Students will need about 30 minutes to complete these constructed response tasks.


 Prosper Freeman
 1 years ago
 Views:
Transcription
1 Electric Title of Circuits Concept Constructed Response Teacher Guide Students will need about 30 minutes to complete these constructed response tasks. Objectives assessed: Understand the functions of common elements that make up series and parallel circuits and interpret circuit diagrams. Understand that resistors in DC circuits increase in temperature because they dissipate energy. Explain how the characteristics of transistors make them useful in electric circuits.. The symbols for some common elements that make up series and parallel circuits are shown below. Complete the table below. In the first column, fill in the names of the circuit elements. In the second column, draw in the corresponding symbols. Brief Constructed Response: Name of Concept Page of 8
2 5 Solution includes all correct table responses. 4 Solution includes at least ten correct table responses. 3 Solution includes at least eight correct table responses. 2 Solution includes at least six correct table responses. Solution includes at least four correct table responses. Objectives assessed: Predict the voltage or current in a simple DC circuit that includes wires, resistors, capacitors, and batteries. 2. Consider the following circuit diagram: Brief Constructed Response: Name of Concept Page 2 of 8
3 Draw the general shape of the graph of the current in the circuit over time. Draw the general shape of the graph of the charge on the capacitor over time. 3 Both graphs show correct general exponential shape. 2 One graph shows correct general exponential shape. Both graphs incorrect, but the student shows the basic understanding that the first graph is decreasing and the second graph is increasing. Brief Constructed Response: Name of Concept Page 3 of 8
4 Objectives assessed: Use Ohm's law to describe the relationship between current, voltage, and resistance. Explain the relationship between electrical power, current, and voltage. Solve problems involving power in resistive circuit elements. For both series and parallel circuits, calculate the current, potential difference, resistance, and power of different circuit elements. Design and build both series and parallel circuits. 3. A 2V battery is connected in series with resistor R = 2 Ω and resistor R 2 = 4.0 Ω. Draw the circuit diagram and label it with each component. Find the equivalent resistance. Find the total current in the circuit. Find the current through each resistor. Find the power in each resistor and in the circuit. [Art: Start with circuit diagram below, with 2 V battery at left, with 2 Ω and 4 Ω resistors in series. We DO NOT own this art, so use the art below only as a starting point. Omit the current arrow, use only two resistors, and make the battery look like the battery in the diagram for Question 4. Also omit the green squiggly E label] R eq = R + R 2 = 2 Ω Ω = 6 Ω I = V = 2 V R tot 6 Ω = 0.75 A P circuit = IV = ( 0.75 A) ( 2 V)= 9.0 W V = IR = ( 0.75 A) ( 2 Ω)= 9.0 V P = IV = ( 0.75 A) ( 9.0 V)= 6.75 W V 2 = IR 2 = ( 0.75 A) ( 4.0 Ω)= 3.0 V P 2 = IV 2 = ( 0.75 A) ( 3.0 V)= 2.25 W Brief Constructed Response: Name of Concept Page 4 of 8
5 4 All of: draws correct circuit diagram; finds correct total resistance; finds correct circuit current; finds correct power. 3 Three of: draws correct circuit diagram; finds correct total resistance; finds correct circuit current; finds correct power. Allow points for correct calculations using incorrect values found earlier. 2 Two of: draws correct circuit diagram; finds correct total resistance; finds correct circuit current; finds correct power. Allow points for correct calculations using incorrect values found earlier. One of: draws correct circuit diagram; finds correct total resistance; finds correct circuit current; finds correct power. Allow points for correct calculations using incorrect values found earlier. 4. A 2V battery is connected in parallel with resistor R = 2 Ω and resistor R 2 = 4.0 Ω. Draw the circuit diagram and label it with each component. Find the equivalent resistance. Find the total current in the circuit. Find the current through each resistor. Find the power in the circuit. = R eq 2 Ω Ω = 3.0 Ω R eq = 3.0 Ω I = V R eq = 2 V 3.0 Ω = 4.0 A I = V R = 2 V 2 Ω =.0 A I 2 = V = 2 V R Ω = 3.0 A P = IV = 4.0 A ( )( 2 V) = 48 W Brief Constructed Response: Name of Concept Page 5 of 8
