Basic Statistcs Formula Sheet
|
|
- Cory Tate
- 1 years ago
- Views:
Transcription
1 Basic Statistcs Formula Sheet Steven W. ydick May 5, 0 This document is only intended to review basic concepts/formulas from an introduction to statistics course. Only mean-based procedures are reviewed, and emphasis is placed on a simplistic understanding is placed on when to use any method. After reviewing and understanding this document, one should then learn about more complex procedures and methods in statistics. However, keep in mind the assumptions behind certain procedures, and know that statistical procedures are sometimes flexible to data that do not necessarily match the assumptions.
2 Descriptive Statistics Elementary Descriptives (Univariate & Bivariate) ame Population Symbol Sample Symbol Sample Calculation Main Problems Alternatives Mean µ x x = x Sensitive to outliers Median, Mode Variance σ x s x s x = (x x) Sensitive to outliers MAD, IQR Standard Dev σ x = s x Biased MAD Covariance σ xy y y = (x x)(y ȳ) Outliers, uninterpretable units Correlation Correlation ρ xy r xy r xy = sxy s y r xy = (zxz y) Range restriction, outliers, nonlinearity z-score z x z x z x = x x ; z = 0; s z = Doesn t make distribution normal Simple Linear Regression (Usually Quantitative IV; Quantitative DV) Part Population Symbol Sample Symbol Sample Calculation Meaning Regular Equation y i = α + βx i + ɛ i y i = a + bx i + e i ŷ i = a + bx i Predict y from x Slope β b b = sxy s x = (x x)(y ȳ) (x x) Predicted change in y for unit change in x Intercept α a a = ȳ b x Predicted y for x = 0 Standardized Equation z yi = ρ xyz xi + ɛ i z yi = r xyz xi + e i ẑ yi = r xyz xi Predict z y from z x Slope ρ xy r xy ( ) r xy = sxy s s y = b x sy Predicted change in z y for unit change in z x Intercept one one 0 Predicted z y for z x = 0 is 0 Effect Size P R r ŷy = r xy Variance in y accounted for by regression line
3 Inferential Statistics t-tests (Categorical IV ( or Groups); Quantitative DV) Test Statistic Parameter Standard Deviation Standard Error df t-obt One Sample x µ = Paired Samples D µd s D = Independent Samples x x µ µ s p = (x x) (D D) D (n )s +(n )s n +n s p t obt = x µ 0 sx s D D t obt = D µ D 0 s D D D n + n n + n t obt = ( x x ) (µ µ ) 0 s p n + n Correlation r ρ = 0 A A t obt = Regression (FYI) a & b α & β ˆσ e = r r (y ŷ) s a & s b t obt = a α 0 s a & t obt = b β 0 s b t-tests Hypotheses/Rejection Question One Sample Paired Sample Independent Sample When to Reject Greater Than? H 0 : µ # H 0 : µ D # H 0 : µ µ # Extreme positive numbers H : µ > # H : µ D > # H : µ µ > # t obt > t crit (one-tailed) Less Than? H 0 : µ # H 0 : µ D # H 0 : µ µ # Extreme negative numbers H : µ < # H : µ D < # H : µ µ < # t obt < t crit (one-tailed) ot Equal To? H 0 : µ = # H 0 : µ D = # H 0 : µ µ = # Extreme numbers (negative and positive) H : µ # H : µ D # H : µ µ # t obt > t crit (two-tailed) t-tests Miscellaneous Test Confidence Interval: γ% = ( α)% Unstandardized Effect Size Standardized Effect Size One Sample x ± t ; crit(-tailed) sx x µ 0 ˆd = x µ 0 Paired Samples D ± td ; crit(-tailed) s D D ˆd = D D s D Independent Samples ( x x ) ± t n +n ; crit(-tailed) s p n + n x x ˆd = x x s p 3
4 One-Way AOVA (Categorical IV (Usually 3 or More Groups); Quantitative DV) Source Sums of Sq. df Mean Sq. F -stat Effect Size Between Within Total g j= nj( xj xg) g SSB/dfB MSB/MSW η = SSB SST g j= (nj )s j g SSW/dfW i,j (xij xg). We perform AOVA because of family-wise error -- the probability of rejecting at least one true H 0 during multiple tests.. G is grand mean or average of all scores ignoring group membership. 3. x j is the mean of group j; n j is number of people in group j; g is the number of groups; is the total number of people. One-Way AOVA Hypotheses/Rejection Question Hypotheses When to Reject Is at least one mean different? H 0 : µ = µ = = µ k Extreme positive numbers H : At least one µ is different from at least one other µ F obt > F crit Remember Post-Hoc Tests: LSD, Bonferroni, Tukey (what are the rank orderings of the means?) Chi Square (χ ) (Categorical IV; Categorical DV) Test Hypotheses Observed Expected df χ Stat When to Reject Independence H 0 : Vars are Independent From Table p jp k (Cols - )(Rows - ) H : Vars are Dependent Goodness of Fit H 0 : Model Fits From Table p i Cells - H : Model Doesn t Fit. Remember: the sum is over the number of cells/columns/rows (not the number of people). For Test of Independence: p j and p k are the marginal proportions of variable j and variable k respectively 3. For Goodness of Fit: p i is the expected proportion in cell i if the data fit the model 4. is the total number of people R C (f O ij f E ij ) i= j= f E ij C i= (f O i f E i ) f E i Extreme Positive umbers χ obt > χ crit Extreme Positive umbers χ obt > χ crit 4
5 Assumptions of Statistical Models Correlation. Estimating: Relationship is linear. Estimating: o outliers 3. Estimating: o range restriction 4. Testing: Bivariate normality One Sample t-test. x is normally distributed in the population. Independence of observations Paired Samples t-test. Difference scores are normally distributed in the population. Independence of pairs of observations One-Way AOVA. Each group is normally distributed in the population. Homogeneity of variance 3. Independence of observations within and between groups Regression. Relationship is linear. Bivariate normality 3. Homoskedasticity (constant error variance) 4. Independence of pairs of observations Independent Samples t-test. Each group is normally distributed in the population. Homogeneity of variance (both groups have the same variance in the population) 3. Independence of observations within and between groups (random sampling & random assignment) Chi Square (χ ). o small expected frequencies Total number of observations at least 0 Expected number in any cell at least 5. Independence of observations Each individual is only in OE cell of the table Central Limit Theorem Given a population distribution with a mean µ and a variance σ, the sampling distribution of the mean using sample size (or, to put it another way, the distribution of sample means) will have a mean of µ x = µ and a variance equal to σ x = σ, which implies that σ x = σ. Furthermore, the distribution will approach the normal distribution as, the sample size, increases. Possible Decisions/Outcomes H 0 True H 0 False Rejecting H 0 Type I Error (α) Correct Decision ( β; Power) ot Rejecting H 0 Correct Decision ( α) Type II Error (β) Power Increases If:, α, σ, Mean Difference, or One-Tailed Test 5
Descriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
e = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
Study Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
AMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015
AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application
Chapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,
Chris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
ANOVA ANOVA. Two-Way ANOVA. One-Way ANOVA. When to use ANOVA ANOVA. Analysis of Variance. Chapter 16. A procedure for comparing more than two groups
ANOVA ANOVA Analysis of Variance Chapter 6 A procedure for comparing more than two groups independent variable: smoking status non-smoking one pack a day > two packs a day dependent variable: number of
Section 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
SPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
Chapter 9. Section Correlation
Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation
Introduction to Analysis of Variance (ANOVA) Limitations of the t-test
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only
5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
For example, enter the following data in three COLUMNS in a new View window.
Statistics with Statview - 18 Paired t-test A paired t-test compares two groups of measurements when the data in the two groups are in some way paired between the groups (e.g., before and after on the
Two Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
The Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM
EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable
Estimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
Geostatistics Exploratory Analysis
Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt
Inferential Statistics
Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
Bivariate Regression Analysis. The beginning of many types of regression
Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression
Null Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
Example: Boats and Manatees
Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant
Calculate Confidence Intervals Using the TI Graphing Calculator
Calculate Confidence Intervals Using the TI Graphing Calculator Confidence Interval for Population Proportion p Confidence Interval for Population μ (σ is known 1 Select: STAT / TESTS / 1-PropZInt x: number
Technology Step-by-Step Using StatCrunch
Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate
General Regression Formulae ) (N-2) (1 - r 2 YX
General Regression Formulae Single Predictor Standardized Parameter Model: Z Yi = β Z Xi + ε i Single Predictor Standardized Statistical Model: Z Yi = β Z Xi Estimate of Beta (Beta-hat: β = r YX (1 Standard
HYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Lecture 5: Correlation and Linear Regression
Lecture 5: Correlation and Linear Regression 3.5. (Pearson) correlation coefficient The correlation coefficient measures the strength of the linear relationship between two variables. The correlation is
Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests
DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also
Module 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test
The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree
PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and
Econometrics Simple Linear Regression
Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight
Chapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
II. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
Hypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
Introduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
individualdifferences
1 Simple ANalysis Of Variance (ANOVA) Oftentimes we have more than two groups that we want to compare. The purpose of ANOVA is to allow us to compare group means from several independent samples. In general,
4. Joint Distributions of Two Random Variables
4. Joint Distributions of Two Random Variables 4.1 Joint Distributions of Two Discrete Random Variables Suppose the discrete random variables X and Y have supports S X and S Y, respectively. The joint
Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination
Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
Two-sample hypothesis testing, II 9.07 3/16/2004
Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible
1 Nonparametric Statistics
1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions
Variance of OLS Estimators and Hypothesis Testing. Randomness in the model. GM assumptions. Notes. Notes. Notes. Charlie Gibbons ARE 212.
Variance of OLS Estimators and Hypothesis Testing Charlie Gibbons ARE 212 Spring 2011 Randomness in the model Considering the model what is random? Y = X β + ɛ, β is a parameter and not random, X may be
Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)
Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume
Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario
Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything
Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples
Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
SIMPLE LINEAR CORRELATION. r can range from -1 to 1, and is independent of units of measurement. Correlation can be done on two dependent variables.
SIMPLE LINEAR CORRELATION Simple linear correlation is a measure of the degree to which two variables vary together, or a measure of the intensity of the association between two variables. Correlation
AP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2
Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA
Pearson's Correlation Tests
Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation
CALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Simple Linear Regression in SPSS STAT 314
Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,
Sampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and
Chapter 1 Hypothesis Testing
Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,
Hypothesis Testing & Data Analysis. Statistics. Descriptive Statistics. What is the difference between descriptive and inferential statistics?
2 Hypothesis Testing & Data Analysis 5 What is the difference between descriptive and inferential statistics? Statistics 8 Tools to help us understand our data. Makes a complicated mess simple to understand.
Statistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately
The Scalar Algebra of Means, Covariances, and Correlations
3 The Scalar Algebra of Means, Covariances, and Correlations In this chapter, we review the definitions of some key statistical concepts: means, covariances, and correlations. We show how the means, variances,
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools
Data Mining Techniques Chapter 5: The Lure of Statistics: Data Mining Using Familiar Tools Occam s razor.......................................................... 2 A look at data I.........................................................
T-tests. Daniel Boduszek
T-tests Daniel Boduszek d.boduszek@interia.eu danielboduszek.com Presentation Outline Introduction to T-tests Types of t-tests Assumptions Independent samples t-test SPSS procedure Interpretation of SPSS
Directions for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
Notes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl
Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011
Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
Statistics: revision
NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 3 / 4 May 2005 Department of Experimental Psychology University of Cambridge Slides at pobox.com/~rudolf/psychology
ANSWERS TO EXERCISES AND REVIEW QUESTIONS
ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS
IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results
IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the
Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo
Readings: Ha and Ha Textbook - Chapters 1 8 Appendix D & E (online) Plous - Chapters 10, 11, 12 and 14 Chapter 10: The Representativeness Heuristic Chapter 11: The Availability Heuristic Chapter 12: Probability
Difference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
Pearson s Correlation
Pearson s Correlation Correlation the degree to which two variables are associated (co-vary). Covariance may be either positive or negative. Its magnitude depends on the units of measurement. Assumes the
Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between
Chapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
Simple linear regression
Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between
STAT 200: Course Aims and Objectives
STAT 200: Course Aims and Objectives Attitudinal aims In addition to specific learning outcomes, the course aims to shape the attitudes of learners regarding the field of Statistics. Specifically, the
An example ANOVA situation. 1-Way ANOVA. Some notation for ANOVA. Are these differences significant? Example (Treating Blisters)
An example ANOVA situation Example (Treating Blisters) 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College Subjects: 25 patients with blisters Treatments: Treatment A, Treatment
UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
Review on Univariate Analysis of Variance (ANOVA) Pekka Malo 30E00500 Quantitative Empirical Research Spring 2016
Review on Univariate Analysis of Variance (ANOVA) Pekka Malo 30E00500 Quantitative Empirical Research Spring 2016 Analysis of Variance Analysis of Variance (ANOVA) ~ special case of multiple regression,