ANOVA  Analysis of Variance


 Baldwin Dickerson
 1 years ago
 Views:
Transcription
1 ANOVA  Analysis of Variance
2 ANOVA  Analysis of Variance Extends independentsamples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare variances. Can compare more than two groups
3 ANOVA Null and Alternative Hypotheses Say the sample contains K independent groups ANOVA tests the null hypothesis H 0 : μ 1 = μ 2 = = μ K That is, the group means are all equal The alternative hypothesis is H 1 : μ i μ j for some i, j or, the group means are not all equal
4 Example: Accuracy of Implant Placement Implants were placed in a manikin using placement guides of various widths. 15 implants were placed using each guide. Error (discrepancies with a reference implant) was measured for each implant. Mean Implant Height Error (mm) Mean Error by Guide Width 4mm 6mm 8mm Guide Width
5 Example: Accuracy of Implant Placement The overall mean of the entire sample was mm. This is called the grand mean, and is often denoted by X. If H 0 were true then we d expect the group means to be close to the grand mean. Mean Implant Height Error (mm) Mean Error by Guide Width 4mm 6mm 8mm Guide Width
6 Example: Accuracy of Implant Placement The ANOVA test is based on the combined distances from X. If the combined distances are large, that indicates we should reject H 0. Mean Implant Height Error (mm) Mean Error by Guide Width 4mm 6mm 8mm Guide Width
7 The Anova Statistic To combine the differences from the grand mean we Square the differences Multiply by the numbers of observations in the groups Sum over the groups ( ) 2 ( ) 2 ( ) X X + 15 X X + X 2 SSB = 15 X 4mm 6mm 15 where the are the group means. X * 8mm SSB = Sum of Squares Between groups Note: This looks a bit like a variance.
8 How big is big? For the Implant Accuracy Data, SSB = Is that big enough to reject H 0? As with the t test, we compare the statistic to the variability of the individual observations. In ANOVA the variability is estimated by the Mean Square Error, or MSE
9 MSE Mean Square Error Implant Height Error by Guide Width The Mean Square Error is a measure of the variability after the group effects have been taken into account. 1 MSE = N K ( x ij X j ) where x ij is the i th observation in the j th group. j i 2 Implant Height Error (mm) mm 6mm 8mm Guide Width
10 MSE Mean Square Error Implant Height Error by Guide Width The Mean Square Error is a measure of the variability after the group effects have been taken into account. 1 MSE = N K = ( x ij X j ) Note that the variation of the means seems quite small compared to the variance of observations within groups j i 2 Implant Height Error (mm) mm 6mm 8mm Guide Width
11 Notes on MSE If there are only two groups, the MSE is equal to the pooled estimate of variance used in the equalvariance t test. ANOVA assumes that all the group variances are equal. Other options should be considered if group variances differ by a factor of 2 or more.
12 ANOVA F Test The ANOVA F test is based on the F statistic F = SSB ( K 1) MSE where K is the number of groups. Under H 0 the F statistic has an F distribution, with K1 and NK degrees of freedom (N is the total number of observations)
13 Implant Data: F test pvalue F(2,42) distribution To get a pvalue we compare our F statistic to an F(2, 42) distribution F
14 Implant Data: F test pvalue F(2,42) distribution To get a pvalue we compare our F statistic to an F(2, 42) distribution. In our example F = = The pvalue is P ( F(2,42) >. 211) = P = F
15 ANOVA Table Results are often displayed using an ANOVA Table Sum of Squares df Mean Square F Sig. Between Groups Within Groups Total Sum of Squares Between (SSB) Mean Square Error (MSE) F Statistic p value
16 Post Hoc Tests NHANES I data, women yrs old. Compare cholesterol between periodontal groups. The ANOVA shows good evidence (p = 0.002) that the means are not all the same. Sum of Squares Mean Square F Sig. df Between Groups Within Groups Total Which means are different? Can directly compare the subgroups using post hoc tests.
17 Least Significant Difference test Std. N Mean Deviation Healthy Gingivitis Periodontitis Edentulous Sum of Squares Mean Square F Sig. df Between Groups Within Groups Total The most simple post hoc test is called the Least Significant Difference Test. The computation is very similar to the equalvariance t test. Compute an equalvariance t test, but replace the pooled standard deviation, s pooled, with.