6 5 All of: draws correct circuit diagram; finds correct equivalent resistance; finds correct total circuit current; finds correct current through each resistor; finds correct power. 4 Four of: draws correct circuit diagram; finds correct equivalent resistance; finds correct total circuit current; finds correct current through each resistor; finds correct power. Allow points for correct calculations using incorrect values found earlier. 3 Three of: draws correct circuit diagram; finds correct equivalent resistance; finds correct total circuit current; finds correct current through each resistor; finds correct power. Allow points for correct calculations using incorrect values found earlier. 2 Two of: draws correct circuit diagram; finds correct equivalent resistance; finds correct total circuit current; finds correct current through each resistor; finds correct power. Allow points for correct calculations using incorrect values found earlier. One of: draws correct circuit diagram; finds correct equivalent resistance; finds correct total circuit current; finds correct current through each resistor; finds correct power. Allow points for correct calculations using incorrect values found earlier. Brief Constructed Response: Name of Concept Page 6 of 8
7 5. You have a 2 V battery, a R = 2 Ω resistor, and another component that requires a current of 2.0 A and a voltage drop of 6.0 V. What value of resistor would you connect in parallel with R, with both resistors in series with the other component, to produce the required current and voltage drop? Voltage drop across resistors in parallel = 2 V 6 V = 6 V Equivalent resistance R eq for parallel resistors: R eq = 6.0 V 2.0 A = 3.0 Ω = R eq 2 Ω + R 2 R 2 = R eq 2 Ω R 2 = 3.0 Ω 2 Ω R 2 = 4.0 Ω 3 Calculates voltage drop across resistors, figures equivalent resistance of parallel resistors, calculates R 2. 2 Calculates voltage drop across resistors, figures equivalent resistance of parallel resistors. Allow points for correct calculations using incorrect values found earlier. Calculates voltage drop across resistors. Allow points for correct calculations using incorrect values found earlier. Brief Constructed Response: Name of Concept Page 7 of 8
8 6. You have a battery with leads B and B 2, an open switch with ends S and S 2, and two resistors R A and R B with ends R A and R A2, and R B and R B2. Which ends would you connect together to make a circuit with connected in parallel with the battery, and why do you use the switch? Draw a picture of the circuit that would result. [Art: Start with the circuit diagram given in the Correct Response to Question 4, and omit voltage and resistance value labels. Add an open switch above and to the right of the battery (i.e., above and to the left of the resistors), and label component ends as discussed in the answer to Question 6. Component end labels will juxtapose at connections between components. Place labels in close proximity to juxtapositions.] Connect open switch end S to battery lead B, ends R A and R B to S 2, and ends R A2 and R B2 to B 2. The switch is used for safety, so that electricity doesn t flow in the circuit until we activate it. 3 Draws correct circuit diagram, knows why open switch is used. 2 Draws correct circuit diagram, but does not answer about open switch Draws incorrect circuit diagram Brief Constructed Response: Name of Concept Page 8 of 8
Physics Worksheet Electric Circuits Section: Name: Series Circuits
Do Now: (1) What is electric circuit? (2) Convert the following picture into schematic diagram. Series Circuits 4. Label every component of the circuit; identify each of the voltage and current. 5. Relation
More informationHow many laws are named after Kirchhoff?
Chapter 32. Fundamentals of Circuits Surprising as it may seem, the power of a computer is achieved simply by the controlled flow of charges through tiny wires and circuit elements. Chapter Goal: To understand
More information= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W
Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00
More informationSeries and Parallel Wiring
Series and Parallel Wiring Thus far, we have dealt with circuits that include only a single device, such as a light bulb. There are, however, many circuits in which more than one device is connected to
More informationThe current that flows is determined by the potential difference across the conductor and the resistance of the conductor (Ohm s law): V = IR P = VI
PHYS1000 DC electric circuits 1 Electric circuits Electric current Charge can move freely in a conductor if an electric field is present; the moving charge is an electric current (SI unit is the ampere
More informationChapter 18: Circuits and Circuit Elements 1. Schematic diagram: diagram that depicts the construction of an electrical apparatus
Chapter 18: Circuits and Circuit Elements 1 Section 1: Schematic Diagrams and Circuits Schematic Diagrams Schematic diagram: diagram that depicts the construction of an electrical apparatus Uses symbols
More informationCurrent Electricity Lab Series/Parallel Circuits. Safety and Equipment Precautions!
