Tutorial 1: Chapter 1

Size: px
Start display at page:

Download "Tutorial 1: Chapter 1"

Transcription

1 Tutorial 1: hapter 1 1. Figure 1.1 shows the positive edge triggered D flip flop, determine the output of Q 0, assume output is initially LOW. Figure For the positive edge-triggered J-K flip-flop with preset and clear inputs in Figure 1.2, determine the Q output for the inputs shown in the timing diagram is initially LOW. Figure

2 3. Apply the waveforms of Figure 1.2 to a D flip-flop that triggers on NGT and has active-low asynchronous inputs. Assume that D is kept LOW and that Q is initially HIGH. Draw the resulting Q waveform. 4. The waveforms of Figure 1.3 are connected to the circuit of Figure 1.4(a) and Figure 1.4(b). Assume that Q=0 initially, and draw the Q waveform. Figure 1.3 Figure 1.4(a) Figure 1.4(b) 5. Design a combinational circuit using J-K flip-flop that can divide the clock frequency by: two and three. 6. The circuit of Figure 1.5 contains a D latch, positive-edge triggered D flip flop, and a negative edge-triggered D flip flop. omplete the timing diagram of Figure 1.6 by drawing the waveform of signals Y1, Y2 and Y3. Assume that Y1, Y2 and Y3 are initially SET. 146

3 Figure 1.5 Figure The circuit of Figure 1.7 contains a negative edge-triggered J-K flip flop and a D flip flop. omplete the timing diagram of Figure 1.8 by drawing the waveforms of signals Q0 and Q1. The flip-flops are initially HIGH. Figure 1.7 Figure

4 8. The circuit of Figure 1.9 contains a D latch, a positive-edge-triggered and a negative edge- triggered D flip-flop. omplete the timing diagram at Figure 1.10 by drawing the waveform of signals Y1, Y2 and Y3. The flip-flop are initially LOW. Figure 1.9 Figure The circuit of Figure 1.11 contains a D latch, a positive-edge triggered and a negative edgetriggered T flip-flop. omplete the timing diagram at Figure 1.12 by drawing the waveform of signals Q 0, Q 1 and Q 2. Assume that Q 0, Q 1 dan Q 2 start with RESET. Figure

5 Figure omplete the timing diagram for outputs Q1, and Q2. Assume that Q1, and Q2 starts with LOW. i) Determine the frequency of the clock if the frequency of Q1 is 250 khz. Figure Multivibrator devices are categorized as bistable, monostable and astable. State the characteristics of each devices and give an example. 149

6 Tutorial 2: hapter 2 1. What is does the term asynchronous mean in relation to counter? 2. What is advantage of synchronous counter over an asynchronous counter? 3. For the ripple counter shown in figure 2.1, show the complete timing diagram for eight clock pulses, showing the clock, Q0 and Q1 waveforms. HIGH LK J 0 Q 0 J 1 Q 1 K 0 K 1 Figure Show the complete timing diagram for 5 stage synchronous binary counter in figure 2.2. Verify the waveform of the Q outputs represent the proper binary number after each clock pulse. HIGH J 0 K 0 Q 0 J 1 K 1 Q 1 J 2 K 2 Q 2 J 3 K 3 Q 3 J 4 K 4 Q 4 LK Figure Show a complete timing diagram for 3 bit UP/DOWN counter that goes through the following sequence. Indicate when is the counter is in UP mode and when it is DOWN mode. Assume positive triggering 0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0 150

7 6. Show a timing diagram and determine the sequence of a 4 bit synchronous binary UP/DOWN counter if the clock and UP/DOWN counter control input have waveform as shown in figure 2.3. The counter starts in the all 0s state and is positive edge triggered. UP/DOWN UP DOWN UP DOWN LOK Figure Determine the sequence of counter in figure 2.4? D 0 Q 0 D 0 Q 0 D 0 Q 0 LK Figure A photocell and light source combination is used to generate a single pulse each time an item crosses its path. The counter must be able to count as many as 1000 items. How many FFs are required? 9. How many states does a modulus-14 counter have? What is the minimum number of flip-flops required? 10. How many AND gates are required to decode completely all of the states of a MOD-32 binary counter? What are the inputs to the gate that decodes for the count of 21? 11. Determine the MOD number of the counter and frequency at the D output in Figure

