesson of this module, the fomation of otating magnetic field in the ai gap of an induction

More information

Right Hand Rule. Magnetic field is defined in terms of the force on a moving charge. B=F/qvsinΘ for a moving charge or F=qvxB.

Right Hand Rule. Magnetic field is defined in terms of the force on a moving charge. B=F/qvsinΘ for a moving charge or F=qvxB. Magnetic field is defined in tems of the foce on a moving chage =/qvsinθ fo a moving chage o =qvx =/lsinθ o =lx fo a cuent Right Hand Rule Hold you ight hand open Place you finges in the diection of Place

More information

Part 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature.

Part 1. Electric Charges, Forces and Fields. Forces of nature or A short journey back to Physics 111. Chapter 17. Forces of Nature. Foces of Natue Electic Chages, Foces and Fields Chapte 17 Electic Chage Coulomb s Law Electic Field Electic Field Lines Flux of an Electic Field Physics 111: Analysis of motion - 3 key ideas Pat 1 Foces

More information

E g n i g n i e n e e r e in i g n g M e M c e h c a h n a i n c i s c : s D yn y a n m a i m c i s 15-1

E g n i g n i e n e e r e in i g n g M e M c e h c a h n a i n c i s c : s D yn y a n m a i m c i s 15-1 Engineeing Mechanics: Dynamics Intoduction Kinematics of igid bodies: elations between time and the positions, velocities, and acceleations of the paticles foming a igid body. Classification of igid body

More information

2008 Quarter-Final Exam Solutions

2008 Quarter-Final Exam Solutions 2008 Quate-final Exam - Solutions 1 2008 Quate-Final Exam Solutions 1 A chaged paticle with chage q and mass m stats with an initial kinetic enegy K at the middle of a unifomly chaged spheical egion of

More information

Laws of Motion; Circular Motion

Laws of Motion; Circular Motion Pactice Test: This test coves Newton s Laws of Motion, foces, coefficients of fiction, fee-body diagams, and centipetal foce. Pat I. Multiple Choice 3m 2m m Engine C B A 1. A locomotive engine of unknown

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Solutions to Homework Set #5 Phys2414 Fall 2005

Solutions to Homework Set #5 Phys2414 Fall 2005 Solution Set #5 1 Solutions to Homewok Set #5 Phys414 Fall 005 Note: The numbes in the boxes coespond to those that ae geneated by WebAssign. The numbes on you individual assignment will vay. Any calculated

More information

Physics 212 Final Sample Exam Form A

Physics 212 Final Sample Exam Form A 1. A point chage q is located at position A, a distance away fom a point chage Q. The chage q is moved to position B, which is also located a distance away fom the chaged paticle Q. Which of the following

More information

Static and Dynamic Balancing of a Piano Key

Static and Dynamic Balancing of a Piano Key Static and Dynamic Balancing of a Piano Key Stephen Bikett 1 Copyight c 2003. All ights eseved. Two Simple Cases The basic pinciples of static and dynamic balancing can be illustated 2 by epesenting the

More information

Physics 2102 Lecture 15. Physics 2102

Physics 2102 Lecture 15. Physics 2102 Physics 212 Jonathan Dowling Physics 212 Lectue 15 iot-savat Law Jean-aptiste iot (1774-1862) Felix Savat (1791 1841) What Ae We Going to Lean? A Road Map Electic chage Electic foce on othe electic chages

More information

Fri Angular Momentum Quiz 10 RE 11.a; HW10: 13*, 21, 30, 35, 39 Mon , (.12) Rotational + Translational RE 11.b Tues.

Fri Angular Momentum Quiz 10 RE 11.a; HW10: 13*, 21, 30, 35, 39 Mon , (.12) Rotational + Translational RE 11.b Tues. Fi. 11.1 Angula Momentum Quiz 10 RE 11.a; HW10: 13*, 21, 30, 35, 39 Mon. 11.2-.3, (.12) Rotational + Tanslational RE 11.b Tues. EP10 Mon. 11.4-.6, (.13) Angula Momentum & Toque Tues. Wed. 11.7 -.9, (.11)

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

University Physics AI No. 8 Spin and Orbital Motion

University Physics AI No. 8 Spin and Orbital Motion Uniesity Physics A No. 8 Sin and Obital Motion Class Nube Nae. Choose the Coect Answe. A aticle oes with osition gien by 3 tiˆ + 4 ˆj, whee is easued in etes when t is easued in seconds. Fo each of the