Current Electricity Lab Series/Parallel Circuits Name Safety and Equipment Precautions! Plug in your power supply and use ONLY the D.C. terminals of the power source, NOT the A. C. terminals. DO NOT touch
More informationSchematic diagrams depict the construction of a circuit Uses symbols to represent specific circuit elements Documents how elements are connected so
Circuits Schematic diagrams depict the construction of a circuit Uses symbols to represent specific circuit elements Documents how elements are connected so that anyone reading diagram can understand the
More informationChapter 21 Electric Current and DirectCurrent Circuit
Chapter 2 Electric Current and DirectCurrent Circuit Outline 2 Electric Current 22 Resistance and Ohm s Law 23 Energy and Power in Electric Circuit 24 Resistance in Series and Parallel 25 Kirchhoff
More informationPHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members:
PHY 101 Lab 7 on Electric circuits: Direct current circuits Your name: Other team members: Goals: To explore the basic principles of electric circuits, and how to measure them. Materials: Electrical resistors
More informationSeries and Parallel Resistors
Series and Parallel Resistors 1 Objectives To calculate the equivalent resistance of series and parallel resistors. 2 Examples for resistors in parallel and series R 4 R 5 Series R 6 R 7 // R 8 R 4 //
More informationPhysics 9 Fall 2009 Homework 6  Solutions
. Chapter 32  Exercise 8. Physics 9 Fall 29 Homework 6  s How much power is dissipated by each resistor in the figure? First, let s figure out the current in the circuit. Since the two resistors are
More informationAP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
More informationCircuits. Page The diagram below represents a series circuit containing three resistors.
Name: Circuits Date: 1. Which circuit segment has an equivalent resistance of 6 ohms? 4. The diagram below represents a series circuit containing three resistors. 2. Base your answer to the following question
More informationEMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors
Chapter 19 DC Electrical Circuits Topics in Chapter 19 EMF and Terminal Voltage Resistors in Series and Parallel Kirchhoff s Rules EMFs in Series and Parallel; Charging a Battery Circuits with Capacitors
More informationChapter 19. Electric Circuits
Chapter 9 Electric Circuits Series Wiring There are many circuits in which more than one device is connected to a voltage source. Series wiring means that the devices are connected in such a way that there
More informationQ1. (a) The diagram shows the voltagecurrent graphs for three different electrical components.
Q. (a) The diagram shows the voltagecurrent graphs for three different electrical components. Which one of the components A, B or C could be a 3 volt filament lamp? Explain the reason for your choice...................
More informationMaximum value. resistance. 1. Connect the Current Probe to Channel 1 and the Differential Voltage Probe to Channel 2 of the interface.
Series and Parallel Circuits Computer 23 Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are
More informationCircuitsCircuit Analysis
Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9volt battery is connected to a 4ohm resistor and a 5ohm resistor as shown in the diagram below. A 3.0ohm resistor,
More informationUnit 7: Electric Circuits
Multiple Choice Portion 1. The diagram below shows part of an electrical circuit. Unit 7: Electric Circuits 4. A 12 V battery supplies a 5.0 A current to two light bulbs as shown below. What are the magnitude
More informationSeries and Parallel Circuits
Series and Parallel Circuits Ver. 1.2 In this experiment we will investigate the properties of several resistors connected in series and parallel. Our purpose is to verify the simple equations for the
More informationExperiment: Series and Parallel Circuits
Phy203: General Physics Lab page 1 of 6 Experiment: Series and Parallel Circuits OBJECTVES MATERALS To study current flow and voltages in series and parallel circuits. To use Ohm s law to calculate equivalent
More informationChapter 2 Objectives
Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and
More informationAP* Electric Circuits Free Response Questions
AP* Electric Circuits Free Response Questions 1996 Q4 (15 points) A student is provided with a 12.0V battery of negligible internal resistance and four resistors with the following resistances: 100 Ω,
More informationA) The potential difference across the 6ohm B) 2.0 A resistor is the same as the potential difference across the 3ohm resistor. D) 4.
1. A 2.0ohm resistor and a 4.0ohm resistor are connected in series with a 12volt battery. If the current through the 2.0ohm resistor is 2.0 amperes, the current through the 4.0ohm resistor is A) 1.0
More informationSection 20.7 Parallel Wiring
Here are a series of questions taken from the Cutnell & Johnson test bank. These are offered for practice purposes only. I will not grade your results and I do not want you to spend too much time on these.
More information1) 10. V 2) 20. V 3) 110 V 4) 220 V
1. The diagram below represents an electric circuit consisting of a 12volt battery, a 3.0ohm resistor, R 1, and a variable resistor, R 2. 3. What is the total resistance of the circuit 1) 6.6 Ω 2) 10
More informationChapter 21 Electric Current and DirectCurrent Circuit
Chapter 21 Electric Current and DirectCurrent Circuit Outline 211 Electric Current 212 Resistance and Ohm s Law 213 Energy and Power in Electric Circuit 214 Resistance in Series and Parallel 215
More informationEMF & INTERNAL RESISTANCE 28 JULY 2015 Section A: Summary Notes
EMF & INTERNAL RESISTANCE 28 JULY 2015 Section A: Summary Notes Internal Resistance The emf of a cell is the maximum amount of energy which the cell can supply. When the cell is delivering current, the
More informationStoring And Releasing Charge In A Circuit
Storing And Releasing Charge In A Circuit Topic The characteristics of capacitors Introduction A capacitor is a device that can retain and release an electric charge, and is used in many circuits. There
More informationStudent Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
More informationSeries and Parallel. How we wire the world
Series and Parallel How we wire the world Series vs Parallel Circuits Series Circuit Electrons only have one path to flow through. Parallel Circuit There are MULTIPLE paths for the current to flow through.
More informationHomework. Reading: Chap. 30, Chap. 31 and Chap. 32. Suggested exercises: 31.1, 5, 6, 7, 8, 13, 14, 17, 23, 24, 25
Homework Reading: Chap. 30, Chap. 31 and Chap. 32 Suggested exercises: 31.1, 5, 6, 7, 8, 13, 14, 17, 23, 24, 25 Problems: 31.35, 31.38, 31.41, 31.42, 31.49, 31.54, 31.57, 31.63, 31.64, 31.67, 31.70, 31.73
More informationElectrical Fundamentals Module 3: Parallel Circuits
Electrical Fundamentals Module 3: Parallel Circuits PREPARED BY IAT Curriculum Unit August 2008 Institute of Applied Technology, 2008 ATE310 Electrical Fundamentals 2 Module 3 Parallel Circuits Module
More informationName: Lab Partner: Section:
Chapter 6 Capacitors and RC Circuits Name: Lab Partner: Section: 6.1 Purpose The purpose of this experiment is to investigate the physics of capacitors in circuits. The charging and discharging of a capacitor
More informationSaturday Xtra XSheet: 19. Electric circuits
Saturday Xtra XSheet: 9 Key Concepts Electric circuits This lesson focuses on the following: Potential Difference Current The resistance of a conductor Ohm s Law and circuit calculations Terminology
More informationChapter 18. Preview. Objectives Schematic Diagrams Electric Circuits. Section 1 Schematic Diagrams and Circuits
Section 1 Schematic Diagrams and Circuits Preview Objectives Schematic Diagrams Electric Circuits Section 1 Schematic Diagrams and Circuits Objectives Interpret and construct circuit diagrams. Identify
More informationPhysics. Cambridge IGCSE. Workbook. David Sang. Second edition. 9780521757843 Cambers & Sibley: IGCSE Physics Cover. C M Y K
Cambridge IGCSE Physics, Second edition matches the requirements of the latest Cambridge IGCSE Physics syllabus (0625). It is endorsed by Cambridge International Examinations for use with their examination.
More informationExperiment 4 ~ Resistors in Series & Parallel
Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You
More informationPreview of Period 12: Electric Circuits
Preview of Period 2: Electric Circuits 2. Voltage, Current, and esistance How are voltage, current, and resistance related? 2.2 esistance and Voltage of esistors in Connected in Series How does current
More informationCh 18 Direct Current Circuits. concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37
Ch 18 Direct Current Circuits concept #2, 5, 10, 12, 13, 23 Problems #1, 5, 6, 11, 17, 25, 31, 32, 33, 35, 36, 37 currents are maintained by a source of emf (battery, generator) Sources of emf act as charge
More informationHomework 6 Solutions PHYS 212 Dr. Amir
Homework 6 Solutions PHYS Dr. Amir Chapter 5: 9. (II) A 00W lightbulb has a resistance of about Ω when cold (0 C) and 0 Ω when on (hot). Estimate the temperature of the filament when hot assuming an average
More informationLesson 2: Resistors, Transistors, Capacitors and LED s
Lesson 2: Resistors, Transistors, Capacitors and s In this lesson we will learn what resistors, transistors, capacitors and s are. How to identify them in a circuit diagram. How they work.  some of the
More informationCHAPTER12. Electricity. Multiple Choice Questions. Fig. 12.1
CHAPTER12 Electricity Multiple Choice Questions 1. A cell, a resistor, a key and ammeter are arranged as shown in the circuit diagrams of Figure12.1. The current recorded in the ammeter will be Fig. 12.1
More informationLab 4 Series and Parallel Resistors
Lab 4 Series and Parallel Resistors What You Need To Know: (a) (b) R 3 FIGURE  Circuit diagrams. (a) and are in series. (b) and are not in series. The Physics Last week you examined how the current and
More informationch 18 practice Multiple Choice
ch 18 practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the best description of a schematic diagram? a. uses pictures
More information1. 1. Right Hand Rule Practice. Using the the right hand rule, find find the the direction of of the the missing information in in the the diagram.
1. 1. Right Hand Rule Practice Using the the right hand rule, find find the the direction of of the the missing information in in the the diagram. (A) (A) up up (C) (C) left left (B) (B) down (D) (D) right
More informationELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS
ELECTRICITY PROBLEMS BASED ON PRACTICAL SKILLS 1 To determine the equivalent resistance of two resistors when connected in series, a student arranged the circuit components as shown in the diagram. But
More informationPhysics. Teacher s notes 56 Diodes: A.C. diode rectification. Electricity and Heat
Sensors: Loggers: An EASYSENSE capable of fast logging Physics Logging : 500 ms Teacher s notes 56 Diodes: A.C. diode rectification Read In investigation 55, students will have found out that diodes only
More informationPHYSICS 176. Experiment 3. Kirchhoff's Laws. Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm).
PHYSICS 176 Experiment 3 Kirchhoff's Laws Equipment: Supplies: Digital Multimeter, Power Supply (020 V.). Three resistors (Nominally: 1 Kilohm, 2 Kilohm, 3 Kilohm). A. Kirchhoff's Loop Law Suppose that
More informationKirchhoff s Voltage Law and RC Circuits
Kirchhoff s oltage Law and RC Circuits Apparatus 2 1.5 batteries 2 battery holders DC Power Supply 1 multimeter 1 capacitance meter 2 voltage probes 1 long bulb and 1 round bulb 2 sockets 1 set of alligator
More informationQ1. (a) Complete the sentence below to name the instrument used to measure electrical current.
Q. (a) Complete the sentence below to name the instrument used to measure electrical current. The instrument used to measure electrical current is called... () (b) In the diagram below each box contains
More informationSeries,"Parallel," and"series." Parallel"Circuits"
chapter 25 Series,"Parallel," and"series." Parallel"Circuits" FIGURE 25.1 A series circuit with three bulbs. All current flows through all resistances (bulbs). The total resistance of the circuit is the
More informationSOLUTION The energy used by the dryer is. 60 s 1.00 min = J. Energy = Pt = IVt = (16 A)(240 V)(45 min) For the computer, we have
3. SSM REASONING According to Equation 6.1b, the energy used is Energy = Pt, where P is the power and t is the time. According to Equation.6a, the power is P = IV, wherei is the current and V is the voltage.
More information21 Lab 5: Series and Parallel Circuits
21 Lab 5: Series and Parallel Circuits Components in an electrical circuit are in series when they are connected one after the other, so that the same current flows through both of them. Components are
More informationParallel DC circuits
Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
More informationCh. 20 Electric Circuits
Ch. 0 Electric Circuits 0. Electromotive Force Every electronic device depends on circuits. Electrical energy is transferred from a power source, such as a battery, to a device, say a light bulb. Conducting
More informationChapter 18 Electric Current and Circuits
Chapter 18 Electric Current and Circuits 3. When a current flows down a wire: A. electrons are moving in the direction of the current. B. electrons are moving opposite the direction of the current. C.
More informationChapter 28A  Direct Current Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 28A  Direct Current Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should
More informationR C DMM. b a. Power Supply. b a. Power Supply DMM. Red + Black  Red + Black 
Sample Lab Report  PHYS 231 The following is an example of a wellwritten report that might be submitted by a PHYS 231 student. It begins with a short statement of what is being measured, and why. The
More informationEE301  PARALLEL CIRCUITS AND KIRCHHOFF S CURRENT LAW
Objectives a. estate the definition of a node and demonstrate how to measure voltage and current in parallel circuits b. Solve for total circuit resistance of a parallel circuit c. State and apply KCL
More informationTutorial 12 Solutions
PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total
More informationLecture 37. Power. Circuits. Parallel and Series Resistances. Cutnell+Johnson: Circuits
Lecture 37 Power Circuits Parallel and Series Resistances Cutnell+Johnson: 0.40.8 Circuits Now that we know about voltages, currents and resistance, we can talk about circuits. A circuit is simply a closed
More informationExperiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance
Experiment 3 ~ Ohm's Law, Measurement of Voltage, Current and Resistance Objective: In this experiment you will learn to use the multimeter to measure voltage, current and resistance. Equipment: Bread
More informationDC Circuits. 3. Three 8.0 resistors are connected in series. What is their equivalent resistance? a c b. 8.0 d. 0.13
DC Circuits 1. The two ends of a 3.0 resistor are connected to a 9.0V battery. What is the current through the resistor? a. 27 A c. 3.0 A b. 6.3 A d. 0.33 A 2. The two ends of a 3.0 resistor are connected
More informationDC Circuits (Combination of resistances)
Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose
More informationSection 4. Ohm s Law: Putting up a Resistance. What Do You See? What Do You Think? Investigate. Learning Outcomes
Section 4: Ohm s Law: Putting up a Resistance Section 4 Ohm s Law: Putting up a Resistance What Do You See? Learning Outcomes In this section, you will Calculate the resistance of an unknown resistor given
More informationELECTRICITY: CIRCUIT QUESTIONS
ELECTRICITY: CIRCUIT QUESTIONS Resistors in a DC circuit (2014;2) Sandra is investigating electrical circuits in the lab. She connects various resistors in combination. The current drawn from the supply
More informationf. The current at location A is equal to the current at location B. e. The current at location B is greater than the current at location E.
1. Answer: The current outside the branches of a combination circuit is everywhere the same. The current inside of the branches is always less than that outside of the branches. When comparing the current
More informationExperiment NO.3 Series and parallel connection
Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.
More information13.10: How Series and Parallel Circuits Differ pg. 571
13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance.  Using your knowledge of
More informationSeries and Parallel Circuits
Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected endtoend. A parallel
More informationQ26.1 Which of the two arrangements shown has the smaller equivalent resistance between points a and b? A. the series arrangement B.
Q26.1 Which of the two arrangements shown has the smaller equivalent resistance between points a and b? A. the series arrangement B. the parallel arrangement C. The equivalent resistance is the same for
More informationBasic DC Circuits. Electrical Quantity Description Unit Water Analogy Voltage or Potential Difference
Basic DC Circuits Current and voltage can be difficult to understand, because the flow of electrons and potential differences cannot be observed by the unaided human eye. To clarify these terms, some people
More informationChapter 11 Electricity
Chapter 11 Electricity Course Content Definition of Electricity Circuit Diagrams Series and Parallel Circuits Calculating total resistances Measurement of Electricity Ammeters and Voltmeters Ohm s Law
More informationHow Does it Flow? Electricity, Circuits, and Motors
How Does it Flow? Electricity, Circuits, and Motors Introduction In this lab, we will investigate the behavior of some direct current (DC) electrical circuits. These circuits are the same ones that move
More informationIntro to Circuits Lab #1
Intro to Circuits Lab #1 Anatomy of a Breadboard: The breadboard is where you will be assembling your circuits. The breadboard is composed of rows and columns of metal clips. These clips are housed in
More informationSERIES AND PARALLEL CIRCUITS
SERIES AND PARALLEL CIRCUITS Circuits Provides a path for electricity to travel Similar to water pipes in your house Because of the voltage of an outlet, electrons will travel through the circuit Electrons
More informationSERIES AND PARALELL CIRCUITS
