An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)

Save this PDF as:

Size: px
Start display at page:

Download "An-Najah National University Faculty of Engineering Industrial Engineering Department. Course : Quantitative Methods (65211)"

Transcription

1 An-Najah National University Faculty of Engineering Industrial Engineering Department Course : Quantitative Methods (65211) Instructor: Eng. Tamer Haddad 2 nd Semester 2009/2010

2 Chapter 5 Example: Joint Probability Distributions It is often useful to have more than one random variable defined in a random experiment. The continuous random variable X can denote the length of one dimension of an injection-molded part, and the continuous random variable Y might denote the length of another dimension. We might be interested in probabilities that can be expressed in terms of both X and Y. In general, if X and Y are two random variables, the probability distribution that defines their simultaneous behavior is called a joint probability distribution.

3 5-1 TWO DISCRETE RANDOM VARIABLES: Joint Probability Distributions Example: Calls are made to check the airline schedule at your departure city. In the first four bits transmitted: X: # of bars of signal strength on your cell phone Y: # of times you need to state your departure city. We define the range of the random variables (X,Y) to be the sets of points (x,y) in two dimensional space for which the probability that X=x and Y=y is positive.

4 y = # of times city name is stated x = # of bars of signal strength Two random variables joint distribution bivariate probability distribution The distribution can be described through a joint probability mass function. Also, P(X = x and Y = y) is usually written as P(X = x, Y = y).

5 Joint Probability Mass Function: Marginal Probability Distributions The individual probability distribution of a random variable is referred to as its marginal probability distribution. In general, the marginal probability distribution of X can be determined from the joint probability distribution of X and other random variables. For P(X = x), we sum P(X = x, Y = y) over all points in the range of (X,Y) for which X = x.

6 Example: y = # of times city name is stated x = # of bars of signal strength Marginal probability distribution of Y Marginal probability distribution of X

7 Marginal Probability Mass Function: E(X) = 1(0.2) + 2(0.25) + 3(0.55) = 2.35 Same for E(Y), V(X) and V(Y).

8 5-1.3 Conditional Probability Distributions When two random variables are defined in a random experiment, knowledge of one can change the probabilities that we associate with the values of the other. We can write such conditional probabilities as P(Y = 1 X = 3) and P(Y=1 X=1). X and Y are expected to be dependent. Example: For the same example, P(Y=1 X=3) P(X=3,Y=1)/P(X=3) = f xy (3,1)/f x (3) = 0.25/0.55 = The set of probabilities defines the conditional probability distribution of Y given that X=3

9 Conditional Probability Mass Function:

10 Example: For the same example, Conditional probability distributions of Y given X = x, y = # of times city name is stated x = # of bars of signal strength

11 Properties of random variables can be extended to a conditional probability distribution of Y given X = x. The usual formulas for mean and variance can be applied to a conditional probability mass function. Conditional Mean and Variance:

12 Example: For the same example, The conditional mean of Y given X = 1, is E(Y 1) = 1(0.05) + 2(0.1) + 3(0.1) + 4(0.75) = 3.55 The conditional variance of Y given X = 1, is V(Y 1) = (1-3.55) (2-3.55) (3-3.55) (4-3.55) = Independence In some random experiments, knowledge of the values of X does not change any of the probabilities associated with the values for Y. Example: In a plastic molding operation, each part is classified as to whether it conforms to color and length specifications.

13 Joint and marginal probability distributions of X and Y Conditional probability distributions of Y given X=x Notice the effect of conditions

14 By analogy with independent events, we define two random variables to be independent whenever For all x and y.

15 Question 5-3. Show that the following function satisfies the properties of a joint probability mass function Yes it is

16

17

18 5-2 TWO CONTINUOUS RANDOM VARIABLES: Joint Probability Distributions Example: let the continuous random variable X denote the length of one dimension of an injectionmolded part, and let the continuous random variable Y denote the length of another dimension. We can study each random variable separately. However, because the two random variables are measurements from the same part, small disturbances in the injection-molding process, such as pressure and temperature variations, might be more likely to generate values for X and Y in specific regions of two-dimensional space. Knowledge of the joint probability distribution of X and Y provides information that is not obvious from the marginal probability distributions.