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

LINES AND TANGENTS IN POLAR COORDINATES

LINES AND TANGENTS IN POLAR COORDINATES LINES AND TANGENTS IN POLAR COORDINATES ROGER ALEXANDER DEPARTMENT OF MATHEMATICS 1. Pola-coodinate equations fo lines A pola coodinate system in the plane is detemined by a point P, called the pole, and

More information

General Physics (PHY 2130)

General Physics (PHY 2130) Geneal Physics (PHY 130) Lectue 1 Rotational kinematics Angula speed and acceleation Unifom and non-unifom cicula motion Obits and Keple s laws http://www.physics.wayne.edu/~apeto/phy130/ Lightning Reiew

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Notes on Electric Fields of Continuous Charge Distributions

Notes on Electric Fields of Continuous Charge Distributions Notes on Electic Fields of Continuous Chage Distibutions Fo discete point-like electic chages, the net electic field is a vecto sum of the fields due to individual chages. Fo a continuous chage distibution

More information

Brown University PHYS 0060 ELECTRIC POTENTIAL

Brown University PHYS 0060 ELECTRIC POTENTIAL INTRODUCTION ELECTRIC POTENTIL You have no doubt noticed that TV sets, light bulbs, and othe electic appliances opeate on 115 V, but electic ovens and clothes dyes usually need 220 V. atteies may be ated

More information

Second Order Equations

Second Order Equations Chapte 2 Second Ode Equations 2 Second Deivatives in Science and Engineeing Second ode equations involve the second deivative d 2 y=dt 2 Often this is shotened to y, and then the fist deivative is y In

More information

Conservation of Momentum II

Conservation of Momentum II Pupose: To veify the pinciples of Consevation of Momentum and Consevation of Enegy in Elastic and Inelastic Collisions, and to exploe Collisions in the Cente of Mass fame. Equipment: Cuved Tack Metal Ball

More information

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 26 - Electric Field. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapte 6 lectic Field A PowePoint Pesentation by Paul. Tippens, Pofesso of Physics Southen Polytechnic State Univesity 7 Objectives: Afte finishing this unit you should be able to: Define the electic field

More information

Lecture contents Magnetic field Ampere s law Lorentz force, cyclotron frequency, Hall effect Dipole moment, circulation electron, spin

Lecture contents Magnetic field Ampere s law Lorentz force, cyclotron frequency, Hall effect Dipole moment, circulation electron, spin 1 Lectue contents Magnetic field Ampee s law Loentz foce, cycloton fequency, Hall effect Dipole moment, ciculation electon, spin Magnetostatics: Ampee s Law of Foce Ampee s law of foce is the law of action

More information

Version 001 Circular Motion tubman ( ) 1

Version 001 Circular Motion tubman ( ) 1 Vesion 001 Cicula Motion tubman (1818185) 1 This pint-out should have 13 questions. Multiple-choice questions may continue on the next column o page find all choices befoe answeing. Bael of Fun 01 001

More information

Physics 107 HOMEWORK ASSIGNMENT #14

Physics 107 HOMEWORK ASSIGNMENT #14 Physics 107 HOMEWORK ASSIGNMENT #14 Cutnell & Johnson, 7 th edition Chapte 17: Poblem 44, 60 Chapte 18: Poblems 14, 18, 8 **44 A tube, open at only one end, is cut into two shote (nonequal) lengths. The

More information

Magnetism: a new force!

Magnetism: a new force! -1 Magnetism: a new foce! o fa, we'e leaned about two foces: gaity and the electic field foce. F E = E, FE = E Definition of E-field kq E-fields ae ceated by chages: E = 2 E-field exets a foce on othe

More information

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number.

Exam I. Spring 2004 Serway & Jewett, Chapters 1-5. Fill in the bubble for the correct answer on the answer sheet. next to the number. Agin/Meye PART I: QUALITATIVE Exam I Sping 2004 Seway & Jewett, Chaptes 1-5 Assigned Seat Numbe Fill in the bubble fo the coect answe on the answe sheet. next to the numbe. NO PARTIAL CREDIT: SUBMIT ONE

More information

Angles in Standard Positions Lesson Plan

Angles in Standard Positions Lesson Plan Angles in Standad Positions Lesson Plan B: Douglas A. Rub Date: 10/10/00 Class: Pe-Calculus II Gades: 11/1 INSTRUCTIONAL OBJECTIVES: At the end of this lesson, the student will be able to: 1. Coectl identif

More information

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth

Ch. 8 Universal Gravitation. Part 1: Kepler s Laws. Johannes Kepler. Tycho Brahe. Brahe. Objectives: Section 8.1 Motion in the Heavens and on Earth Ch. 8 Univesal Gavitation Pat 1: Keple s Laws Objectives: Section 8.1 Motion in the Heavens and on Eath Objectives Relate Keple s laws of planetay motion to Newton s law of univesal gavitation. Calculate

More information

VECTOR MECHANICS FOR ENGINEERS: Statics of Particles. J. Walt Oler The McGraw-Hill Companies, Inc. All rights reserved.