18 Least Significant Difference Test: Examples Std. N Mean Deviation Healthy Gingivitis Periodontitis Edentulous Compare Healthy group to Periodontitis group: Pvalue = Sum of Squares Mean Square F Sig. df Between Groups Within Groups Total Compare Gingivitis group to Periodontitis group: Pvalue =
19 Post Hoc Tests: Multiple Comparisons Posthoc testing usually involves multiple comparisons. For example, if the data contain 4 groups, then 6 different pairwise comparisons can be made Healthy Gingivitis Periodontitis Edentulous
20 Post Hoc Tests: Multiple Comparisons Each time a hypothesis test is performed at significance level α, there is probability α of rejecting in error. Performing multiple tests increases the chances of rejecting in error at least once. For example: if you did 6 independent hypothesis tests at the α = 0.05 If, in truth, H 0 were true for all six. The probability that at least one test rejects H 0 is 26% P(at least one rejection) = 1P(no rejections) = =.26
21 Bonferroni Correction for Multiple Comparisons The Bonferroni correction is a simple way to adjust for the multiple comparisons. Bonferroni Correction Perform each test at significance level α. Multiply each pvalue by the number of tests performed. The overall significance level (chance of any of the tests rejecting in error) will be less than α.
22 Example: Cholesterol Data posthoc comparisons Group 1 Group 2 Mean Difference (Group 1  Group 2) Least Significant Difference pvalue Bonferroni pvalue Healthy Gingivitis Healthy Periodontitis Healthy Edentulous Gingivitis Periodontitis Gingivitis Edentulous Periodontitis Edentulous Conclusion: The Edentulous group is significantly different than the Healthy group and the Gingivitis group (p < 0.05), after adjustment for multiple comparisons
Null Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationStatistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl
Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 Oneway ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationc. The factor is the type of TV program that was watched. The treatment is the embedded commercials in the TV programs.
STAT E150  Statistical Methods Assignment 9 Solutions Exercises 12.8, 12.13, 12.75 For each test: Include appropriate graphs to see that the conditions are met. Use Tukey's Honestly Significant Difference
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More information4.4. Further Analysis within ANOVA
4.4. Further Analysis within ANOVA 1) Estimation of the effects Fixed effects model: α i = µ i µ is estimated by a i = ( x i x) if H 0 : µ 1 = µ 2 = = µ k is rejected. Random effects model: If H 0 : σa
More informationEPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM
EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More information12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
More informationOneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
OneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More informationAllelopathic Effects on Root and Shoot Growth: OneWay Analysis of Variance (ANOVA) in SPSS. Dan Flynn
Allelopathic Effects on Root and Shoot Growth: OneWay Analysis of Variance (ANOVA) in SPSS Dan Flynn Just as ttests are useful for asking whether the means of two groups are different, analysis of variance
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More informationIndependent t Test (Comparing Two Means)
Independent t Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent ttest when to use the independent ttest the use of SPSS to complete an independent
More informationSPSS Guide: Tests of Differences
SPSS Guide: Tests of Differences I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationMultiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationINTERPRETING THE REPEATEDMEASURES ANOVA
INTERPRETING THE REPEATEDMEASURES ANOVA USING THE SPSS GENERAL LINEAR MODEL PROGRAM RM ANOVA In this scenario (based on a RM ANOVA example from Leech, Barrett, and Morgan, 2005) each of 12 participants
More informationThe scatterplot indicates a positive linear relationship between waist size and body fat percentage:
STAT E150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the
More informationCOMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.
277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationAnalysis of numerical data S4
Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:
More informationANOVA ANOVA. TwoWay ANOVA. OneWay ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups
ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status nonsmoking one pack a day > two packs a day dependent variable: number of
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More information4. Sum the results of the calculation described in step 3 for all classes of progeny
F09 Biol 322 chi square notes 1. Before proceeding with the chi square calculation, clearly state the genetic hypothesis concerning the data. This hypothesis is an interpretation of the data that gives
More information1. Comparing Two Means: Dependent Samples
1. Comparing Two Means: ependent Samples In the preceding lectures we've considered how to test a difference of two means for independent samples. Now we look at how to do the same thing with dependent
More informationCHAPTER 13. Experimental Design and Analysis of Variance
CHAPTER 13 Experimental Design and Analysis of Variance CONTENTS STATISTICS IN PRACTICE: BURKE MARKETING SERVICES, INC. 13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE Data Collection
More informationTwosample hypothesis testing, II 9.07 3/16/2004
Twosample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For twosample tests of the difference in mean, things get a little confusing, here,
More informationANNOTATED OUTPUTSPSS Simple Linear (OLS) Regression
Simple Linear (OLS) Regression Regression is a method for studying the relationship of a dependent variable and one or more independent variables. Simple Linear Regression tells you the amount of variance
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationHypothesis Testing. Chapter 7
Hypothesis Testing Chapter 7 Hypothesis Testing Time to make the educated guess after answering: What the population is, how to extract the sample, what characteristics to measure in the sample, After
More informationOneWay ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate
1 OneWay ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More informationTesting Hypotheses using SPSS
Is the mean hourly rate of male workers $2.00? TTest OneSample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 OneSample Test Test Value = 2 95% Confidence Interval Mean of the
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More informationBA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394
BA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
More informationTukey s HSD (Honestly Significant Difference).
Agenda for Week 4 (Tuesday, Jan 26) Week 4 Hour 1 AnOVa review. Week 4 Hour 2 Multiple Testing Tukey s HSD (Honestly Significant Difference). Week 4 Hour 3 (Thursday) Twoway AnOVa. Sometimes you ll need
More informationChapter 7. Oneway ANOVA
Chapter 7 Oneway ANOVA Oneway ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The ttest of Chapter 6 looks
More informationFriedman's Twoway Analysis of Variance by Ranks  Analysis of kwithingroup Data with a Quantitative Response Variable
Friedman's Twoway Analysis of Variance by Ranks  Analysis of kwithingroup Data with a Quantitative Response Variable Application: This statistic has two applications that can appear very different,
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationRandomized Block Analysis of Variance
Chapter 565 Randomized Block Analysis of Variance Introduction This module analyzes a randomized block analysis of variance with up to two treatment factors and their interaction. It provides tables of
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationTHE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKALWALLIS TEST: The nonparametric alternative to ANOVA: testing for difference between several independent groups 2 NON
More informationExamining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish
Examining Differences (Comparing Groups) using SPSS Inferential statistics (Part I) Dwayne Devonish Statistics Statistics are quantitative methods of describing, analysing, and drawing inferences (conclusions)
More informationDifference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationTwo Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
More informationComparing Two or more than Two Groups
CRJ 716 Using Computers in Social Research Comparing Two or more than Two Groups Comparing Means, Conducting TTests and ANOVA Agron Kaci John Jay College Chapter 9/1: Comparing Two or more than Two Groups
More information13: Additional ANOVA Topics. Post hoc Comparisons
13: Additional ANOVA Topics Post hoc Comparisons ANOVA Assumptions Assessing Group Variances When Distributional Assumptions are Severely Violated KruskalWallis Test Post hoc Comparisons In the prior
More informationRegression III: Dummy Variable Regression
Regression III: Dummy Variable Regression Tom Ilvento FREC 408 Linear Regression Assumptions about the error term Mean of Probability Distribution of the Error term is zero Probability Distribution of
More informationContrasts ask specific questions as opposed to the general ANOVA null vs. alternative
Chapter 13 Contrasts and Custom Hypotheses Contrasts ask specific questions as opposed to the general ANOVA null vs. alternative hypotheses. In a oneway ANOVA with a k level factor, the null hypothesis
More informationSection 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
More informationAnalysis of Variance and Design of Experiments
