The Analysis of Covariance. ERSH 8310 Keppel and Wickens Chapter 15


 Martha Dennis
 2 years ago
 Views:
Transcription
1 The Analyss of Covarance ERSH 830 Keppel and Wckens Chapter 5
2 Today s Class Intal Consderatons Covarance and Lnear Regresson The Lnear Regresson Equaton TheAnalyss of Covarance Assumptons Underlyng the Analyss of Covarance Example ANCOVA Analyss
3 THE ANALYSIS OF COVARIANCE
4 The Analyss of Covarance In a completely randomzed desgn subjects are randomly assgned to the expermental treatments The completely randomzed desgn s relatvely defcent n power If there s a varable avalable before the start of experment that s reasonably correlated wth the dependent varable abe(e,co (.e., control o varable, abe,concomtant varable, or covarate; e.g., ntellgence, grade pont average, etc.), we may ether employ blockng or statstcal ttt adjustment t
5 The Analyss of Covarance The randomzed blocks desgn ncludes groups of homogeneous subjects drawn from respectve blocks Advantages of the randomzed blocks desgn are: Blockng helps to equate the treatment groups before the start of the experment more effectvely than s accomplshed n the completely l randomzed ddesgn The power s ncreased because smallererrorerror term usually assocated wth the blockng desgn Interactons can be assessed
6 The Analyss of Covarance Dsadvantages may nclude: There wll be cost of ntroducng the blockng factor It may be dffcult to fnd blockng factors that are hghly correlated ltdwth the dependent d varable bl Loss of power may occur f a poorly correlated blockng p y p y g factor s used
7 The Analyss of Covarance The analyss of covarance reduces expermental error by statstcal, rather than expermental, means Subjects arefrstmeasured on the concomtant varable called the covarate whch conssts of some relevant ablty or characterstcs Subjects are then randomly assgned to the treatment j y g group wthout regard for ther scores on the covarate
8 The Analyss of Covarance The analyss of covarance refnes estmates of expermental error and uses the adjust treatment effects for any dfferences between the treatment groups that exsted before the expermental treatments were admnstered
9 Today s Example Data We wll rehash data from Secton.5 A researcher was studyng the effects of nstructonal materal on how well college students learn basc concepts n statstcs Two nstructonal materal groups (a 2) Pretest gven General quanttatve ablty (now called the covarate X) DV Scores on a test on basc statstcs test (Y)
10 The Data Group a Group a 2 X Y X Y Mean:
11 Our Data As a Plot
12 COVARIANCE AND LINEAR REGRESSION
13 Covarance and Lnear Regresson The correlaton coeffcent between two varables X and Y s: r XY xy Where the covarance between X and Y s: ( X X )( Y Y ) s s x s y N N The standard devaton of The standard devaton of X s: Y s: s x N ( X X ) 2 N s XY s Y N ( ) 2 Y Y N
14 Wth Our Data Set The correlaton coeffcent between two varables X and Y s: xy *3.055 Where the covarance between X and Y s: ( X X )( Y Y ) s 0.66 r XY s 5. sxs 667 XY y N The standard devaton of The standard devaton of X s: Y s: s x N ( X X ) 2 N s Y N N ( ) 2 Y Y N 3.055
15 Other Useful Terms (Wll Help n ANCOVA) We may defne the sum of products: SP And the sums of squares: 2 XY N ( X X )( Y Y ) 85 N SS ( ) X X X 8 N SS ( ) Y Y Y 40 Consequently: 2 r XY SP SS X XY SS Y 85 8*
16 THE LINEAR REGRESSION EQUATION
17 The Lnear Regresson Equaton The lnear regresson lne relatng the dependent varable Y to the covarate X s: Y β 0 + β X + And the predcton equaton for s: Where: ˆ + E Y b0 b X b 0 Y b X S SPXY S X SS X Y b rxy
18 Wth Our Data The lnear regresson lne relatng the dependent varable Y to the covarate X s: Y β 0 + β X + And the predcton equaton for s: Where: Yˆ b. 720X E 0 + b X.403+ SY SPXY b0 Y b X.403 b rxy. 720 S SS X X
19 Regresson Hypothess Tests In regresson, the key hypothess test we are worred about s that for the slope, p, b H 0 : β 0 H : β 0 Usng these hypotheses, and our method for calculatng sums of squares from Chapter 4 (the GLM chapter), we can then create an ANOVA lke table for the regresson. We need: H0 H SSun exp SS unexp