8 Figure The counter in Figure 2.6 starts off in the 0000 state, and then clock pulses are applied. Sometime later the clock pulses are removed, and the counter FFs read How many clock pulses have occurred? Figure Design a counter to produce the following binary sequence. Use J-K flip-flops. 1, 4, 3, 5, 7, 6, 2,1, 14. Design a counter to produce the following sequence. Use T flip-flops. 152

9 001, 101, 000, 111, 100, 011, 001, 15. Design a counter with the sequence shown in state diagram of figure DOWN UP Figure For each of the cascaded counter configuration in figure 2.8, determine the frequency of the waveform at each point indicated by circle number, and determine the overall modulus. (a) 1 khz DIV DIV 8 DIV 2 (b) 21 khz DIV 3 1 DIV DIV 10 DIV 5 4 IV 8 Figure Explain why the decoding gates for an asynchronous counter may have glitches on their outputs? IV 8 153

10 Tutorial 3: hapter 3 1. Mrs. Brooke owns a robot with an FSM brain. The robot walks from left to right along a paper type containing a sequence of 1 s and 0 s. On each clock cycle, the robot walks to the next bit. An indicator on the robot s body will light up when the last four bits that it has walked over are, from left to right, Design the FSM to compute when the robot should indicate a light. The input A is the bit underneath the robot s legs. The output Y is TRUE when the indicator lights up. a. Sketch a timing diagram for each machine showing the input, states and output as your robot walks along the sequence b. ompare Moore and Mealy state machine designs. c. Simulate your design in Multisim using T flip-flop. 2. A sequential system is the controller for a stamp-vending machine. There is an input to reset the controller (put in the initial state), one input whose value corresponds to the type of coin inserted either 10 or 20 (Malaysia s currency coins), one input to select between three choices of stamps and one input to request return of coins. Assume that the values of three selections are 20 cents, 40 cents and 50 cents and that the machine should give change. The outputs are release stamp 1, release stamp 2, release stamp 3, return coin give 10 cents change. a. Design a Moore machine using D flip-flop b. Simulate your design in Multisim. 3. A sequential network has one input (X) and two outputs (Z 1 and Z 2 ). An output Z 1 =1 occurs every time the input sequence 010 is completed provided that the sequence 100 has never occurred. An output Z 2 =1 occurs every time the input sequence 100 is completed. Note that once a Z 2 =1 output has occurred, Z 1 = 1 can never occur, but not vice versa [3]. a. Derive a Mealy state diagram. b. Realize the network using T flip-flops and NAND gates. Repeat using NOR gates. (Work this part by hand) c. Simulate your design in b) using Multisim. 4. Ben decides to solve the problem with an FSM. He installs two traffic sensors, TA and TB on Academic Ave and Bravado Blvd respectively. Each sensor indicates TRUE if students are present and FALSE if the street is empty. He also installs two traffic lights, LA and LB to control traffic. Each light receives digital inputs specifying whether it should be green, yellow or red. 154

11 Hence, his FSM has two inputs, TA and TB and two outputs, LA and LB. The intersection with lights and sensors is shown in Figure 1. Ben provides a clock with in 5 second period. On each clock tick (rising edge), the lights may change based on the traffic sensors. He also provides a reset button so that Physical Plant technicians can put the controller in a known initial state when they turn it on. Figure 2 shows a black box view of the state machine. When the system is reset, the lights are green on Academic Ave and red on Bravado Blvd. Every 5 seconds, the controller examines the traffic pattern and decides what to do next. As long as the traffic is present on Academic Ave, the lights do not change. When there is no longer traffic on Academic Ave, the light on Academic Ave becomes yellow for 5 seconds before it turns red and Bravado Blvd s light turns green. Similarly, the Bravado Blvd s light remains green as long as traffic is present on the Boulevard and turns yellow and eventually red [4]. Figure 1: ampus map a. Derive a Moore state diagram. b. Simulate your design in Multisim using D flip-flop. 5. You have been enlisted to design a chocolate bar vending machine dispenser. The chocolate bar cost for only 25 cents. The machine accepts nickels, dimes, and quarters (USA current coins). When enough coins have been inserted, it dispenses the chocolate bar and returns any necessary change. Design an FSM controller using D flip-flop applying Moore model for the soda machine. Your design is then to be simulated using Multisim. The FSM inputs are Nickel, Dime, and Quarter indicating which coin was inserted. Assume that exactly one coin is inserted on each cycle. The outputs are Dispense, ReturnNickel, ReturnDime and ReturnTwoDimes. When the FSM reaches 25 cents, it asserts Dispense and the necessary Return outputs required to deliver the appropriate change. Then it should be ready to start accepting coins for other chocolate bar. 155

