Chapter 10 Monte Carlo Methods

Save this PDF as:

Size: px
Start display at page:

Transcription

1 411 There is no result in nature without a cause; understand the cause and you will have no need for the experiment. Leonardo da Vinci ( ) Chapter 10 Monte Carlo Methods In very broad terms one can say that a computer simulation is the process of designing a model of a real or abstract system and then conducting numerical experiments using the computer to obtain a statistical understanding of the system behavior. That is, sampling experiments are performed upon the model. This requires that certain variables in the model be assign random values associated with certain probability distributions. This sampling from various probability distributions requires the use of random numbers to create a stochastic simulation of the system behavior. This stochastic simulation of system behavior is called a Monte Carlo simulation. Monte Carlo simulations are used to construct theories for observed behavior of complicated systems, predict future behavior of a system, and study effects on Þnal results based upon input and parameter changes within a system. The stochastic simulation is a way of experimenting with a system to Þnd ways to improve or better understand the system behavior. Monte Carlo methods use the computer together with the generation of random numbers and mathematical models to generate statistical results that can be used to simulate and experiment with the behavior of various business, engineering and scientiþc systems. Some examples of application areas where Monte Carlo modeling and testing have been used are: the simulation and study of speciþc business management practices, modeling economic conditions, war games, wind tunnel testing of aircraft, operations research, information processing, advertising, complex queuing situations, analysis of mass production techniques, analysis of complex system behavior, analysis of traffic ßow, the study of shielding effects due to radiation, the modeling of atomic and subatomic processes, and the study of nuclear reactor behavior. These are just a few of the numerous applications of Monte Carlo techniques. Monte Carlo simulations usually employ the application of random numbers which are uniformly distributed over the interval [0, 1]. These uniformly distributed random numbers are used for the generation of stochastic variables

2 412 from various probability distributions. These stochastic variables can then be used to approximate the behavior of important system variables. In this way one can generate sampling experiments associated with the modeling of system behavior. The statistician can then apply statistical techniques to analyze the data collected on system performance and behavior over a period of time. The generation of a system variable behavior from a speciþed probability distribution involves the use of uniformly distributed random numbers over the interval [0, 1]. The quantity of these random numbers generated during a Monte Carlo simulation can range anywhere from hundreds to hundreds of thousands. Consequently, the computer time necessary to run a Monte Carlo simulation can take anywhere from minutes to months depending upon the both the computer system and the application being simulated. The Monte Carlo simulation produces various numerical data associated with both the system performance and the variables affecting the system behavior. These system variables which model the system behavior are referred to as model parameters. The study of the sensitivity of model parameters and their affect on system performance is a large application area of Monte Carlo simulations. These type of studies involve a great deal of computer time and can be costly. We begin this introduction to Monte Carlo techniques with a discussion of random number generators. Uniformly distributed random numbers Examine the built in functions associated with the computer language you use most often. Most computer languages have some form of random number generator which can be used to generate uniformly distributed random numbers between 0 and 1. The majority of these random number generators use modulo arithmetic to generate numbers which appear to be uniformly distributed. Consequently, the random number generators are called pseudorandom number generators because they are not truly random. They only simulate the behavior of a uniformly distributed random number on the interval [0, 1]. The basic equations used in generating these pseudorandom numbers usually have one of the forms X i+1 AX i (mod M) A multiplicative congruential generator or X i+1 AX i + C (mod M) A mixed congruential generator where A,C and M are nonnegative integers. The sequence of numbers {X i }, for i =0, 1, 2,..., generated by a congruential generator, needs a starting value X 0. The initial value X 0 is called the seed of the random number generator. The