VECTOR MECHANICS FOR ENGINEERS: Statics of Particles. J. Walt Oler The McGraw-Hill Companies, Inc. All rights reserved. VECTOR MECHANICS FOR ENGINEERS: STATICS Statics of Paticles J. Walt Ole Teas Tech Univesit 2007 The McGaw-Hill Companies, Inc. All ights eseved. Vecto Mechanics fo Enginees: Statics Contents Intoduction

More information

fixed point ( The fixed point is also called as origin) and P is any point then OP is the position vector of the point P with respect the point O.

fixed point ( The fixed point is also called as origin) and P is any point then OP is the position vector of the point P with respect the point O. Page 1 of 9 VECTORS 1 Scala Quantity: A scala quantity is that which has only magnitude Example: Volume, Aea, Tempeatue, wok done, time, density etc ae scala quantities as these quantities have no sense

More information

Assessment Schedule 2014 Physics: Demonstrate understanding of mechanical systems (91524)

Assessment Schedule 2014 Physics: Demonstrate understanding of mechanical systems (91524) NCEA Level 3 Physics (91524) 2014 page 1 of 9 Assessment Schedule 2014 Physics: Demonstate undestanding of mechanical systems (91524) Assessment Citeia Achievement Achievement with Meit Achievement with

More information

XIIth PHYSICS (C2, G2, C, G) Solution

XIIth PHYSICS (C2, G2, C, G) Solution XIIth PHYSICS (C, G, C, G) -6- Solution. A 5 W, 0 V bulb and a 00 W, 0 V bulb ae connected in paallel acoss a 0 V line nly 00 watt bulb will fuse nly 5 watt bulb will fuse Both bulbs will fuse None of

More information

Magnetic Fields. Ch.28: The magnetic field: Lorentz Force Law Ch.29: Electromagnetism: Ampere s Law HOMEWORK

Magnetic Fields. Ch.28: The magnetic field: Lorentz Force Law Ch.29: Electromagnetism: Ampere s Law HOMEWORK Magnetic Fields Ch.28: The magnetic field: Loentz Foce Law Ch.29: Electomagnetism: Ampee s Law HOMEWORK Read Chaptes 28 and 29 Do Chapte 28 Questions 1, 7 Do Chapte 28 Poblems 3, 15, 33, 47 Today The Magnetic

More information

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013

PHYSICS 111 HOMEWORK SOLUTION #5. March 3, 2013 PHYSICS 111 HOMEWORK SOLUTION #5 Mach 3, 2013 0.1 You 3.80-kg physics book is placed next to you on the hoizontal seat of you ca. The coefficient of static fiction between the book and the seat is 0.650,

More information

PY1052 Problem Set 3 Autumn 2004 Solutions

PY1052 Problem Set 3 Autumn 2004 Solutions PY1052 Poblem Set 3 Autumn 2004 Solutions C F = 8 N F = 25 N 1 2 A A (1) A foce F 1 = 8 N is exeted hoizontally on block A, which has a mass of 4.5 kg. The coefficient of static fiction between A and the

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Lecture 4. Home Exercise: Welcome to Wisconsin

Lecture 4. Home Exercise: Welcome to Wisconsin Lectue 4 ltoday: h. 3 (all) & h. 4 (stat) v Pefom vecto algeba (addition and subtaction) v Inteconvet between atesian and Pola coodinates v Wok with D motion Deconstuct motion into x & y o paallel & pependicula

More information

20.3 Magnetic Field Mass Analyzers

20.3 Magnetic Field Mass Analyzers 20.3 Magnetic Field Mass Analyzes magnetic secto dispesion and mass analysis secto design to accommodate angula distibutions of ions fom the souce electic secto dispesion is based on kinetic enegy double

More information

Universal Gravitation

Universal Gravitation J - The Foce of Gavity Chapte J Univesal Gavitation Blinn College - Physics 45 - Tey Honan Intoduction If Isaac Newton had meely witten down his thee laws of motion he would pobably still be known as the

More information