CHAPTER 11 Analysis of Variance and Design of Experiments LEARNING OBJECTIVES The focus of this chapter is the design of experiments and the analysis of variance, thereby enabling you to: 1. Describe an
More informationReview on Univariate Analysis of Variance (ANOVA) Pekka Malo 30E00500 Quantitative Empirical Research Spring 2016
Review on Univariate Analysis of Variance (ANOVA) Pekka Malo 30E00500 Quantitative Empirical Research Spring 2016 Analysis of Variance Analysis of Variance (ANOVA) ~ special case of multiple regression,
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationPresentation on Cosmetic Hypothesis Analysis. Presented By: Aman Agarwal Ayushi Jain Govind Dilip
Presentation on Cosmetic Hypothesis Analysis Presented By: Aman Agarwal Ayushi Jain Govind Dilip Objectives 1. To analyze the consumers brand preferences for cosmetic products. 2. To evaluate consumers
More informationDDBA 8438: The t Test for Independent Samples Video Podcast Transcript
DDBA 8438: The t Test for Independent Samples Video Podcast Transcript JENNIFER ANN MORROW: Welcome to The t Test for Independent Samples. My name is Dr. Jennifer Ann Morrow. In today's demonstration,
More information1 Basic ANOVA concepts
Math 143 ANOVA 1 Analysis of Variance (ANOVA) Recall, when we wanted to compare two population means, we used the 2sample t procedures. Now let s expand this to compare k 3 population means. As with the
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationThe ANOVA for 2x2 Independent Groups Factorial Design
The ANOVA for 2x2 Independent Groups Factorial Design Please Note: In the analyses above I have tried to avoid using the terms "Independent Variable" and "Dependent Variable" (IV and DV) in order to emphasize
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationPart 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
More informationChapter 2 Probability Topics SPSS T tests
Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the OneSample T test has been explained. In this handout, we also give the SPSS methods to perform
More informationLecture 23 Multiple Comparisons & Contrasts
Lecture 23 Multiple Comparisons & Contrasts STAT 512 Spring 2011 Background Reading KNNL: 17.317.7 231 Topic Overview Linear Combinations and Contrasts Pairwise Comparisons and Multiple Testing Adjustments
More information13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations.
13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. Data is organized in a two way table Explanatory variable (Treatments)
More informationEPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeatedmeasures data if participants are assessed on two occasions or conditions
More informationRegression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur
Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture  7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression
More informationo Exercise A Comparisonwise versus Experimentwise Error Rates
Multiple Comparisons Contents The Estimation of Group (Treatment) Means o Example Multiple Comparisons o Fisher's Least Significant Difference (LSD) Theory Example o Tukey's Honest Significant Difference
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationData Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationLecture 13 More on hypothesis testing
Lecture 13 More on hypothesis testing Thais Paiva STA 111  Summer 2013 Term II July 22, 2013 1 / 27 Thais Paiva STA 111  Summer 2013 Term II Lecture 13, 07/22/2013 Lecture Plan 1 Type I and type II error
More informationPractice 3 SPSS. Partially based on Notes from the University of Reading:
Practice 3 SPSS Partially based on Notes from the University of Reading: http://www.reading.ac.uk Simple Linear Regression A simple linear regression model is fitted when you want to investigate whether
More informationComparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
More informationGeneral Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test
Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics
More informationThe Analysis of Variance ANOVA
3σ σ σ +σ +σ +3σ The Analysis of Variance ANOVA Lecture 0909.400.0 / 0909.400.0 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S 3σ σ σ +σ +σ +3σ Analysis
More informationTHE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.
THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More informationHYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR
HYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR Hypothesis is a conjecture (an inferring) about one or more population parameters. Null Hypothesis (H 0 ) is a statement of no difference or no relationship
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationProjects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
More informationUnit 24 Hypothesis Tests about Means
Unit 24 Hypothesis Tests about Means Objectives: To recognize the difference between a paired t test and a twosample t test To perform a paired t test To perform a twosample t test A measure of the amount
More information112 Goodness of Fit Test
112 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a oneway frequency table). We will use a hypothesis
More informationOneWay Analysis of Variance
OneWay Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationIntroduction. Hypothesis Testing. Hypothesis Testing. Significance Testing
Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters
More informationGeneral Regression Formulae ) (N2) (1  r 2 YX
General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Betahat: β = r YX (1 Standard
More information