20 Regresson Sums of Squares H Recall that SS 0exp un came from calculatng the sums of squares where the predcted value came from the lnear model when H 0 was true It was treatment + error Inregresson the correspondng predcted valuesare: are: Ths comes from: df un Yˆ b 0 Y b Y b X Y 0* X 0 H 0 The exp comes from the number of observatons (here 6) mnus the number of parameters () so H 0 df un exp 5 Y
21 Regresson Sums of Squares H Recall that SS exp un came from calculatng the sums of squares where the predcted value came from the lnear model when H was true It was error In regresson the correspondng predcted values are: ˆ + Y b 0 b X H The df un exp comes from the number of observatons (6) mnus the number of parameters (2), so H df un exp 4
22 Resdual Varaton and the Lnear Model Another way of lookng at Sums of Squares: The sum of the squared devaton from the mean s the Sums of Squares Total: T N SSY ( ) 2 H 0 Y Y SS exp SS Thesum of the squared resduals fromthe regresson lne s: N SS Re gresson SSY X un ( ) 2 ˆ H H Y Y SS SS Fnally, the sum of squares for error s: N 2 ˆ H ( ) Y Y SS SS Error un exp 0 unexp unexp
23 Puttng t Together n an ANOVA Table: See Excel worksheet on ELC for computatons
24 Resdual Varaton and the Lnear Model The amount of the Y varablty that can be attrbuted to the regresson equaton s: SS regresson SSY SSY X The squared correlaton coeffcent (or what we call the effect sze eta squared) s: r SS 2 regresson XY SSY.437
25 Now wth SPSS
26 THE ANALYSIS OF COVARIANCE
27 The Analyss of Covarance Now that we know a lttle about regresson, we can use t to mprove power to detect group dfferences n an ANOVA lke expermental desgn ANCOVA tests for dfferences between groups by comparng a descrpton of the data based on a sngle regresson lne to one based on lnes wth the same slope and dfferent ntercepts for each group
28 In the Begnnng There was the ANOVA Model Recall our GLM representaton of ANOVA: The H model: The H 0 model: Y μ + α + j T j E j Y μ + j μ T E j ANCOVA adds n the covarate X to the model
29 The Analyss of Covarance and the General Lnear Model For the analyss of covarance, the alternatvehypothess model s: Y X + j β0 + α j + β j E j And the null hypothess model (testng the effect of the treatment means) s: Y β 0 + β X + j j E j
30 Decomposng ANCOVA If the H model holds n ANCOVA, t means that the ntercepts of the regresson lne dffer across groups: For our 2 group example that means, for group : For group 2: ( β ) 0 + α + X E Y β + ( β ) 0 + α 2 + β X 2 E 2 Y β + 2
31 Does t? Hmm H 0 Model same ntercepts H Model Dff. Intercepts
32 ...Its a Queston of Statstcal Sgnfcance Usng our knowledge of GLM, we could form SS for each of the possble categores or we could use SPSS: Covarate (X the score on the general quanttatve test) Treatment group (A)
33 Comparng ANOVA and ANCOVA ANOVA ANCOVA
34 The Dfference? Adjusted Means For ANCOVA, the adjusted mean (or Least Squares Mean) s: ' Y b ( X X ) Y j T
35 What about the Rest of ANOVA All of the rest of ANOVA happens on the adjusted means lke contrasts or post hoc tests Both of whch are made easy n SPSS The desgn can be extended to nclude more factors and more covarates Of course, thngs get more tedous to understand as you add more varables Th k t l th t f t f tl The key s to realze that f your covarate sgnfcantly predcts Y (above and beyond the group varable), you wll have more power to detect group dfferences
36 ASSUMPTIONS UNDERLYING THE ANALYSIS OF COVARIANCE
37 Assumptons Underlyng the Analyss of Covarance Three assumptons n addton to the usual analyss of varance assumptons are:. The assumpton of lnear regresson: The devatons from regresson are normally and ndependently dstrbuted n the populaton, wth means of zero and homogeneous varances Hard to check defntvely 2. The assumpton of homogeneous group regresson coeffcents: The wthn groupsregressoncoeffcent regresson s actually an average of the regresson coeffcents for the respectve treatment groups Can be checked by addng an nteracton term between the covarate and group varable 3. The exact measurement of the covarate: The covarate s measured wthout error Ubqutous term
38 Checkng the Homogenety of Slopes Assumpton You can easly check the homogenety of slopes assumpton by testng the nteracton between your group IV and the covarate The H model becomes: j β 0 + α j + j ( β ) X j E j Y β X + αβ + If true, t mples, for group : ( β ) [ ( ) ] 0 + α + β + X E Y αβ + And for group 2: ( β ) [ ( ) ] 0 + α 2 + β + X 2 E 2 Y αβ j