19 The joint probability distribution of two continuous random variables X and Y can be specified by providing a method for calculating the probability that X and Y assume a value in any region R of two-dimensional space. A joint probability density function can be defined over two-dimensional space. The probability That (X,Y) assumes a value in the region R equals the volume of the shaded region

20 Joint Probability Density Function:

21 Example: Each length might be modeled by a normal distribution. However, because the measurements are from the same part, the random variables are typically not independent. If the specifications for X and Y are 2.95 to 3.05 and 7.60 to 7.80 millimeters, respectively, we might be interested in the probability that a part satisfies both specifications; that is,

22 Example: Let the random variable X denote the time until a computer server connects to your machine (in milliseconds), and let Y denote the time until the server authorizes you as a valid user (in milliseconds). The region with nonzero probability is shaded as follows.

23 The property that this joint probability density function integrates to 1 can be verified as follows:

24

25 5-2.2 Marginal Probability Distributions Marginal Probability Density Function: A probability involving only one random variable, can be found from the marginal probability distribution of X or from the joint probability distribution of X and Y.

26 Example: For the last example, calculate the probability that Y exceeds 2000 milliseconds.

27 Alternatively, the probability can be calculated from the marginal probability distribution of Y as follows.

28 5-2.3 Conditional Probability Distributions

29 Example: Determine the conditional probability density function for Y given that X=x.

30 Conditional Mean and Variance:

31 Example: Determine the conditional mean for Y given that x = 1500.

32 5-2.4 Independence The definition of independence for continuous random variables is similar to the definition for discrete random variables.

33 Example: Suppose that, Then, Since the multiplication of marginal probability functions of X and Y is equal to the original joint probability density function, then X and Y are INDEPENDENT..

34 Question Determine the value or ( c ) that makes f(x,y) = c (x+y) a joint probability density function over the range 0 < x < 3 and x < y < x+2.

35

36

37

38

39

40

41

42

43 5-3 COVARIANCE AND CORRELATION: A common measure of the relationship between two random variables is the covariance. To define the covariance, we need to describe the expected value of a function of two random variables h(x, Y ). Expected Value of a Function of Two Random Variables:

44 Example: For the following joint probability distribution, Calculate E[(X-µ X )(Y-µ Y )].

45 Covariance The covariance between X and Y describes the variation between the two random variables. Covariance is a measure of linear relationship between the random variables. If the relationship between the random variables is nonlinear, the covariance might not be sensitive to the relationship.

46 Correlation It is another measure of the relationship between two random variables that is often easier to interpret than the covariance. The correlation just scales the covariance by the standard deviation of each variable.

47 The correlation is a dimensionless quantity that can be used to compare the linear relationships between pairs of variables in different units. If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, the correlation is near +1 (or -1). If it is equal to +1 or -1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight line. Two random variables with nonzero correlation are said to be correlated. Similar to covariance, the correlation is a measure of the linear relationship between random variables.

48 Example:

49 For independent random variables, we do not expect any relationship in their joint probability distribution. Example:

50

51 It can be shown that these two random variables are independent. However, if the correlation between two random variables is zero, we cannot immediately conclude that the random variables are independent. Question Determine the value or ( c ) and the covariance and correlation for the joint probability mass function f(x,y) = c (x+y) for x = 1,2,3 and y = 1,2,3.

52 5-5 LINEAR FUNCTIONS OF RANDOM VARIABLES: A random variable is sometimes defined as a function of one or more random variables. Example: If the random variables X 1 and X 2 denote the length and width, respectively, of a manufactured part, Y = 2X 1 + 2X 2 is a random variable that represents the perimeter of the part. In this section, we develop results for random variables that are linear combinations of random variables. Linear Combination:

53 Mean of a Linear Function: Variance of a Linear Function:

54 This requires the random variables to be independent. Example: A semiconductor product consists of three layers. If the variances in thickness of the first, second, and third layers are 25, 40, and 30 nanometers squared, what is the variance of the thickness of the final product? X = X 1 + X 2 + X 3 So that V(X) = V(X 1 ) + V(X 2 ) + V(X 3 ) = = 95 nanometers squared. S.D. = 9.75 nm

55 Mean and Variance of an Average: Reproductive Property of the Normal Distribution:

56 Example: Let the random variables X 1 and X 2 denote the length and width, respectively, of a manufactured part. Assume that X 1 is normal with E(X 1 ) = 2 centimeters and standard deviation 0.1 centimeter and that X 2 is normal with E(X 2 ) = 5 centimeters and standard deviation 0.2 centimeter. Also, assume that X 1 and X 2 are independent. Determine the probability that the perimeter exceeds 14.5 centimeters. The Perimeter Y = 2X 1 + 2X 2 E(Y) = 2*2 + 2*5 = 14 cm V(Y) = 4* *0.2 2 = 0.2 so that

57 Question Assume that the weights of individuals are independent and normally distributed with mean of 160 pounds and a standard deviation of 30 pounds. Suppose that 25 people squeeze into an elevator that is designed to hold pounds. A- what is the probability that the load (total weight) exceeds the design limit? B- what design limit is exceeded by 25 occupants with probability ??