12 Tutorial 4: hapter 4 1. How many clock pulse are needed to get the complete data for the following shift registers: a. 5-bit serial to parallel shift register b. 4-bit parallel to serial shift register 2. Determine the output of serial to parallel register for the following conditions: a. after three clock pulses initially loaded with b. after four clock pulses initially loaded with Determine the output of parallel to serial register for the following condition: a. after two clock pulses initially loaded with b. after five clock pulses initially loaded with What two principal functions are performed by a shift register? 5. How many clock pulses are required to enter a byte of data serially into an 8-bit shift register? 6. Show the states of the 5-bit register in Figure 6.13 for the specified data input and clock waveforms. Assume that the register is initially cleared (all 0s). Show the states of the 5-bit register in Figure 4.6 for the specified data input and clock waveforms. Assume that the register is initially cleared (all 0s) Figure

13 7. Show the states of the 4-bit register (SRG 4) for the data input and clock waveforms in Figure 4.7. The register initially contains all 1s. Figure Show the data output waveform for a 4-bit register with the parallel input data and the clock and SHIFT / LOAD waveforms given in Figure For Logic diagram, please refer to Figure 4.8. Figure

14 Tutorial 5: hapter 5 1. What is the smallest unit of data that can be stored in a memory? 2. What is the bit capacity of a memory that can store 256 bytes of data? 3. What is a read and write operation in memory? 4. Explain how SRAMs and DRAMs differ? 5. List four types of DRAM? 6. What is the bit storage capacity of a ROM with a 512 X 8 organization? 7. How many address bits are required for a 2048-bit memory organized as a 256 X 8 memory? 8. How do PROMs differ from ROMs? 9. How many 16k x 1 RAMs are required to achieve a memory with a word capacity of 16k and a word length of eight bits? 10. What is FIFO and LIFO memory? 11. What is difference between GAL and PAL? 12. What does a macrocell contain? 13. What is a PLD? 14. Explain the purpose of the XOR gate in the macrocell. 15. What are the two major modes of a macrocell? 16. Besides the OR gate, XOR gate, and flip-flop, what other logic element is commonly used in a macrocell? 158

15 17. How does FPGA differ from PLD? 18. Describe an LUT and discuss its purpose 19. What does LB in a Xilinx FPGA consist of? 20. Describe a slice in a Xilinx FPGA. 159

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters:

Design Example: Counters. Design Example: Counters. 3-Bit Binary Counter. 3-Bit Binary Counter. Other useful counters: Design Eample: ers er: a sequential circuit that repeats a specified sequence of output upon clock pulses. A,B,C,, Z. G, O, T, E, R, P, S,!.,,,,,,,7. 7,,,,,,,.,,,,,,,,,,,. Binary counter: follows the binary

More information

Chapter 9 Latches, Flip-Flops, and Timers

Chapter 9 Latches, Flip-Flops, and Timers ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department

DIGITAL ELECTRONICS. Counters. By: Electrical Engineering Department Counters By: Electrical Engineering Department 1 Counters Upon completion of the chapter, students should be able to:.1 Understand the basic concepts of asynchronous counter and synchronous counters, and

More information

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse. DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

Digital Logic Design Sequential circuits

Digital Logic Design Sequential circuits Digital Logic Design Sequential circuits Dr. Eng. Ahmed H. Madian E-mail: ahmed.madian@guc.edu.eg Dr. Eng. Rania.Swief E-mail: rania.swief@guc.edu.eg Dr. Eng. Ahmed H. Madian Registers An n-bit register