SERES AND PARALELL CRCUTS LAB ELEC 2.COMP From Physics with Computers, Vernier Software & Technology, 2003 NTRODUCTON Components in an electrical circuit are in series when they are connected one after
More informationCHAPTER 28 ELECTRIC CIRCUITS
CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the
More informationThere are 2 important things to remember about a Series Circuit:
Page 1 How many light bulbs are there in your house? How many other electrical devices are there in your house? Why should they ALL be turned on and working if you only need to use one? Should they ALL
More informationCapacitors and Inductors
P517/617 ec2, P1 Capacitors and Inductors 1) Capacitance: Capacitance (C) is defined as the ratio of charge (Q) to voltage () on an object. Define capacitance by: C = Q/ = Coulombs/olt = Farad. Capacitance
More informationKirchhoff's Current Law (KCL)
Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per
More informationElectric Circuits Review
Electric Circuits Review 1. Which of the following statements are true about electric current? Circle all that apply. a. Electric current is measured in units of Amperes. b. Electric current is defined
More informationCapacitance. Apparatus: RC (ResistorCapacitor) circuit box, voltmeter, power supply, cables
apacitance Objective: To observe the behavior of a capacitor charging and discharging through a resistor; to determine the effective capacitance when capacitors are connected in series or parallel. Apparatus:
More informationChapter 18. Direct Current Circuits
Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating
More informationElectric Currents & DC Circuits
Slide 1 / 70 Slide 2 / 70 1 The length of an aluminum wire is quadrupled and the radius is doubled. y which factor does the resistance change? lectric urrents & ircuits 2 4 1/2 1/4 1 Slide 3 / 70 2 copper
More informationSeries & Parallel Circuits Challenge
Name: Part One: Series & Parallel Circuits Challenge 1. Build a circuit using two batteries and two light bulbs in a way to illuminate the two light bulbs so that if either light bulb is disconnected,
More informationCapacitors. Evaluation copy
Capacitors Computer 24 The charge q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this relationship with q V =, C where C is a proportionality constant
More information1 of 11. Current Concept Tests.
1 of 11 Current Concept Tests. CRKT1. ote TRUE(A) if both statements below are always true. Otherwise, vote FALSE(B). For resistors in series, the current through each resistor is the same. For resistors
More informationDischarge of a Capacitor
Discharge of a Capacitor THEORY The charge Q on a capacitor s plate is proportional to the potential difference V across the capacitor. We express this with Q = C V (1) where C is a proportionality constant
More informationChapter 25 : Electric circuits
Chapter 25 : Electric circuits Voltage and current Series and parallel circuits Resistors and capacitors Kirchoff s rules for analysing circuits Electric circuits Closed loop of electrical components around
More informationMeasurements in electric circuits and Ohms Law
Measurements in electric circuits and Ohms Law Objective Learn to use voltmeter and amperemeter to perform measurement of voltage and current in simple electric circuits, learn and examine Ohm s law in
More informationLab 3  DC Circuits and Ohm s Law
Lab 3 DC Circuits and Ohm s Law L31 Name Date Partners Lab 3  DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in
More informationPart 1. Part 1. Electric Current. and Direct Current Circuits. Electric Current. Electric Current. Chapter 19. Electric Current
Electric Current Electric Current and Direct Current Circuits Chapter 9 Resistance and Ohm s Law Power in Electric Circuits Direct Current Circuits Combination Circuits Real life is mostly dynamic Part
More informationNoteARific: Characteristics
NoteARific: Characteristics Any path along which electrons can flow is a circuit. For a continuous flow of electrons, there must be a complete circuit with no gaps. A gap is usually an electric switch
More informationElectric Circuits II
Electric Circuits II Experiment 4: Resistances in Circuits Equipment needed:  AC/DC Electronic Lab Board: Resistors  Multimeter Purpose The purpose of this lab is to begin experimenting with the variables
More informationRecitation 6 Chapter 21
Recitation 6 hapter 21 Problem 35. Determine the current in each branch of the circuit shown in Figure P21.35. 3. Ω 5. Ω 1. Ω 8. Ω 1. Ω ɛ 2 4 12 Let be the current on the left branch (going down), be the
More informationElectric Circuits II. Physics 133 Experiments Electric Circuits II 1
Physics 133 Experiments Electric Circuits II 1 Electric Circuits II GOALS To examine Ohm's Law: the pivotal relationship between voltage and current for resistors To closely study what current does when
More informationSolutions to Bulb questions
Solutions to Bulb questions Note: We did some basic circuits with bulbs in fact three main ones I can think of I have summarized our results below. For the final exam, you must have an understanding of
More information