3 413 quantity X i+1 represents one of the integers from the set {0, 1, 2,...,M 1}. In general A B (mod M) is read A is congruent to B modulo M, wherethequantity A is calculated from the relation A = B K M, where K =[B/M] denotes the largest positive integer resulting from the truncation of B/M to form an integer. The quantity A represents the remainder when B is divided by M. By using modulo arithmetic, the numbers of the sequence {X i } eventually start to repeat themselves and so only a Þnite number of distinct integers are generated by the above methods. The number of integers generated by the congruential generator before repetition starts to occur is called the period of the pseudorandom number generator. Using the mixed congruential generator, with a given seed X 0, one can write X 1 = AX 0 + C MK 1 K 1 is some appropriate constant. X 2 = AX 1 + C MK 2 K 2 is some appropriate constant. Substituting for X 1 and simplifying gives X 2 = A 2 X 0 + C(1 + A) M(K 2 + AK 1 ) X 3 = AX 2 + C MK 3 K 3 is some appropriate constant. Substituting for X 2 and simplifying gives X 3 = A 3 X 0 + C(1 + A + A 2 ) M(K 3 + K 2 A + K 1 A 2 ). Continuing in this manner one can show X n = A n X 0 + C(1 + A + A A n 1 ) MK where K = K n + K n 1 A + + K 1 A n 1 =! n i=1 K ia n i is some new constant. Knowledge of the geometric series enables us to simplify the above result to the form X n = A n X 0 + C(An 1) A 1 X 0 = A n X 0 + C(An 1) A 1 modm. Now if for some value of n we have mod M, then one can write " (A n 1) X 0 + C # 0 mod M (10.1) A 1 The minimum value of n which satisþes the equation (10.1) is the period of the pseudorandom number generator. The special case where C =0is easier to understand. In this special case one can employ the Fermat theorem that if M is prime and A is not a multiple of M, thena M 1 mod M. Then as a special case of the equation (10.1) n = M = P is the period of the pseudorandom number generator. The equation (10.1) has been extensively analyzed using number theory and one conclusion is that the quantity M can be selected as a power of 2. The

4 414 power to which 2 is raised is based upon the number of bits b associated with a computer word size. The largest integer that can be stored using b-bits is 2 b 1. Selecting M =2 b enables the largest possible period to be obtained for the computer system being used. Alternatively, M can be selected as a large prime number compatible with the computer word size. Once M is selected the value of A must satisfy 0 <A<M. The sequence of values {X i } are then determined by the values M, A, X 0 and C and so the sequence generated will have a period P M. That is, P M distinct values will be generated before the sequence starts to repeat itself. For each index i, the uniformly distributed pseudorandom numbers R i are calculated from the relation R i = X i /M and satisfy 0 <R i < 1. Optimally, one should select the quantities M, A, X 0,andC to maximize the period of the sequence and reduce the degree of correlation between the numbers generated. However, this is not always achieved. There are many Fortran language packages created and sold under different brand names. Some Fortran languages treat the random number generator as a subroutine and in others the random number generator is treated as an intrinsic function. In the Fortran examples that follow it is assumed that there exists a subroutine RANDOM(RN) which generates a uniform random number RN between 0 and 1. It is also assumed there is a Fortran subroutine SEED(INTEGER) for setting the seed value for the pseudo random number generator. These subroutines can then be used to create other subroutines which return random variates satisfying various conditions. Some examples are illustrated. SUBROUTINE RAN1(IX,N) C Generate random integer IX C Satisfying 0.LE. IX.LE. N CALL RANDOM(RN) IX=INT(RN*(N+1)) RETURN END SUBROUTINE RAN2(NMIN,NMAX, N) C Generate random integer N C satisfying NMIN.LE. N.LE. NMAX CALL RANDOM(RN) N=NMIN +INT((NMAX+1-NMIN)*RN) RETURN END Chi-square χ 2 goodness of Þt Thechi-squaregoodnessofÞt test is used to compare actual frequencies from sampled data with frequencies from theoretical distributions. The chisquare statistic is calculated from the relation n\$ χ 2 (f ok f ek ) 2 = (10.2) f ek k=1