39 In SPSS Does t meet our assumpton of homogenety of slopes?
40 Wrappng Up Today s class covered a method for controllng for mportant varables n an experment: ANCOVA ANCOVA s a general technque that adds addtonal (contnuous/quanttatve) varables to a model and adjusts for the values of such varables Any ANOVA desgn can nclude such varables
41 Up Next In lab tonght: How to do ANCOVA n SPSS Homework: Assgned n the mornng, due next week before class Readng for next week: Chapter 6: Wthn Subject Desgns Only two lectures left!
Introduction to Regression
Introducton to Regresson Regresson a means of predctng a dependent varable based one or more ndependent varables. Ths s done by fttng a lne or surface to the data ponts that mnmzes the total error. 
More informationSIMPLE LINEAR CORRELATION
SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.
More informationQuestions that we may have about the variables
Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent
More informationLecture 10: Linear Regression Approach, Assumptions and Diagnostics
Approach to Modelng I Lecture 1: Lnear Regresson Approach, Assumptons and Dagnostcs Sandy Eckel seckel@jhsph.edu 8 May 8 General approach for most statstcal modelng: Defne the populaton of nterest State
More informationCausal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes causeandeffect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
More informationCHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
More informationTHE TITANIC SHIPWRECK: WHO WAS
THE TITANIC SHIPWRECK: WHO WAS MOST LIKELY TO SURVIVE? A STATISTICAL ANALYSIS Ths paper examnes the probablty of survvng the Ttanc shpwreck usng lmted dependent varable regresson analyss. Ths appled analyss
More informationThe covariance is the two variable analog to the variance. The formula for the covariance between two variables is
Regresson Lectures So far we have talked only about statstcs that descrbe one varable. What we are gong to be dscussng for much of the remander of the course s relatonshps between two or more varables.
More informationCHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
More informationAnalysis of Covariance
Chapter 551 Analyss of Covarance Introducton A common tas n research s to compare the averages of two or more populatons (groups). We mght want to compare the ncome level of two regons, the ntrogen content
More informationPart 1: quick summary 5. Part 2: understanding the basics of ANOVA 8
Statstcs Rudolf N. Cardnal Graduatelevel statstcs for psychology and neuroscence NOV n practce, and complex NOV desgns Verson of May 4 Part : quck summary 5. Overvew of ths document 5. Background knowledge
More informationx f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60
BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true
More informationTHE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
More informationPSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 12
14 The Chsquared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed
More information9.1 The Cumulative Sum Control Chart
Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s
More informationChapter 14 Simple Linear Regression
Sldes Prepared JOHN S. LOUCKS St. Edward s Unverst Slde Chapter 4 Smple Lnear Regresson Smple Lnear Regresson Model Least Squares Method Coeffcent of Determnaton Model Assumptons Testng for Sgnfcance Usng
More information1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
More informationEconomic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
More informationSTATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 1401013 petr.nazarov@crpsante.lu Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
More informationChapter 15 Multiple Regression