More information

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0 ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

More information

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop

More information

Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

More information

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

Asynchronous Counters. Asynchronous Counters

Asynchronous Counters. Asynchronous Counters Counters and State Machine Design November 25 Asynchronous Counters ENGI 25 ELEC 24 Asynchronous Counters The term Asynchronous refers to events that do not occur at the same time With respect to counter

More information

ASYNCHRONOUS COUNTERS

ASYNCHRONOUS COUNTERS LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

Engr354: Digital Logic Circuits

Engr354: Digital Logic Circuits Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

More information

Digital Fundamentals

Digital Fundamentals igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage

More information

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

Counters & Shift Registers Chapter 8 of R.P Jain

Counters & Shift Registers Chapter 8 of R.P Jain Chapter 3 Counters & Shift Registers Chapter 8 of R.P Jain Counters & Shift Registers Counters, Syllabus Design of Modulo-N ripple counter, Up-Down counter, design of synchronous counters with and without

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute. 2nd (Spring) term 2012/2013 DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COUNTERS AND RELATED 2nd (Spring) term 2012/2013 1 4. LECTURE: COUNTERS AND RELATED 1. Counters,

More information

Memory Elements. Combinational logic cannot remember

Memory Elements. Combinational logic cannot remember Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

More information

Cascaded Counters. Page 1 BYU

Cascaded Counters. Page 1 BYU Cascaded Counters Page 1 Mod-N Counters Generally we are interested in counters that count up to specific count values Not just powers of 2 A mod-n counter has N states Counts from 0 to N-1 then rolls

More information

Fig1-1 2-bit asynchronous counter

Fig1-1 2-bit asynchronous counter Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also

More information

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1

WEEK 8.1 Registers and Counters. ECE124 Digital Circuits and Systems Page 1 WEEK 8.1 egisters and Counters ECE124 igital Circuits and Systems Page 1 Additional schematic FF symbols Active low set and reset signals. S Active high set and reset signals. S ECE124 igital Circuits

More information

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1)

IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) IE1204 Digital Design F12: Asynchronous Sequential Circuits (Part 1) Elena Dubrova KTH / ICT / ES dubrova@kth.se BV pp. 584-640 This lecture IE1204 Digital Design, HT14 2 Asynchronous Sequential Machines

More information

Theory of Logic Circuits. Laboratory manual. Exercise 3

Theory of Logic Circuits. Laboratory manual. Exercise 3 Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices

More information

Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

More information

CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

More information

Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

More information

ECE380 Digital Logic

ECE380 Digital Logic ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during

More information

Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

More information

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

More information

Design and Implementation of Vending Machine using Verilog HDL

Design and Implementation of Vending Machine using Verilog HDL 2011 2nd International Conference on Networking and Information Technology IPCSIT vol.17 (2011) (2011) IACSIT Press, Singapore Design and Implementation of Vending Machine using Verilog HDL Muhammad Ali

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012 Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

More information

Modeling Latches and Flip-flops

Modeling Latches and Flip-flops Lab Workbook Introduction Sequential circuits are digital circuits in which the output depends not only on the present input (like combinatorial circuits), but also on the past sequence of inputs. In effect,

More information

Master/Slave Flip Flops

Master/Slave Flip Flops Master/Slave Flip Flops Page 1 A Master/Slave Flip Flop ( Type) Gated latch(master) Gated latch (slave) 1 Gate Gate GATE Either: The master is loading (the master in on) or The slave is loading (the slave

More information

Flip-Flops, Registers, Counters, and a Simple Processor

Flip-Flops, Registers, Counters, and a Simple Processor June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

More information

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO

DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS Hex Invertes 74LS04 Quadruple 2 Inputs Gates 74LS00 Triple 3 Inputs Gates 74LS10 Dual 4 Inputs Gates 74LS20 8 Inputs Gates 74LS30 13 Inputs Gates

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

More information

Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8. Sequential Circuits for Registers and Counters Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Chapter 5. Sequential Logic

Chapter 5. Sequential Logic Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012

Flip-Flops and Sequential Circuit Design. ECE 152A Winter 2012 Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Flip-Flops and Sequential Circuit Design