5 415 where f ok is the observed frequency of the kth class or interval, f ek is the expected frequency of the kth class or interval due to theoretical considerations, and n is the number of classes or intervals. Let the theoretical distribution function be denoted by F (x). From this theoretical probability distribution one can calculate the probability p k that a random variable X takesonavalueinthekth interval. One Þnds f ek = np k as the number of theoretical expected values in the kth class or interval. In using the chi-square goodness of Þt test, one is testing the null hypothesis H 0 that there is no signiþcant difference between the frequencies of the sampled data and that expected from theoretical considerations. Ideally, if χ 2 =0then the observed frequencies and theoretical frequencies agree exactly. For χ 2 > 0 there is a discrepancy between the observed and theoretical frequencies and one must resort to tables of χ 2 critical values, associated with a signiþcance level and degrees of freedom, to determine if one should accept or reject the null hypothesis. If the computed value of χ 2 is greater than the tabular critical value at some signiþcance level found in tables, then one must reject the null hypothesis. As an example, apply the chi-square goodness of Þt test to the random number generator associated with your computer programming language. Write a computer program to generate 1000 random numbers between 0 and 1. You can then divided the interval 0 to 1 into 10 classes using the intervals (0,.1), (.1,.2),, (.9, 1.0) and then sort the 1000 random numbers to determine the number in each class. These values are the observed frequencies determined by the experiment. If the pseudorandom number generator is truly uniform, then the theoretical frequency associated with each class would have a value of 100. Note that when using the chi-square goodness of Þt test one should always use actual counts for the frequencies. Do not use relative frequencies or percentages. Also the theoretical frequencies associated with each class or interval should number greater than 5. If this is not the case then adjacent intervals or nearest neighbor intervals must be combined into a new class or interval with frequency greater than or equal to 5. The degrees of freedom ν associated a chi-square test is given by ν = n 1 m where n is the number of classes or intervals and m is the number of parameters in the theoretical distribution being tested. For the chi-square goodness of Þt test associated with our random number generator test, the value of the degrees of freedom is ν =10 1 0=9. One would then Þnd a chi-square table of critical values, such as the one on page 497, and look up

6 416 the critical value associated with a (1 α) signiþcance level by selecting an appropriate column and then select a row of the table which represents the degrees of freedom. The tabulated value found is then compared with the calculated χ 2 -value to determine if the random number generator differs signiþcantly from the theoretical values expected. Example (Chi-square test.) A pseudorandom number generator associated with a certain Fortran computer language was used to generate 1000 random numbers X. The frequencies associated with 10 equal spaced intervals over the range (0,1) where calculated and are given in the accompanying table. Use a chi-square test to compare the resulting frequencies with theoretical values associated with a uniform distribution of random numbers. The chi-square statistic is found to be χ 2 = 10\$ k=1 (f ok 100) =14.90 This number is compared with the tabular value of from the χ column and ν =9row of the chi-square table of critical values found on page 497. Since the χ 2 - value is less than the critical value of we can accept the numbers generated by the Fortran computer code as representing a uniform random number generator. Discrete and continuous distributions X range Frequency Symbol X f o1 0.1 <X f o2 0.2 <X f o3 0.3 <X f o4 0.4 <X f o5 0.5 <X f o6 0.6 <X f o7 0.7 <X f o8 0.8 <X f o9 0.9 <X f o10 In constructing Monte Carlo simulations it is important that one know how to generate random variables X which come from a speciþed probability distribution. Let X denote a random variable with cumulative probability distribution function F (x) and let RN, denote a uniformly distributed random number 0 RN 1. If RN = F (X), then the inverse function gives X = F 1 (RN). The situation is illustrated in the Þgure The computer generation ofa random variable X associated with a discrete or continuous distribution can be illustrated graphically. Calculate the distribution

7 417 function F (x) associated with a discrete or continuous probability function or relative frequency function f(x). Then generate a uniform random number RN, 0 RN 1 and plot this number on the F (x) axis and then move horizontally until you hit the distribution function curve. Then drop down to obtain the random variable X. This is the inverse function method of generating a random variable X associated with a given distribution. Figure Discrete and continuous distributions associated with random variable X. The following is a list of some of the more popular discrete and continuous probability distributions that can be used to help model various Monte Carlo simulations. Discrete Distributions Discrete uniform distribution % N 1,N 2 integers with N 2 >N 1. 1 N 2 +1 N 1, x = N 1,N 1 +1,...,N 2