Chapter 5 Multple Regresson In chapter 9, we consdered one dependent varable (Y) and one predctor (regressor or ndependent varable) (X) and predcted Y based on X only, whch also known as the smple lnear
More informationErrorPropagation.nb 1. Error Propagation
ErrorPropagaton.nb Error Propagaton Suppose that we make observatons of a quantty x that s subject to random fluctuatons or measurement errors. Our best estmate of the true value for ths quantty s then
More informationCHAPTER 7 THE TWOVARIABLE REGRESSION MODEL: HYPOTHESIS TESTING
CHAPTER 7 THE TWOVARIABLE REGRESSION MODEL: HYPOTHESIS TESTING QUESTIONS 7.1. (a) In the regresson contet, the method of least squares estmates the regresson parameters n such a way that the sum of the
More informationAnalysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
More informationStudy on CET4 Marks in China s Graded English Teaching
Study on CET4 Marks n Chna s Graded Englsh Teachng CHE We College of Foregn Studes, Shandong Insttute of Busness and Technology, P.R.Chna, 264005 Abstract: Ths paper deploys Logt model, and decomposes
More informationThe Probit Model. Alexander Spermann. SoSe 2009
The Probt Model Aleander Spermann Unversty of Freburg SoSe 009 Course outlne. Notaton and statstcal foundatons. Introducton to the Probt model 3. Applcaton 4. Coeffcents and margnal effects 5. Goodnessofft
More informationCan Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? ChuShu L Department of Internatonal Busness, Asa Unversty, Tawan ShengChang
More information7 ANALYSIS OF VARIANCE (ANOVA)
7 ANALYSIS OF VARIANCE (ANOVA) Chapter 7 Analyss of Varance (Anova) Objectves After studyng ths chapter you should apprecate the need for analysng data from more than two samples; understand the underlyng
More informationSIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA
SIX WAYS TO SOLVE A SIMPLE PROBLEM: FITTING A STRAIGHT LINE TO MEASUREMENT DATA E. LAGENDIJK Department of Appled Physcs, Delft Unversty of Technology Lorentzweg 1, 68 CJ, The Netherlands Emal: e.lagendjk@tnw.tudelft.nl
More informationStatistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
More informationCalculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a twostage stratfed cluster desgn. 1 The frst stage conssted of a sample
More informationMultivariate EWMA Control Chart
Multvarate EWMA Control Chart Summary The Multvarate EWMA Control Chart procedure creates control charts for two or more numerc varables. Examnng the varables n a multvarate sense s extremely mportant
More informationCHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
More informationThe Analysis of Outliers in Statistical Data
THALES Project No. xxxx The Analyss of Outlers n Statstcal Data Research Team Chrysses Caron, Assocate Professor (P.I.) Vaslk Karot, Doctoral canddate Polychrons Economou, Chrstna Perrakou, Postgraduate
More informationInequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
More informationTime Series Analysis in Studies of AGN Variability. Bradley M. Peterson The Ohio State University
Tme Seres Analyss n Studes of AGN Varablty Bradley M. Peterson The Oho State Unversty 1 Lnear Correlaton Degree to whch two parameters are lnearly correlated can be expressed n terms of the lnear correlaton
More informationEvaluating the generalizability of an RCT using electronic health records data
Evaluatng the generalzablty of an RCT usng electronc health records data 3 nterestng questons Is our RCT representatve? How can we generalze RCT results? Can we use EHR* data as a control group? *) Electronc
More informationTesting GOF & Estimating Overdispersion
Testng GOF & Estmatng Overdsperson Your Most General Model Needs to Ft the Dataset It s mportant that the most general (complcated) model n your canddate model lst fts the data well. Ths model s a benchmark
More informationPRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB.