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

Random Variables. Chapter 2. Random Variables 1

Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

STAT 360 Probability and Statistics. Fall 2012

STAT 360 Probability and Statistics Fall 2012 1) General information: Crosslisted course offered as STAT 360, MATH 360 Semester: Fall 2012, Aug 20--Dec 07 Course name: Probability and Statistics Number

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7

Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7 C2. Health Insurance: Risk Pooling Health insurance works by pooling individuals together to reduce the variability

Statgraphics Centurion XVII (Version 17)

Statgraphics Centurion XVII (currently in beta test) is a major upgrade to Statpoint's flagship data analysis and visualization product. It contains 32 new statistical procedures and significant upgrades

Stat 704 Data Analysis I Probability Review

1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte

Mathematical Expectation

Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

BNG 202 Biomechanics Lab. Descriptive statistics and probability distributions I

BNG 202 Biomechanics Lab Descriptive statistics and probability distributions I Overview The overall goal of this short course in statistics is to provide an introduction to descriptive and inferential

Regression and Correlation

Regression and Correlation Topics Covered: Dependent and independent variables. Scatter diagram. Correlation coefficient. Linear Regression line. by Dr.I.Namestnikova 1 Introduction Regression analysis

Solutions to Exam in Speech Signal Processing EN2300

Solutions to Exam in Speech Signal Processing EN23 Date: Thursday, Dec 2, 8: 3: Place: Allowed: Grades: Language: Solutions: Q34, Q36 Beta Math Handbook (or corresponding), calculator with empty memory.

Lecture Notes 1. Brief Review of Basic Probability

Probability Review Lecture Notes Brief Review of Basic Probability I assume you know basic probability. Chapters -3 are a review. I will assume you have read and understood Chapters -3. Here is a very

International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics

International College of Economics and Finance Syllabus Probability Theory and Introductory Statistics Lecturer: Mikhail Zhitlukhin. 1. Course description Probability Theory and Introductory Statistics

Sections 2.11 and 5.8

Sections 211 and 58 Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I 1/25 Gesell data Let X be the age in in months a child speaks his/her first word and

How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

TIME SERIES ANALYSIS & FORECASTING

CHAPTER 19 TIME SERIES ANALYSIS & FORECASTING Basic Concepts 1. Time Series Analysis BASIC CONCEPTS AND FORMULA The term Time Series means a set of observations concurring any activity against different

STA 256: Statistics and Probability I

Al Nosedal. University of Toronto. Fall 2014 1 2 3 4 5 My momma always said: Life was like a box of chocolates. You never know what you re gonna get. Forrest Gump. Experiment, outcome, sample space, and

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions

MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

Data Modeling & Analysis Techniques. Probability & Statistics. Manfred Huber 2011 1

Data Modeling & Analysis Techniques Probability & Statistics Manfred Huber 2011 1 Probability and Statistics Probability and statistics are often used interchangeably but are different, related fields

CALIBRATION PRINCIPLES

1 CALIBRATION PRINCIPLES After completing this chapter, you should be able to: Define key terms relating to calibration and interpret the meaning of each. Understand traceability requirements and how they

7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1

7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

\$2 4 40 + ( \$1) = 40

THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

Math 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 2 Solutions

Math 70/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 2 Solutions About this problem set: These are problems from Course /P actuarial exams that I have collected over the years,

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.

Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give

Review of Random Variables

Chapter 1 Review of Random Variables Updated: January 16, 2015 This chapter reviews basic probability concepts that are necessary for the modeling and statistical analysis of financial data. 1.1 Random

Teacher Management. Estimated Time for Completion 2 class periods

AP Biology, Aquatic Science, Environmental Systems Morphometric Analysis of Eurycea in Austin, TX Teacher Page Essential Questions: Enduring Understandings Nature of Science and Data Vocabulary Morphometric

Procon Engineering. Technical Document PELR 1002. TERMS and DEFINITIONS

Procon Engineering Technical Document PELR 1002 TERMS and DEFINITIONS The following terms are widely used in the weighing industry. Informal comment on terms is in italics and is not part of the formal

MIMO CHANNEL CAPACITY

MIMO CHANNEL CAPACITY Ochi Laboratory Nguyen Dang Khoa (D1) 1 Contents Introduction Review of information theory Fixed MIMO channel Fading MIMO channel Summary and Conclusions 2 1. Introduction The use

Thursday, November 13: 6.1 Discrete Random Variables

Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

List of Examples. Examples 319

Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,

Recall this chart that showed how most of our course would be organized:

Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical

Method For Calculating Output Voltage Tolerances in Adjustable Regulators

Method For Calculating Output Voltage Tolerances in Adjustable Regulators Introduction When working with voltage regulator circuits, the designer is often confronted with the need to calculate the tolerance

Chapter 5 Estimating Demand Functions

Chapter 5 Estimating Demand Functions 1 Why do you need statistics and regression analysis? Ability to read market research papers Analyze your own data in a simple way Assist you in pricing and marketing

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression

Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate

0 x = 0.30 x = 1.10 x = 3.05 x = 4.15 x = 6 0.4 x = 12. f(x) =

. A mail-order computer business has si telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table. 0 2 3 4 5 6 p(.0.5.20.25.20.06.04

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

Example 1: Dear Abby. Stat Camp for the Full-time MBA Program

Stat Camp for the Full-time MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so?

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

Automated Stellar Classification for Large Surveys with EKF and RBF Neural Networks

Chin. J. Astron. Astrophys. Vol. 5 (2005), No. 2, 203 210 (http:/www.chjaa.org) Chinese Journal of Astronomy and Astrophysics Automated Stellar Classification for Large Surveys with EKF and RBF Neural

Texas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e

Texas Instruments BAII Plus Tutorial for Use with Fundamentals 11/e and Concise 5/e This tutorial was developed for use with Brigham and Houston s Fundamentals of Financial Management, 11/e and Concise,

Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW

A- Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by

FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver

FTS Real Time System Project: Portfolio Diversification Note: this project requires use of Excel s Solver Question: How do you create a diversified stock portfolio? Advice given by most financial advisors

HOW TO USE YOUR HP 12 C CALCULATOR

HOW TO USE YOUR HP 12 C CALCULATOR This document is designed to provide you with (1) the basics of how your HP 12C financial calculator operates, and (2) the typical keystrokes that will be required on

Data Exploration Data Visualization

Data Exploration Data Visualization What is data exploration? A preliminary exploration of the data to better understand its characteristics. Key motivations of data exploration include Helping to select

Calibration and Linear Regression Analysis: A Self-Guided Tutorial

Calibration and Linear Regression Analysis: A Self-Guided Tutorial Part 1 Instrumental Analysis with Excel: The Basics CHM314 Instrumental Analysis Department of Chemistry, University of Toronto Dr. D.

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

Factor and Solve Polynomial Equations. In Chapter 4, you learned how to factor the following types of quadratic expressions.

5.4 Factor and Solve Polynomial Equations Before You factored and solved quadratic equations. Now You will factor and solve other polynomial equations. Why? So you can find dimensions of archaeological

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

What is Statistics? Lecture 1. Introduction and probability review. Idea of parametric inference

0. 1. Introduction and probability review 1.1. What is Statistics? What is Statistics? Lecture 1. Introduction and probability review There are many definitions: I will use A set of principle and procedures

4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4

4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression

HANDBOOK: HOW TO USE YOUR TI BA II PLUS CALCULATOR

HANDBOOK: HOW TO USE YOUR TI BA II PLUS CALCULATOR This document is designed to provide you with (1) the basics of how your TI BA II Plus financial calculator operates, and (2) the typical keystrokes that

( ) is proportional to ( 10 + x)!2. Calculate the

PRACTICE EXAMINATION NUMBER 6. An insurance company eamines its pool of auto insurance customers and gathers the following information: i) All customers insure at least one car. ii) 64 of the customers

January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler

Data Mining: Exploring Data Lecture Notes for Chapter 3 Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler Topics Exploratory Data Analysis Summary Statistics Visualization What is data exploration?

VOICE OVER WI-FI CAPACITY PLANNING

VOICE OVER WI-FI CAPACITY PLANNING Version 1.0 Copyright 2003 Table of Contents Introduction...3 Wi-Fi RF Technology Options...3 Spectrum Availability and Non-Overlapping Wi-Fi Channels...4 Limited

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?

Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky hmotulsky@graphpad.com This is the first case in what I expect will be a series of case studies. While I mention

Sect 6.1 - Greatest Common Factor and Factoring by Grouping

Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

The Method of Least Squares

The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

Non-Inferiority Tests for One Mean

Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random

Marketing Mix Modelling and Big Data P. M Cain

1) Introduction Marketing Mix Modelling and Big Data P. M Cain Big data is generally defined in terms of the volume and variety of structured and unstructured information. Whereas structured data is stored

Lecture 8: Signal Detection and Noise Assumption

ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,

Name: Date: Use the following to answer questions 2-4:

Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability

What is GIS? Geographic Information Systems. Introduction to ArcGIS. GIS Maps Contain Layers. What Can You Do With GIS? Layers Can Contain Features

What is GIS? Geographic Information Systems Introduction to ArcGIS A database system in which the organizing principle is explicitly SPATIAL For CPSC 178 Visualization: Data, Pixels, and Ideas. What Can

Math 370, Spring 2008 Prof. A.J. Hildebrand. Practice Test 2 Solutions

Math 370, Spring 008 Prof. A.J. Hildebrand Practice Test Solutions About this test. This is a practice test made up of a random collection of 5 problems from past Course /P actuarial exams. Most of the

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Module - 03 Lecture 10 Good morning. In my last lecture, I was

STAT355 - Probability & Statistics

STAT355 - Probability & Statistics Instructor: Kofi Placid Adragni Fall 2011 Chap 1 - Overview and Descriptive Statistics 1.1 Populations, Samples, and Processes 1.2 Pictorial and Tabular Methods in Descriptive

9. Sampling Distributions

9. Sampling Distributions Prerequisites none A. Introduction B. Sampling Distribution of the Mean C. Sampling Distribution of Difference Between Means D. Sampling Distribution of Pearson's r E. Sampling

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

It is important to bear in mind that one of the first three subscripts is redundant since k = i -j +3.

IDENTIFICATION AND ESTIMATION OF AGE, PERIOD AND COHORT EFFECTS IN THE ANALYSIS OF DISCRETE ARCHIVAL DATA Stephen E. Fienberg, University of Minnesota William M. Mason, University of Michigan 1. INTRODUCTION

Sensitivity analysis of utility based prices and risk-tolerance wealth processes

Sensitivity analysis of utility based prices and risk-tolerance wealth processes Dmitry Kramkov, Carnegie Mellon University Based on a paper with Mihai Sirbu from Columbia University Math Finance Seminar,

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework 4.65 You buy a hot stock for \$1000. The stock either gains 30% or loses 25% each day, each with probability.

MATD 0390 - Intermediate Algebra Review for Pretest

MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. 1. Factor x 2-5x + 6. 2. Factor x 2-4x - 5.

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. Factor x 2-5x + 6. 2. Factor x 2-4x - 5. 3. Solve: (x + 2)(x - 3) = 0 x(x - 3)(x + 4) = 0 4. Solve by factoring: x 2 + x + 2 = 0. 5. Solve by

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components

Eigenvalues, Eigenvectors, Matrix Factoring, and Principal Components The eigenvalues and eigenvectors of a square matrix play a key role in some important operations in statistics. In particular, they

Data Mining: Exploring Data. Lecture Notes for Chapter 3. Introduction to Data Mining

Data Mining: Exploring Data Lecture Notes for Chapter 3 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 8/05/2005 1 What is data exploration? A preliminary

Basic Data Analysis Tutorial

Basic Data Analysis Tutorial 1 Introduction University of the Western Cape Department of Computer Science 29 July 24 Jacob Whitehill jake@mplab.ucsd.edu In an undergraduate (BSc, BComm) degree program

Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th

Vertical Alignment Colorado Academic Standards 6 th - 7 th - 8 th Standard 3: Data Analysis, Statistics, and Probability 6 th Prepared Graduates: 1. Solve problems and make decisions that depend on un

Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

Introduction to Longitudinal Data Analysis

Introduction to Longitudinal Data Analysis Longitudinal Data Analysis Workshop Section 1 University of Georgia: Institute for Interdisciplinary Research in Education and Human Development Section 1: Introduction

Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS

Institute of Natural Resources Departament of General Geology and Land use planning Work with a MAPS Lecturers: Berchuk V.Y. Gutareva N.Y. Contents: 1. Qgis; 2. General information; 3. Qgis desktop; 4.