8 418 Poisson distribution & e λ λ x /x! x =0, 1, 2,... λ > 0. Binomial distribution & ' N x 0 <p<1 and N apositiveinteger. ( p x (1 p) N x, x =0, 1, 2,...,N Geometric distribution & p(1 p) x 1, x =1, 2,... 0 <p<1. Hypergeometric distribution ' M (' N M ( x J x ' N ( for x =0, 1, 2,...,J, J N,M,J are integers. Continuous Distributions Uniform distribution & 1 b a, a<x<b 0 elsewhere Normal distribution ) 1 σ 2π exp 1 * +, 2 x µ 2 σ Exponential distribution <x< Beta distribution Gamma distribution Weibull distribution λ e λx x>0 and λ > 0. % Γ(α+β) Γ(α)Γ(β) xα 1 (1 x) β 1 0 <x<1 0 elsewhere % 1 Γ(α)β α x α 1 e x/β x>0 α > 0, β > 0., α > 0, β > 0. 0 elsewhere & αβx β 1 e αxβ x>0 0 elsewhere α > 0, β > 0.

9 419 Log-Normal distribution % 1 β 2π 1 x e (ln x α)2 /2β 2 x>0 0 elsewhere Chi-square distribution % 1 2 ν/2 σ ν Γ(ν/2) x(ν/2) 1 e (x/2σ2 ) x>0 0 x<0 where ν represents the degrees of freedom. β > 0. Student s t-distribution 1 nπ Γ[(n +1)/2] Γ[n/2] with n =1, 2, 3,... degrees of freedom. F-distribution + (n+1)/2 *1+ x2 n % Γ[(m+n)/2] Γ(m/2)Γ(n/2) (m/n)m/2 x(m/2) 1 x>0 [1+(m/n)x] (m+n)/2 0 x<0 with parameters m =1, 2,... and n =1, 2,... In the discussions that follow we develop programs to generate random variates from only a few select probability distributions. The more complicated random variate generators are left for more advanced simulation courses. In this introduction to Monte Carlo simulations we consider only discrete empirical distributions, binomial distributions, Poisson distributions, normal distributions and exponential distributions as these distributions are easy to work with and are representative of how one employs various discrete and continuous probability distributions for modeling purposes. Selected discrete distributions Recall that associated with a discrete sample is the function & fj x = x j j =1, 2, 3,... \$ f j =1 (10.3) k=1 where f j are relative frequencies associated with the sample. The function f(x) given by equation (10.3) is also referred to as the probability distribution function of the sample. To calculate the probability P (a <X b) one would calculate P (a <X b) = \$ a<x j b f(x j ) (10.4)

10 420 The function F (x) representing the cumulative relative frequency function is given by F (x) =P (X x) = \$ f(x j ) with P (X >x)=1 F (x) (10.5) x j x and is called the distribution function associated with the sample. Note that the above deþnition implies P (a <X b) =P (X b) P (X a) =F (b) F (a) (10.6) The mean µ associated with a discrete distribution is deþned µ = \$ j x j f(x j ) The variance σ 2 associated with a discrete distribution is deþned σ 2 = \$ j (x j µ) 2 f(x j ). The positive square root of the variance gives the standard deviation σ. For X a random variable and g(x) any continuous function, then the mathematical expectation of g(x) is deþned for discrete distributions as E(g(X)) = \$ j g(x j )f(x j ) (X discrete). Empirical distributions associated with a sample are generated by collecting data and calculating the frequency, relative frequency and cumulative relative frequency associated with the data. The Binomial probability distribution, which is sometimes referred to as a Bernoulli distribution, is given by & ' n ( x p x (1 p) n x for x =0, 1, 2,...,n and contains the two parameters p and n. The parameter p is a probability satisfying 0 p 1 and the parameter n =1, 2, 3,... This probability distribution is used in application areas where one of two possible outcomes can result. For example, the number x of successes in n independent repeated events in which the probability of success p for each event is governed by the binomial distribution.