Flip-Flops and Sequential Circuit Design Flip-Flops and Sequential Circuit Design ECE 52 Winter 22 Reading ssignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7.5 T Flip-Flop 7.5. Configurable Flip-Flops 7.6

More information

Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Digital Fundamentals. Lab 8 Asynchronous Counter Applications Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

More information

Sequential Circuit Design

Sequential Circuit Design Sequential Circuit Design Lan-Da Van ( 倫 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2009 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Outlines

More information

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit - FSM A Sequential circuit contains: Storage

More information

EXPERIMENT 8. Flip-Flops and Sequential Circuits

EXPERIMENT 8. Flip-Flops and Sequential Circuits EXPERIMENT 8. Flip-Flops and Sequential Circuits I. Introduction I.a. Objectives The objective of this experiment is to become familiar with the basic operational principles of flip-flops and counters.

More information

Asynchronous counters, except for the first block, work independently from a system clock.

Asynchronous counters, except for the first block, work independently from a system clock. Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

More information

Wiki Lab Book. This week is practice for wiki usage during the project.

Wiki Lab Book. This week is practice for wiki usage during the project. Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 5. LECTURE: REGISTERS AND RELATED 2nd (Spring) term 22/23 5. LECTURE: REGISTERS. Storage registers 2. Shift

More information

No serious hazards are involved in this laboratory experiment, but be careful to connect the components with the proper polarity to avoid damage.

No serious hazards are involved in this laboratory experiment, but be careful to connect the components with the proper polarity to avoid damage. HARDWARE LAB 5/DESIGN PROJECT Finite State Machine Design of a Vending Machine Using Xilinx ISE Project Navigator and Spartan 3E FPGA Development Board with VHDL Acknowledgements: Developed by Bassam Matar,

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

More information

路 論 Chapter 15 System-Level Physical Design

路 論 Chapter 15 System-Level Physical Design Introduction to VLSI Circuits and Systems 路 論 Chapter 15 System-Level Physical Design Dept. of Electronic Engineering National Chin-Yi University of Technology Fall 2007 Outline Clocked Flip-flops CMOS

More information

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS

CHAPTER IX REGISTER BLOCKS COUNTERS, SHIFT, AND ROTATE REGISTERS CHAPTER IX-1 CHAPTER IX CHAPTER IX COUNTERS, SHIFT, AN ROTATE REGISTERS REA PAGES 249-275 FROM MANO AN KIME CHAPTER IX-2 INTROUCTION -INTROUCTION Like combinational building blocks, we can also develop

More information

Modeling Registers and Counters

Modeling Registers and Counters Lab Workbook Introduction When several flip-flops are grouped together, with a common clock, to hold related information the resulting circuit is called a register. Just like flip-flops, registers may

More information

Counters are sequential circuits which "count" through a specific state sequence.

Counters are sequential circuits which count through a specific state sequence. Counters Counters are sequential circuits which "count" through a specific state sequence. They can count up, count down, or count through other fixed sequences. Two distinct types are in common usage:

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1

More information

Sequential Logic: Clocks, Registers, etc.

Sequential Logic: Clocks, Registers, etc. ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design

More information

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28.

ENEE 244 (01**). Spring 2006. Homework 5. Due back in class on Friday, April 28. ENEE 244 (01**). Spring 2006 Homework 5 Due back in class on Friday, April 28. 1. Fill up the function table (truth table) for the following latch. How is this latch related to those described in the lectures

More information

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell

Digital Electronics Part I Combinational and Sequential Logic. Dr. I. J. Wassell Digital Electronics Part I Combinational and Sequential Logic Dr. I. J. Wassell Introduction Aims To familiarise students with Combinational logic circuits Sequential logic circuits How digital logic gates

More information

Finite State Machine Design A Vending Machine

Finite State Machine Design A Vending Machine LAB 6 Finite State Machine Design A Vending Machine You will learn how turn an informal sequential circuit description into a formal finite-state machine model, how to express it using ABEL, how to simulate

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Operating Manual Ver.1.1

Operating Manual Ver.1.1 4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

More information

DEPARTMENT OF INFORMATION TECHNLOGY

DEPARTMENT OF INFORMATION TECHNLOGY DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

More information

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog

ECE232: Hardware Organization and Design. Part 3: Verilog Tutorial. http://www.ecs.umass.edu/ece/ece232/ Basic Verilog ECE232: Hardware Organization and Design Part 3: Verilog Tutorial http://www.ecs.umass.edu/ece/ece232/ Basic Verilog module ();

More information

Set-Reset (SR) Latch

Set-Reset (SR) Latch et-eset () Latch Asynchronous Level sensitive cross-coupled Nor gates active high inputs (only one can be active) + + Function 0 0 0 1 0 1 eset 1 0 1 0 et 1 1 0-? 0-? Indeterminate cross-coupled Nand gates

More information

Copyright Peter R. Rony 2009. All rights reserved.

Copyright Peter R. Rony 2009. All rights reserved. Experiment No. 1. THE DIGI DESIGNER Experiment 1-1. Socket Connections on the Digi Designer Experiment No. 2. LOGIC LEVELS AND THE 7400 QUADRUPLE 2-INPUT POSITIVE NAND GATE Experiment 2-1. Truth Table

More information

Digital Controller for Pedestrian Crossing and Traffic Lights

Digital Controller for Pedestrian Crossing and Traffic Lights Project Objective: - To design and simulate, a digital controller for traffic and pedestrian lights at a pedestrian crossing using Microsim Pspice The controller must be based on next-state techniques

More information

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann

Chapter 7. Registers & Register Transfers. J.J. Shann. J. J. Shann Chapter 7 Registers & Register Transfers J. J. Shann J.J. Shann Chapter Overview 7- Registers and Load Enable 7-2 Register Transfers 7-3 Register Transfer Operations 7-4 A Note for VHDL and Verilog Users

More information

7. Latches and Flip-Flops

7. Latches and Flip-Flops Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS The SN54/74LS90 is a synchronous UP/DOWN BCD Decade (842) Counter and the SN54/74LS9 is a synchronous UP/DOWN Modulo-6

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

More information

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems

Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems Harris Introduction to CMOS VLSI Design (E158) Lecture 8: Clocking of VLSI Systems David Harris Harvey Mudd College David_Harris@hmc.edu Based on EE271 developed by Mark Horowitz, Stanford University MAH

More information

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits. 2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

More information

DATA SHEET. HEF40193B MSI 4-bit up/down binary counter. For a complete data sheet, please also download: INTEGRATED CIRCUITS

DATA SHEET. HEF40193B MSI 4-bit up/down binary counter. For a complete data sheet, please also download: INTEGRATED CIRCUITS INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF,

More information

Lecture 7: Clocking of VLSI Systems

Lecture 7: Clocking of VLSI Systems Lecture 7: Clocking of VLSI Systems MAH, AEN EE271 Lecture 7 1 Overview Reading Wolf 5.3 Two-Phase Clocking (good description) W&E 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.9, 5.5.10 - Clocking Note: The analysis

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CE4: Components and esign Techniques for igital ystems Tajana imunic osing ources: Where we are now What we ve covered so far (Chap -5, App. A& B) Number representations Boolean algebra OP and PO Logic

More information

Registers & Counters

Registers & Counters Objectives This section deals with some simple and useful sequential circuits. Its objectives are to: Introduce registers as multi-bit storage devices. Introduce counters by adding logic to registers implementing

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

Combinational Logic Design Process

Combinational Logic Design Process Combinational Logic Design Process Create truth table from specification Generate K-maps & obtain logic equations Draw logic diagram (sharing common gates) Simulate circuit for design verification Debug

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SEET For a complete data sheet, please also download: The IC6 74C/CT/CU/CMOS ogic Family Specifications The IC6 74C/CT/CU/CMOS ogic Package Information The IC6 74C/CT/CU/CMOS ogic

More information

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

More information

A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

More information

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics

PROGETTO DI SISTEMI ELETTRONICI DIGITALI. Digital Systems Design. Digital Circuits Advanced Topics PROGETTO DI SISTEMI ELETTRONICI DIGITALI Digital Systems Design Digital Circuits Advanced Topics 1 Sequential circuit and metastability 2 Sequential circuit A Sequential circuit contains: Storage elements:

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information