PRACTICE 1: MUTUAL FUNDS EVALUATION USING MATLAB. INDEX 1. Load data usng the Edtor wndow and mfle 2. Learnng to save results from the Edtor wndow. 3. Computng the Sharpe Rato 4. Obtanng the Treynor Rato
More informationH 1 : at least one is not zero
Chapter 6 More Multple Regresson Model The Ftest Jont Hypothess Tests Consder the lnear regresson equaton: () y = β + βx + βx + β4x4 + e for =,,..., N The tstatstc gve a test of sgnfcance of an ndvdual
More informationForecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye cjngwe@stanford.edu mchen5@stanford.edu nanye@stanford.edu Abstract  Stock market s one of the most complcated systems
More informationPortfolio Loss Distribution
Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets holdtomaturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment
More informationBinary Dependent Variables. In some cases the outcome of interest rather than one of the right hand side variables is discrete rather than continuous
Bnary Dependent Varables In some cases the outcome of nterest rather than one of the rght hand sde varables s dscrete rather than contnuous The smplest example of ths s when the Y varable s bnary so that
More informationHYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION
HYPOTHESIS TESTING OF PARAMETERS FOR ORDINARY LINEAR CIRCULAR REGRESSION Abdul Ghapor Hussn Centre for Foundaton Studes n Scence Unversty of Malaya 563 KUALA LUMPUR Emal: ghapor@umedumy Abstract Ths paper
More informationI. SCOPE, APPLICABILITY AND PARAMETERS Scope
D Executve Board Annex 9 Page A/R ethodologcal Tool alculaton of the number of sample plots for measurements wthn A/R D project actvtes (Verson 0) I. SOPE, PIABIITY AD PARAETERS Scope. Ths tool s applcable
More informationLatent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
More informationCapital asset pricing model, arbitrage pricing theory and portfolio management
Captal asset prcng model, arbtrage prcng theory and portfolo management Vnod Kothar The captal asset prcng model (CAPM) s great n terms of ts understandng of rsk decomposton of rsk nto securtyspecfc rsk
More informationRegression Models for a Binary Response Using EXCEL and JMP
SEMATECH 997 Statstcal Methods Symposum Austn Regresson Models for a Bnary Response Usng EXCEL and JMP Davd C. Trndade, Ph.D. STATTECH Consultng and Tranng n Appled Statstcs San Jose, CA Topcs Practcal
More informationExamples of Multiple Linear Regression Models
ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A crosssectonal sample of 7 cars sold n
More informationMULTIPLE LINEAR REGRESSION IN MINITAB
MULTIPLE LINEAR REGRESSION IN MINITAB Ths document shows a complcated Mntab multple regresson. It ncludes descrptons of the Mntab commands, and the Mntab output s heavly annotated. Comments n { } are used
More informationNPAR TESTS. OneSample ChiSquare Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
More informationDescriptive Statistics (60 points)
Economcs 30330: Statstcs for Economcs Problem Set 2 Unversty of otre Dame Instructor: Julo Garín Sprng 2012 Descrptve Statstcs (60 ponts) 1. Followng a recent government shutdown, Mnnesota Governor Mark
More informationLinear Regression Analysis for STARDEX
Lnear Regresson Analss for STARDEX Malcolm Halock, Clmatc Research Unt The followng document s an overvew of lnear regresson methods for reference b members of STARDEX. Whle t ams to cover the most common
More informationExhaustive Regression. An Exploration of RegressionBased Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of RegressonBased Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
More informationSketching Sampled Data Streams
Sketchng Sampled Data Streams Florn Rusu, Aln Dobra CISE Department Unversty of Florda Ganesvlle, FL, USA frusu@cse.ufl.edu adobra@cse.ufl.edu Abstract Samplng s used as a unversal method to reduce the
More informationCalibration and Linear Regression Analysis: A SelfGuided Tutorial
Calbraton and Lnear Regresson Analyss: A SelfGuded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
More informationGRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 NORM
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 NORM BARRIOT JeanPerre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: jeanperre.barrot@cnes.fr 1/Introducton The
More informationQuality Adjustment of Secondhand Motor Vehicle Application of Hedonic Approach in Hong Kong s Consumer Price Index
Qualty Adustment of Secondhand Motor Vehcle Applcaton of Hedonc Approach n Hong Kong s Consumer Prce Index Prepared for the 14 th Meetng of the Ottawa Group on Prce Indces 20 22 May 2015, Tokyo, Japan
More informationThe OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
More informationWeek 4 Lecture: PairedSample Hypothesis Tests (Chapter 9)
Week 4 Lecture: PareSample Hypothess Tests (Chapter 9) The twosample proceures escrbe last week only apply when the two samples are nepenent. However, you may want to perform a hypothess tests to ata
More informationTopic 10. ANOVA models for random and mixed effects
10.1 Topc 10. ANOVA models for random and mxed effects eferences: ST&DT: Topc 7.5 p.15153, Topc 9.9 p. 57, Topc 15.5 379384. There s a good dscusson n SAS System for Lnear Models, 3 rd ed. pages 191198.
More informationCredit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
More informationMetaAnalysis of Hazard Ratios
NCSS Statstcal Softare Chapter 458 MetaAnalyss of Hazard Ratos Introducton Ths module performs a metaanalyss on a set of togroup, tme to event (survval), studes n hch some data may be censored. These
More informationRECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY:
Federco Podestà RECENT DEVELOPMENTS IN QUANTITATIVE COMPARATIVE METHODOLOGY: THE CASE OF POOLED TIME SERIES CROSSSECTION ANALYSIS DSS PAPERS SOC 302 INDICE 1. Advantages and Dsadvantages of Pooled Analyss...
More informationAn InterestOriented Network Evolution Mechanism for Online Communities
An InterestOrented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne
More informationControl Charts for Means (Simulation)
Chapter 290 Control Charts for Means (Smulaton) Introducton Ths procedure allows you to study the run length dstrbuton of Shewhart (Xbar), Cusum, FIR Cusum, and EWMA process control charts for means usng
More information5 Multiple regression analysis with qualitative information
5 Multple regresson analyss wth qualtatve nformaton Ezequel Urel Unversty of Valenca Verson: 913 5.1 Introducton of qualtatve nformaton n econometrc models. 1 5. A sngle dummy ndependent varable 5.3 Multple
More informationChapter XX More advanced approaches to the analysis of survey data. Gad Nathan Hebrew University Jerusalem, Israel. Abstract
Household Sample Surveys n Developng and Transton Countres Chapter More advanced approaches to the analyss of survey data Gad Nathan Hebrew Unversty Jerusalem, Israel Abstract In the present chapter, we
More informationMeasuring Ad Effectiveness Using Geo Experiments
Measurng Ad Effectveness Usng Geo Experments Jon Vaver, Jm Koehler Google Inc Abstract Advertsers have a fundamental need to quantfy the effectveness of ther advertsng For search ad spend, ths nformaton
More informationCS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
More informationAn Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
More informationAn Analysis of Factors Influencing the SelfRated Health of Elderly Chinese People
Open Journal of Socal Scences, 205, 3, 520 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/ss http://dx.do.org/0.4236/ss.205.35003 An Analyss of Factors Influencng the SelfRated Health of
More informationCausal Effects in NonExperimental Studies: ReEvaluating the Evaluation of Training Programs *
Causal Effects n NonExpermental Studes: ReEvaluatng the Evaluaton of Tranng Programs * Rajeev H. Deheja and Sadek Wahba cte as Rajeev Deheja and Sadek Wahba, Causal Effects n NonExpermental Studes:
More informationCalibration Curves. Lecture #5  Overview. Construction of Calibration Curves. Construction of Calibration Curves. Construction of Calibration Curves
Lecture #5  Overvew Statstcs  Part 3 Statstcal Tools n Quanttatve Analyss The Method of Least Squares Calbraton Curves Usng a Spreadsheet for Least Squares Analytcal Response Measure of Unknown Calbraton
More informationAPPLICATIONS OF STATISTICAL EXPERIMENTAL DESIGN METHODS TO CHEMICAL ENGINEERING
APPLICATIONS OF STATISTICAL EXPERIMENTAL DESIGN METHODS TO CHEMICAL ENGINEERING B.AKAY, S.ERTNC, N.BRSALI *, M.ALPBAZ, H.HAPOĞL Ankara nversty, Engneerng Faculty, Chem. Engneerng Department, 6 Tandoğan
More informationCommunication Networks II Contents
8 / 1  Communcaton Networs II (Görg)  www.comnets.unbremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP
More informationState function: eigenfunctions of hermitian operators> normalization, orthogonality completeness
Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators> normalzaton, orthogonalty completeness egenvalues and
More informationSingle and multiple stage classifiers implementing logistic discrimination
Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul  PUCRS Av. Ipranga,
More informationEvaluating credit risk models: A critique and a new proposal
Evaluatng credt rsk models: A crtque and a new proposal Hergen Frerchs* Gunter Löffler Unversty of Frankfurt (Man) February 14, 2001 Abstract Evaluatng the qualty of credt portfolo rsk models s an mportant
More informationDesign and Analysis of Benchmarking Experiments for Distributed Internet Services
Desgn and Analyss of Benchmarkng Experments for Dstrbuted Internet Servces Eytan Bakshy Facebook Menlo Park, CA eytan@fb.com Etan Frachtenberg Facebook Menlo Park, CA etan@frachtenberg.org ABSTRACT The
More informationLecture 14: Implementing CAPM
Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should
More informationHARVARD John M. Olin Center for Law, Economics, and Business
HARVARD John M. Oln Center for Law, Economcs, and Busness ISSN 10456333 ASYMMETRIC INFORMATION AND LEARNING IN THE AUTOMOBILE INSURANCE MARKET Alma Cohen Dscusson Paper No. 371 6/2002 Harvard Law School
More informationA Multimode Image Tracking System Based on Distributed Fusion
A Multmode Image Tracng System Based on Dstrbuted Fuson Ln zheng Chongzhao Han Dongguang Zuo Hongsen Yan School of Electroncs & nformaton engneerng, X an Jaotong Unversty X an, Shaanx, Chna Lnzheng@malst.xjtu.edu.cn
More informationTwo Faces of IntraIndustry Information Transfers: Evidence from Management Earnings and Revenue Forecasts
Two Faces of IntraIndustry Informaton Transfers: Evdence from Management Earnngs and Revenue Forecasts Yongtae Km Leavey School of Busness Santa Clara Unversty Santa Clara, CA 950530380 TEL: (408) 5544667,
More informationWhat is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
More informationSPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:
SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and
More informationThe Classical Model. GaussMarkov Theorem, Specification, Endogeneity
The Classcal Model GaussMarkov Theorem, Specfcaton, Endogenety Propertes of Least Squares Estmators Here s the model: Y = β + β + β + β + L+ β + ε 0 For the case wth regressor and constant, I showed some
More information14.74 Lecture 5: Health (2)
14.74 Lecture 5: Health (2) Esther Duflo February 17, 2004 1 Possble Interventons Last tme we dscussed possble nterventons. Let s take one: provdng ron supplements to people, for example. From the data,
More informationVLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras
VLI Technology Dr. Nandta Dasgupta Department of Electrcal Engneerng Indan Insttute of Technology, Madras Lecture  11 Oxdaton I netcs of Oxdaton o, the unt process step that we are gong to dscuss today
More informationStudent Performance in Online Quizzes as a Function of Time in Undergraduate Financial Management Courses
Student Performance n Onlne Quzzes as a Functon of Tme n Undergraduate Fnancal Management Courses Olver Schnusenberg The Unversty of North Florda ABSTRACT An nterestng research queston n lght of recent
More informationHOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*
HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt
More informationStress test for measuring insurance risks in nonlife insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n nonlfe nsurance Summary Ths memo descrbes stress testng of nsurance
More informationPROFIT RATIO AND MARKET STRUCTURE
POFIT ATIO AND MAKET STUCTUE By Yong Yun Introducton: Industral economsts followng from Mason and Ban have run nnumerable tests of the relaton between varous market structural varables and varous dmensons
More informationCLUSTER SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR 1
amplng Theory MODULE IX LECTURE  30 CLUTER AMPLIG DR HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR It s one of the asc assumptons n any samplng procedure that the populaton
More informationOUTLIERS IN REGRESSION
OUTLIERS IN REGRESSION Dagmar Blatná Introducton A observaton that s substantally dfferent from all other ones can make a large dfference n the results of regresson analyss. Outlers occur very frequently
More informationCharacterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
More informationCalculating the high frequency transmission line parameters of power cables
< ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,
More informationthe Manual on the global data processing and forecasting system (GDPFS) (WMONo.485; available at http://www.wmo.int/pages/prog/www/manuals.
Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBSXIII (2005) recommended that the general responsbltes for a Lead
More informationSimon Acomb NAG Financial Mathematics Day
1 Why People Who Prce Dervatves Are Interested In Correlaton mon Acomb NAG Fnancal Mathematcs Day Correlaton Rsk What Is Correlaton No lnear relatonshp between ponts Comovement between the ponts Postve
More informationSurvival analysis methods in Insurance Applications in car insurance contracts
Survval analyss methods n Insurance Applcatons n car nsurance contracts Abder OULIDI 1 JeanMare MARION 2 Hervé GANACHAUD 3 Abstract In ths wor, we are nterested n survval models and ther applcatons on
More informationIs There A Tradeoff between EmployerProvided Health Insurance and Wages?
Is There A Tradeoff between EmployerProvded Health Insurance and Wages? Lye Zhu, Southern Methodst Unversty October 2005 Abstract Though most of the lterature n health nsurance and the labor market assumes
More information