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

1 Sufficient statistics

1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

2WB05 Simulation Lecture 8: Generating random variables

2WB05 Simulation Lecture 8: Generating random variables Marko Boon http://www.win.tue.nl/courses/2wb05 January 7, 2013 Outline 2/36 1. How do we generate random variables? 2. Fitting distributions Generating

NPTEL STRUCTURAL RELIABILITY

NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS

UNIT I: RANDOM VARIABLES PART- A -TWO MARKS 1. Given the probability density function of a continuous random variable X as follows f(x) = 6x (1-x) 0

Section 5.1 Continuous Random Variables: Introduction

Section 5. Continuous Random Variables: Introduction Not all random variables are discrete. For example:. Waiting times for anything (train, arrival of customer, production of mrna molecule from gene,

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

1.1 Introduction, and Review of Probability Theory... 3. 1.1.1 Random Variable, Range, Types of Random Variables... 3. 1.1.2 CDF, PDF, Quantiles...

MATH4427 Notebook 1 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 1 MATH4427 Notebook 1 3 1.1 Introduction, and Review of Probability

Probability Calculator

Chapter 95 Introduction Most statisticians have a set of probability tables that they refer to in doing their statistical wor. This procedure provides you with a set of electronic statistical tables that

Notes on Continuous Random Variables

Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 3-7, 3-8 The remaining discrete random

Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables

MATH 10: Elementary Statistics and Probability Chapter 5: Continuous Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

Maximum Likelihood Estimation

Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

PROBABILITY AND SAMPLING DISTRIBUTIONS

PROBABILITY AND SAMPLING DISTRIBUTIONS SEEMA JAGGI AND P.K. BATRA Indian Agricultural Statistics Research Institute Library Avenue, New Delhi - 0 0 seema@iasri.res.in. Introduction The concept of probability

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA

VISUALIZATION OF DENSITY FUNCTIONS WITH GEOGEBRA Csilla Csendes University of Miskolc, Hungary Department of Applied Mathematics ICAM 2010 Probability density functions A random variable X has density

6.1. The Exponential Function. Introduction. Prerequisites. Learning Outcomes. Learning Style

The Exponential Function 6.1 Introduction In this block we revisit the use of exponents. We consider how the expression a x is defined when a is a positive number and x is irrational. Previously we have

Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

Generating Random Variables and Stochastic Processes

Monte Carlo Simulation: IEOR E4703 c 2010 by Martin Haugh Generating Random Variables and Stochastic Processes In these lecture notes we describe the principal methods that are used to generate random

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment 2-3, Probability and Statistics, March 2015. Due:-March 25, 2015.

Department of Mathematics, Indian Institute of Technology, Kharagpur Assignment -3, Probability and Statistics, March 05. Due:-March 5, 05.. Show that the function 0 for x < x+ F (x) = 4 for x < for x

EMPIRICAL FREQUENCY DISTRIBUTION

INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION - described by mathematical models 2 1 when some empirical distribution approximates

General Principles in Random Variates Generation

General Principles in Random Variates Generation E. Moulines Ecole Nationale Supérieure des Télécommunications 20 mai 2007 Why use random numbers? Random numbers lie at the heart of many scientific and

Gamma Distribution Fitting

Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

Generating Random Variables and Stochastic Processes

Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Generating Random Variables and Stochastic Processes 1 Generating U(0,1) Random Variables The ability to generate U(0, 1) random variables

Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes

Simulation Exercises to Reinforce the Foundations of Statistical Thinking in Online Classes Simcha Pollack, Ph.D. St. John s University Tobin College of Business Queens, NY, 11439 pollacks@stjohns.edu

CHAPTER 5. Number Theory. 1. Integers and Division. Discussion

CHAPTER 5 Number Theory 1. Integers and Division 1.1. Divisibility. Definition 1.1.1. Given two integers a and b we say a divides b if there is an integer c such that b = ac. If a divides b, we write a

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

MATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...

MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 2009-2016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................

Chapters 5. Multivariate Probability Distributions

Chapters 5. Multivariate Probability Distributions Random vectors are collection of random variables defined on the same sample space. Whenever a collection of random variables are mentioned, they are

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example

5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

EXAM 3, FALL 003 Please note: On a one-time basis, the CAS is releasing annotated solutions to Fall 003 Examination 3 as a study aid to candidates. It is anticipated that for future sittings, only the

Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

A logistic approximation to the cumulative normal distribution

A logistic approximation to the cumulative normal distribution Shannon R. Bowling 1 ; Mohammad T. Khasawneh 2 ; Sittichai Kaewkuekool 3 ; Byung Rae Cho 4 1 Old Dominion University (USA); 2 State University

Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

Notes on the Negative Binomial Distribution

Notes on the Negative Binomial Distribution John D. Cook October 28, 2009 Abstract These notes give several properties of the negative binomial distribution. 1. Parameterizations 2. The connection between

Practice problems for Homework 11 - Point Estimation

Practice problems for Homework 11 - Point Estimation 1. (10 marks) Suppose we want to select a random sample of size 5 from the current CS 3341 students. Which of the following strategies is the best:

Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams

Review for Final Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams Histogram Boxplots Chapter 3: Set

How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails

12th International Congress on Insurance: Mathematics and Economics July 16-18, 2008 A Uniform Asymptotic Estimate for Discounted Aggregate Claims with Subexponential Tails XUEMIAO HAO (Based on a joint

Common probability distributionsi Math 217/218 Probability and Statistics Prof. D. Joyce, 2016

Introduction. ommon probability distributionsi Math 7/8 Probability and Statistics Prof. D. Joyce, 06 I summarize here some of the more common distributions used in probability and statistics. Some are

Math 461 Fall 2006 Test 2 Solutions

Math 461 Fall 2006 Test 2 Solutions Total points: 100. Do all questions. Explain all answers. No notes, books, or electronic devices. 1. [105+5 points] Assume X Exponential(λ). Justify the following two

4. Joint Distributions

Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics

Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics Jan Krhovják Basic Idea Behind the Statistical Tests Generated random sequences properties as sample drawn from uniform/rectangular

Sums of Independent Random Variables

Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables

Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

Poisson Models for Count Data

Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

Lecture 9: Random Walk Models Steven Skiena. skiena

Lecture 9: Random Walk Models Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Financial Time Series as Random Walks

3 SIMULATION BASICS. 3.1 Introduction. 3.2 Types of Simulation. Zeal without knowledge is fi re without light.

C H A P T E R 3 SIMULATION BASICS Zeal without knowledge is fi re without light. Dr. Thomas Fuller 3.1 Introduction Simulation is much more meaningful when we understand what it is actually doing. Understanding

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

Probability and Statistics

CHAPTER 2: RANDOM VARIABLES AND ASSOCIATED FUNCTIONS 2b - 0 Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling

Spatial Statistics Chapter 3 Basics of areal data and areal data modeling Recall areal data also known as lattice data are data Y (s), s D where D is a discrete index set. This usually corresponds to data

Chi-square test Testing for independeny The r x c contingency tables square test

Chi-square test Testing for independeny The r x c contingency tables square test 1 The chi-square distribution HUSRB/0901/1/088 Teaching Mathematics and Statistics in Sciences: Modeling and Computer-aided

Appendix A: Sampling Methods

Appendix A: Sampling Methods What is Sampling? Sampling is used in an @RISK simulation to generate possible values from probability distribution functions. These sets of possible values are then used to

MINITAB ASSISTANT WHITE PAPER

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

Chapter 4. Multivariate Distributions

1 Chapter 4. Multivariate Distributions Joint p.m.f. (p.d.f.) Independent Random Variables Covariance and Correlation Coefficient Expectation and Covariance Matrix Multivariate (Normal) Distributions Matlab

Continuous Random Variables and Probability Distributions. Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4 - and Cengage

4 Continuous Random Variables and Probability Distributions Stat 4570/5570 Material from Devore s book (Ed 8) Chapter 4 - and Cengage Continuous r.v. A random variable X is continuous if possible values

Exam C, Fall 2006 PRELIMINARY ANSWER KEY

Exam C, Fall 2006 PRELIMINARY ANSWER KEY Question # Answer Question # Answer 1 E 19 B 2 D 20 D 3 B 21 A 4 C 22 A 5 A 23 E 6 D 24 E 7 B 25 D 8 C 26 A 9 E 27 C 10 D 28 C 11 E 29 C 12 B 30 B 13 C 31 C 14

Determining distribution parameters from quantiles

Determining distribution parameters from quantiles John D. Cook Department of Biostatistics The University of Texas M. D. Anderson Cancer Center P. O. Box 301402 Unit 1409 Houston, TX 77230-1402 USA cook@mderson.org

Lecture 7: Continuous Random Variables

Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider

3. Continuous Random Variables

3. Continuous Random Variables A continuous random variable is one which can take any value in an interval (or union of intervals) The values that can be taken by such a variable cannot be listed. Such

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

Chapter 4 Expected Values

Chapter 4 Expected Values 4. The Expected Value of a Random Variables Definition. Let X be a random variable having a pdf f(x). Also, suppose the the following conditions are satisfied: x f(x) converges

Supplement to Call Centers with Delay Information: Models and Insights

Supplement to Call Centers with Delay Information: Models and Insights Oualid Jouini 1 Zeynep Akşin 2 Yves Dallery 1 1 Laboratoire Genie Industriel, Ecole Centrale Paris, Grande Voie des Vignes, 92290

Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page

Errata for ASM Exam C/4 Study Manual (Sixteenth Edition) Sorted by Page 1 Errata and updates for ASM Exam C/Exam 4 Manual (Sixteenth Edition) sorted by page Practice exam 1:9, 1:22, 1:29, 9:5, and 10:8

Exploratory Data Analysis

Exploratory Data Analysis Johannes Schauer johannes.schauer@tugraz.at Institute of Statistics Graz University of Technology Steyrergasse 17/IV, 8010 Graz www.statistics.tugraz.at February 12, 2008 Introduction

3. Monte Carlo Simulations. Math6911 S08, HM Zhu

3. Monte Carlo Simulations Math6911 S08, HM Zhu References 1. Chapters 4 and 8, Numerical Methods in Finance. Chapters 17.6-17.7, Options, Futures and Other Derivatives 3. George S. Fishman, Monte Carlo:

Review for Calculus Rational Functions, Logarithms & Exponentials

Definition and Domain of Rational Functions A rational function is defined as the quotient of two polynomial functions. F(x) = P(x) / Q(x) The domain of F is the set of all real numbers except those for

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

Generating Random Numbers Variance Reduction Quasi-Monte Carlo. Simulation Methods. Leonid Kogan. MIT, Sloan. 15.450, Fall 2010

Simulation Methods Leonid Kogan MIT, Sloan 15.450, Fall 2010 c Leonid Kogan ( MIT, Sloan ) Simulation Methods 15.450, Fall 2010 1 / 35 Outline 1 Generating Random Numbers 2 Variance Reduction 3 Quasi-Monte

Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

Pr(X = x) = f(x) = λe λx

Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

START Selected Topics in Assurance

START Selected Topics in Assurance Related Technologies Table of Contents Introduction Some Statistical Background Fitting a Normal Using the Anderson Darling GoF Test Fitting a Weibull Using the Anderson

9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is

PROBABILITIES AND PROBABILITY DISTRIBUTIONS

Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

Bayesian Methods. 1 The Joint Posterior Distribution

Bayesian Methods Every variable in a linear model is a random variable derived from a distribution function. A fixed factor becomes a random variable with possibly a uniform distribution going from a lower

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression