# Page 2 CK K. Figure 3: JK Flip-flops with asynchronous PRESET and CLEAR inpu CK K. Figure 2: JK Flip-flops with different types of triggering

Save this PDF as:

Size: px
Start display at page:

Download "Page 2 CK K. Figure 3: JK Flip-flops with asynchronous PRESET and CLEAR inpu CK K. Figure 2: JK Flip-flops with different types of triggering"

## Transcription

1 EGR 78 Digital Logic Lab File: N78L9A Lab # 9 Multivibrators A. Objective The objective of this laboratory is to introduce the student to the use of bistable multivibrators (flip-flops), monostable multivibrators (one-shots), and astable multivibrators (clock generators). Switch debouncing is also investigated. B. Materials Breadboard 5V Power Supply Oscilloscope 555 Timer I 7476 Dual Flip-flop Assorted AND, OR, NAND, NOR, XOR, and INVERTER I s Assorted resistors and capacitors available in lab. Introduction Multivibrators A multivibrator is a circuit whose oscillates between logic HIGH and LOW states, either automatically or due to some input. There are three types of multivibrators: ) Bistable multivibrators (flip-flops) - These devices have two stable states ( = and = ). They can easily be switch from one stable state to the other. ) Monostable multivibrators (one-shots) - These devices have one stable state, but they may enter another unstable state for a certain period of. ) Astable multivibrator (clock generator) - These devices oscillate between two unstable states, forming a clock (square wave generator). Flip-Flops A flip-flop is the simplest type of memory cell. Its,, does not depend solely upon its inputs, but also depends on the order in which they are applied. Thus, the flip-flop is not a combinational circuit, but is a sequential circuit. The flip-flop is the key building block of most synchronous sequential circuits. There are four common types of flip-flops. The symbol and truth table for each is shown below. SR flip-flop: flip-flop: D flip-flop: T flip-flop: S D T R S R (t+) (t) (no change) (reset) (set) - - (illegal) (t+) (t) (no change) (reset) (set) (t) (toggle) D (t+) [or (t+) = D] T (t+) (t) (t) (no toggle) (toggle) Figure : Four common types of flip-flops

2 Page Flip-flops are synchronous devices meaning that the responds to the synchronous inputs (S, R,,, D, or T) only on certain clock edges. There are three main types of triggering: ) positive-edge triggering - the can only change on the positive (rising) edge of the clock (due to the values of the synchronous inputs). ) negative-edge triggering - the can only change on the negative (falling) edge of the clock (due to the values of the synchronous inputs). ) master-slave triggering - the synchronous inputs are read on the positive edge of the clock, but the does not respond until the negative edge of the clock. The type of triggering is somes indicated by the symbol. Shown below in Figure are flip-flops with all three types of triggering. Positive-edge triggered: Negative-edge triggered: Master-slave triggered: Figure : Flip-flops with different types of triggering Flip-flops often have asynchronous inputs available also. These inputs are not synchronized with the clock, therefore, the may respond immediately to changes in these inputs. There are two types of asynchronous inputs commonly used: ) PRESET (also called SET) - used to preset the to ) LEAR (also called RESET) - used to clear the (set to ) Asynchronous inputs are often active-low. Therefore, they are typically tied HIGH for normal flip-flop operation. The PRESET or LEAR may be momentarily set LOW to initialize the flipflop to some desired initial value. The symbol for a flip-flop often show the asynchronous inputs as indicated below in Figure. PR L Figure : Flip-flops with asynchronous PRESET and LEAR inpu

3 Page Debounced Switches If the input to a flip-flop or sequential circuit is applied with a switch, it is important that the switch is debounced so that only a single transition occurs when the switch is thrown such as is shown in Figure 4A. The contacts in a simple switch will bounce for several milliseconds before settling down allowing several transitions to occur such as is shown in Figure 4B. Since a negative-edge triggered flip-flop reacts to each falling edge of the input clock, the input in Figure 4A would clock the flip-flop only once, whereas the input in Figure 4B would clock the flipflop three s. switch thrown switch thrown HIGH HIGH HIGH HIGH LOW t LOW LOW LOW t Figure 4A - Debounced switch Figure 4B - Switch with contact bounce Figure 5 shows three circuits that can be used to debounce switches. PR 74 L 74 Figure 5A: Debounced switch using a flip-flop Figure 5B: Debounced switch using NAND gates Figure 5: Debounced switch using inverters

4 Page Timer The 555 r circuit is a popular I that can be used to implement astable and monostable multivibrator circuits as well as other circuits. The 555 is a linear I (like an operational amplifier or a voltage regulator) rather than a digital I, thus it does not necessarily use TTL voltage levels. In fact, the supply voltage for the 555 can range from 4.5V to 8V. If a 5V supply if used, it can easily interface with TTL circuits. A simplified equivalent circuit for the 555 r is shown below in Figure 6. Vcc 8 Reset 4 ontrol Trigger 5 Upper omparator _ + _ + Lower omparator flipflop Driver 6 Threshold 7 Discharge Ground Figure 6: 555 Timer Simplified Block Diagram 555 Timer configured as an astable multivibrator The 555 r configured as an astable multivibrator (clock generator) is shown below in Figure 7. The device operates essentially as follows: ) The capacitor charges until it reaches (/) causing the upper comparator to LEAR the flip-flop (which sets the LOW). ) The capacitor discharges until it reaches (/) causing the lower comparator to PRESET the flip-flop (which sets the HIGH). Vcc R A 8 Vcc 7 Discharge 4 Reset R B 6 Threshold ontrol 5 Trigger Ground. uf Figure 7: 555 Timer connected as an astable multivibrator (clock generator)

5 Page 5 Shown in Figure 8 are the capacitor and waveforms for the astable multivibrator (clock generator). apacitor [ - e -t/[(r A + R B )] ] + e -t/( R B ) T T H T L Figure 8: apacitor and waveforms for an astable multivibrator (clock generator) The charge is given by: T =.69(R + R ) H A B The discharge is given by: T =.69(R ) L B The total period is given by: T = T + T =.69(R + R ) H L A B The frequency of oscillation is given by: f =.44 ( R + R ) A B And the duty cycle is given by: D = T H T = R A + RB R + R x % Note that a 5% duty cycle can be almost achieved by picking R B >> R A. Example: If =. µf, R A = 5 kω, and R B = 4.4 kω, then T H = 65.4 µs, T L = 4.9 µs, T = 956. µs, f = 46 Hz, and D = 68. % 555 Timer configured as a monostable multivibrator A monostable multivibrator (one-shot) is a device that will a HIGH pulse for a specified duration of each that the input is triggered. The 555 r configured as a one-shot is shown below in Figure 9. The device operates essentially as follows: ) An input trigger causes the lower comparator to SET the flip-flop which makes the HIGH and turns OFF the transistor which allows the capacitor to begin charging. ) The capacitor charges until it reaches (/) causing the upper comparator to LEAR the flip-flop which shorts out the capacitor and forces the LOW. A B

6 Vcc Page 6 R 8 Vcc 7 Discharge 4 Reset 6 Threshold ontrol 5 input trigger pulse Trigger Ground. uf Figure 9: 555 Timer connected as a monostable multivibrator (one-shot) Shown in Figure are the input trigger, capacitor, and waveforms for the monostable multivibrator (one-shot). Input Trigger falling edge triggers the one-shot apacitor [ - e -t/(r) ] T Figure : Input trigger, capacitor, and waveforms for a monostable multivibrator (one-shot) The width of the pulse is given by : T =.R (solve for t when [ - e -t/r ] = (/) ) Example: If =. µf and R = 47 kω, then T =.(47 kω)(. µf) = 5.7 ms. So, each the one-shot is triggered, an pulse with a duration of 5.7 ms is produced.

7 Page 7 D. Preliminary Work. Design a one-shot using a 555 r that will generate an pulse that is HIGH for A.B seconds, where A, B, and are the last non-zero unique digits of your SSN in Hz. For example, if your SSN is , then the pulse should last for 8.4 seconds. Pick a capacitor value that is available in lab (see the list of available capacitor values in the Pinouts handout) or use a capacitor value that you have and use resistance values between kω and MΩ. Generate full circuit documentation for the circuit. Include a debounced switch at the input and an LED at the.. Design a clock generator using a 555 r that will generate a clock with a frequency equal to the last non-zero digits of your SSN in Hz. For example, if your SSN is , then the frequency is 84 Hz.. Use a duty cycle that is somewhat close to 5% (calculate its exact value). Pick a capacitor value that is available in lab (or one that you have) and use resistance values between kω and MΩ. Generate full circuit documentation for the circuit. E. Laboratory Work. onstruct a debounced switch using NAND gates as shown in Figure 5B. Test its operation (simply to see if it produces HIGH and LOW s as the switch is moved).. onnect a flip-flop using a 7476 and test it to complete the truth table shown below. Use a debounced switch to clock the flip-flop. Were the results as expected? (t) (t+). onnect the one-shot designed in step of the Preliminary Work according to the wire table generated. Measure the exact value of all resistors and capacitors used. Record the designed values and the measured values in a table. Test the one-shot and record the duration of the pulse and compare it to the designed value. Demonstrate proper operation of the circuit to the instructor. In your report, recalculate the expected for the using the measured component values and compare the to measured using a stop watch in lab. 4. onnect the clock generator designed in step of the Preliminary Work according to the wire table generated. Measure the exact value of all resistors and capacitors used. Record the designed values and the measured values in a table. View and accurately sketch the clock pulse and the capacitor voltage. Measure values for T H, T L, T, D, and f from the oscilloscope. ompare these to calculated values using measured component values. Demonstrate proper operation of the circuit to the instructor.

8 Page 8 5. onnect the of the clock generator in the previous step to the clock input of a flip-flop in the toggle mode as shown in Figure. View the of the clock generator and the of the flip-flop simultaneously (the clock near the top of the screen and the flip-flop near the bottom) and accurately sketch the results. From the sketch can you tell if the flip-flop is positive or negative edge triggered? Discuss how the frequency of the flip-flop compares with the frequency of the clock. A flip-flop in the toggle mode is somes called a divide-by- circuit. Why? 555 r clock generator Figure : 555 clock generator and flip-flop in the toggle mode ( = = )

### Chapter 9 Latches, Flip-Flops, and Timers

ETEC 23 Programmable Logic Devices Chapter 9 Latches, Flip-Flops, and Timers Shawnee State University Department of Industrial and Engineering Technologies Copyright 27 by Janna B. Gallaher Latches A temporary

### A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

### 1. Learn about the 555 timer integrated circuit and applications 2. Apply the 555 timer to build an infrared (IR) transmitter and receiver

Electronics Exercise 2: The 555 Timer and its Applications Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles Ume,

### Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

### A Lesson on Digital Clocks, One Shots and Counters

A Lesson on Digital Clocks, One Shots and Counters Topics Clocks & Oscillators LM 555 Timer IC Crystal Oscillators Selection of Variable Resistors Schmitt Gates Power-On Reset Circuits One Shots Counters

### Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

### Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

### CHAPTER 11 LATCHES AND FLIP-FLOPS

CHAPTER 11 LATCHES AND FLIP-FLOPS This chapter in the book includes: Objectives Study Guide 11.1 Introduction 11.2 Set-Reset Latch 11.3 Gated D Latch 11.4 Edge-Triggered D Flip-Flop 11.5 S-R Flip-Flop

### ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME

The national association for AMATEUR RADIO ARRL Morse Code Oscillator, How It Works By: Mark Spencer, WA8SME This supplement is intended for use with the ARRL Morse Code Oscillator kit, sold separately.

### Counters. Present State Next State A B A B 0 0 0 1 0 1 1 0 1 0 1 1 1 1 0 0

ounter ounters ounters are a specific type of sequential circuit. Like registers, the state, or the flip-flop values themselves, serves as the output. The output value increases by one on each clock cycle.

### Features. Applications

LM555 Timer General Description The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the

### Fig1-1 2-bit asynchronous counter

Digital electronics 1-Sequential circuit counters Such a group of flip- flops is a counter. The number of flip-flops used and the way in which they are connected determine the number of states and also

### The components. E3: Digital electronics. Goals:

E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

### Engr354: Digital Logic Circuits

Engr354: igital Circuits Chapter 7 Sequential Elements r. Curtis Nelson Sequential Elements In this chapter you will learn about: circuits that can store information; Basic cells, latches, and flip-flops;

### TS555. Low-power single CMOS timer. Description. Features. The TS555 is a single CMOS timer with very low consumption:

Low-power single CMOS timer Description Datasheet - production data The TS555 is a single CMOS timer with very low consumption: Features SO8 (plastic micropackage) Pin connections (top view) (I cc(typ)

### CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

### A Digital Timer Implementation using 7 Segment Displays

A Digital Timer Implementation using 7 Segment Displays Group Members: Tiffany Sham u2548168 Michael Couchman u4111670 Simon Oseineks u2566139 Caitlyn Young u4233209 Subject: ENGN3227 - Analogue Electronics

### Operational Amplifier as mono stable multi vibrator

Page 1 of 5 Operational Amplifier as mono stable multi vibrator Aim :- To construct a monostable multivibrator using operational amplifier 741 and to determine the duration of the output pulse generated

### 3-Digit Counter and Display

ECE 2B Winter 2007 Lab #7 7 3-Digit Counter and Display This final lab brings together much of what we have done in our lab experiments this quarter to construct a simple tachometer circuit for measuring

### Digital Fundamentals

igital Fundamentals with PL Programming Floyd Chapter 9 Floyd, igital Fundamentals, 10 th ed, Upper Saddle River, NJ 07458. All Rights Reserved Summary Latches (biestables) A latch is a temporary storage

### Sequential Logic: Clocks, Registers, etc.

ENEE 245: igital Circuits & Systems Lab Lab 2 : Clocks, Registers, etc. ENEE 245: igital Circuits and Systems Laboratory Lab 2 Objectives The objectives of this laboratory are the following: To design

### How to Read a Datasheet

How to Read a Datasheet Prepared for the WIMS outreach program 5/6/02, D. Grover In order to use a PIC microcontroller, a flip-flop, a photodetector, or practically any electronic device, you need to consult

### 2 : BISTABLES. In this Chapter, you will find out about bistables which are the fundamental building blocks of electronic counting circuits.

2 : BITABLE In this Chapter, you will find out about bistables which are the fundamental building blos of electronic counting circuits. et-reset bistable A bistable circuit, also called a latch, or flip-flop,

### ECE380 Digital Logic

ECE38 igital Logic Flip-Flops, Registers and Counters: Flip-Flops r.. J. Jackson Lecture 25- Flip-flops The gated latch circuits presented are level sensitive and can change states more than once during

### Digital Fundamentals

Digital Fundamentals Tenth Edition Floyd hapter 8 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved ounting in Binary As you know, the binary count sequence

### LAB4: Audio Synthesizer

UC Berkeley, EECS 100 Lab LAB4: Audio Synthesizer B. Boser NAME 1: NAME 2: The 555 Timer IC SID: SID: Inductors and capacitors add a host of new circuit possibilities that exploit the memory realized by

### Counters and Decoders

Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

### Theory of Logic Circuits. Laboratory manual. Exercise 3

Zakład Mikroinformatyki i Teorii Automatów yfrowych Theory of Logic ircuits Laboratory manual Exercise 3 Bistable devices 2008 Krzysztof yran, Piotr zekalski (edt.) 1. lassification of bistable devices

### Digital Logic Elements, Clock, and Memory Elements

Physics 333 Experiment #9 Fall 999 Digital Logic Elements, Clock, and Memory Elements Purpose This experiment introduces the fundamental circuit elements of digital electronics. These include a basic set

### NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

NE555 SA555 - SE555 General-purpose single bipolar timers Features Low turn-off time Maximum operating frequency greater than 500 khz Timing from microseconds to hours Operates in both astable and monostable

### Pulse Width Modulation (PWM) LED Dimmer Circuit. Using a 555 Timer Chip

Pulse Width Modulation (PWM) LED Dimmer Circuit Using a 555 Timer Chip Goals of Experiment Demonstrate the operation of a simple PWM circuit that can be used to adjust the intensity of a green LED by varying

### NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

NE555 SA555 - SE555 General-purpose single bipolar timers Features Low turn-off time Maximum operating frequency greater than 500 khz Timing from microseconds to hours Operates in both astable and monostable

### CDA 3200 Digital Systems. Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

CDA 3200 Digital Systems Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012 Outline SR Latch D Latch Edge-Triggered D Flip-Flop (FF) S-R Flip-Flop (FF) J-K Flip-Flop (FF) T Flip-Flop

### Module 3: Floyd, Digital Fundamental

Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

### Latches, the D Flip-Flop & Counter Design. ECE 152A Winter 2012

Latches, the D Flip-Flop & Counter Design ECE 52A Winter 22 Reading Assignment Brown and Vranesic 7 Flip-Flops, Registers, Counters and a Simple Processor 7. Basic Latch 7.2 Gated SR Latch 7.2. Gated SR

### Sequential Logic Design Principles.Latches and Flip-Flops

Sequential Logic Design Principles.Latches and Flip-Flops Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Bistable Elements Latches and Flip-Flops S-R Latch

### DIGITAL COUNTERS. Q B Q A = 00 initially. Q B Q A = 01 after the first clock pulse.

DIGITAL COUNTERS http://www.tutorialspoint.com/computer_logical_organization/digital_counters.htm Copyright tutorialspoint.com Counter is a sequential circuit. A digital circuit which is used for a counting

### So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

### CS311 Lecture: Sequential Circuits

CS311 Lecture: Sequential Circuits Last revised 8/15/2007 Objectives: 1. To introduce asynchronous and synchronous flip-flops (latches and pulsetriggered, plus asynchronous preset/clear) 2. To introduce

### Lab 11 Digital Dice. Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation

Lab 11 Digital Dice Figure 11.0. Digital Dice Circuit on NI ELVIS II Workstation From the beginning of time, dice have been used for games of chance. Cubic dice similar to modern dice date back to before

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER3 QUESTIONS MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ) If one input of an AND gate is LOW while the other is a clock signal, the output

### Wiki Lab Book. This week is practice for wiki usage during the project.

Wiki Lab Book Use a wiki as a lab book. Wikis are excellent tools for collaborative work (i.e. where you need to efficiently share lots of information and files with multiple people). This week is practice

### css Custom Silicon Solutions, Inc.

css Custom Silicon Solutions, Inc. CSS555(C) CSS555/ PART DESCRIPTION The CSS555 is a micro-power version of the popular 555 Timer IC. It is pin-for-pin compatible with the standard 555 timer and features

### MM74HC4538 Dual Retriggerable Monostable Multivibrator

MM74HC4538 Dual Retriggerable Monostable Multivibrator General Description The MM74HC4538 high speed monostable multivibrator (one shots) is implemented in advanced silicon-gate CMOS technology. They feature

### Fairchild Semiconductor Application Note July 1984 Revised May 2001. Definition

Fairchild Semiconductor Application Note July 1984 Revised May 2001 Designer s Encyclopedia of One-Shots Introduction Fairchild Semiconductor manufactures a broad variety of monostable multivibrators (one-shots)

### LM555/NE555/SA555. Single Timer. Description. Features. Applications. Internal Block Diagram. Vcc GND. Trigger. Discharge. Output F/F.

Single Timer www.fairchildsemi.com Features High Current Drive Capability (00mA) Adjustable Duty Cycle Temperature Stability of 0.005%/ C Timing From µsec to Hours Turn off Time Less Than µsec Applications

### SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

### COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

### Laboratory 4: Feedback and Compensation

Laboratory 4: Feedback and Compensation To be performed during Week 9 (Oct. 20-24) and Week 10 (Oct. 27-31) Due Week 11 (Nov. 3-7) 1 Pre-Lab This Pre-Lab should be completed before attending your regular

### 7. Latches and Flip-Flops

Chapter 7 Latches and Flip-Flops Page 1 of 18 7. Latches and Flip-Flops Latches and flip-flops are the basic elements for storing information. One latch or flip-flop can store one bit of information. The

### EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates

EGR 278 Digital Logic Lab File: N278L3A Lab # 3 Open-Collector and Driver Gates A. Objectives The objectives of this laboratory are to investigate: the operation of open-collector gates, including the

### DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary Outputs

August 1986 Revised March 2000 DM74LS112A Dual Negative-Edge-Triggered Master-Slave J-K Flip-Flop with Preset, Clear, and Complementary General Description This device contains two independent negative-edge-triggered

### BINARY CODED DECIMAL: B.C.D.

BINARY CODED DECIMAL: B.C.D. ANOTHER METHOD TO REPRESENT DECIMAL NUMBERS USEFUL BECAUSE MANY DIGITAL DEVICES PROCESS + DISPLAY NUMBERS IN TENS IN BCD EACH NUMBER IS DEFINED BY A BINARY CODE OF 4 BITS.

### DIGITAL TECHNICS II. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS II Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: ELEMENTARY SEUENTIAL CIRCUITS: FLIP-FLOPS 1st year BSc course 2nd (Spring) term 2012/2013 1

### ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

### EE 42/100 Lecture 24: Latches and Flip Flops. Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad

A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 24 p. 1/20 EE 42/100 Lecture 24: Latches and Flip Flops ELECTRONICS Rev B 4/21/2010 (2:04 PM) Prof. Ali M. Niknejad University of California,

### On/Off Controller with Debounce and

19-4128; Rev ; 5/8 On/Off Controller with Debounce and General Description The is a pushbutton on/off controller with a single switch debouncer and built-in latch. It accepts a noisy input from a mechanical

### css Custom Silicon Solutions, Inc.

css Custom Silicon Solutions, Inc. GENERAL PART DESCRIPTION The is a micropower version of the popular timer IC. It features an operating current under µa and a minimum supply voltage of., making it ideal

### Upon completion of unit 1.1, students will be able to

Upon completion of unit 1.1, students will be able to 1. Demonstrate safety of the individual, class, and overall environment of the classroom/laboratory, and understand that electricity, even at the nominal

### Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill

Digital Systems Based on Principles and Applications of Electrical Engineering/Rizzoni (McGraw Hill Objectives: Analyze the operation of sequential logic circuits. Understand the operation of digital counters.

### A Trigger Circuit for the 555 Timer IC Scope

Scope This document describes a trigger circuit that allows the 555 timer IC to produce a voltage pulse when triggered with a voltage that is brought low and held low for an arbitrary amount of time (even

### Digital Electronics Detailed Outline

Digital Electronics Detailed Outline Unit 1: Fundamentals of Analog and Digital Electronics (32 Total Days) Lesson 1.1: Foundations and the Board Game Counter (9 days) 1. Safety is an important concept

### Designing With the SN54/74LS123. SDLA006A March 1997

Designing With the SN54/74LS23 SDLA6A March 997 IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without

### Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

### DM74LS169A Synchronous 4-Bit Up/Down Binary Counter

Synchronous 4-Bit Up/Down Binary Counter General Description This synchronous presettable counter features an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation

### Lecture 8: Synchronous Digital Systems

Lecture 8: Synchronous Digital Systems The distinguishing feature of a synchronous digital system is that the circuit only changes in response to a system clock. For example, consider the edge triggered

### Physics 120 Lab 6: Field Effect Transistors - Ohmic region

Physics 120 Lab 6: Field Effect Transistors - Ohmic region The FET can be used in two extreme ways. One is as a voltage controlled resistance, in the so called "Ohmic" region, for which V DS < V GS - V

### DEPARTMENT OF INFORMATION TECHNLOGY

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA Affiliated to Mahamaya Technical University, Noida Approved by AICTE DEPARTMENT OF INFORMATION TECHNLOGY Lab Manual for Computer Organization Lab ECS-453

### NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

### Asynchronous counters, except for the first block, work independently from a system clock.

Counters Some digital circuits are designed for the purpose of counting and this is when counters become useful. Counters are made with flip-flops, they can be asynchronous or synchronous and they can

### Digital Fundamentals. Lab 8 Asynchronous Counter Applications

Richland College Engineering Technology Rev. 0 B. Donham Rev. 1 (7/2003). Horne Rev. 2 (1/2008). Bradbury Digital Fundamentals CETT 1425 Lab 8 Asynchronous Counter Applications Name: Date: Objectives:

### Lab Unit 4: Oscillators, Timing and the Phase Locked Loop

Chemistry 8 University of WisconsinMadison Lab Unit : Oscillators, Timing and the Phase Locked Loop Oscillators and timing circuits are very widely used in electronic measurement instrumentation. In this

### DM74121 One-Shot with Clear and Complementary Outputs

June 1989 Revised July 2001 DM74121 One-Shot with Clear and Complementary Outputs General Description The DM74121 is a monostable multivibrator featuring both positive and negative edge triggering with

### RC Circuits and The Oscilloscope Physics Lab X

Objective RC Circuits and The Oscilloscope Physics Lab X In this series of experiments, the time constant of an RC circuit will be measured experimentally and compared with the theoretical expression for

### 1.1 The 7493 consists of 4 flip-flops with J-K inputs unconnected. In a TTL chip, unconnected inputs

CALIFORNIA STATE UNIVERSITY LOS ANGELES Department of Electrical and Computer Engineering EE-246 Digital Logic Lab EXPERIMENT 1 COUNTERS AND WAVEFORMS Text: Mano, Digital Design, 3rd & 4th Editions, Sec.

### Lab 5 Operational Amplifiers

Lab 5 Operational Amplifiers By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC. Purpose The purpose of this lab is to examine the properties

### LM139/LM239/LM339 A Quad of Independently Functioning Comparators

LM139/LM239/LM339 A Quad of Independently Functioning Comparators INTRODUCTION The LM139/LM239/LM339 family of devices is a monolithic quad of independently functioning comparators designed to meet the

### Contents COUNTER. Unit III- Counters

COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

### DATA SHEETS DE COMPONENTES DA FAMÍLIA LÓGICA TTL GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS DESCRIÇÃO

GATES AND INVERTERS POSITIVES NAND GATES AND INVERTERS Hex Invertes 74LS04 Quadruple 2 Inputs Gates 74LS00 Triple 3 Inputs Gates 74LS10 Dual 4 Inputs Gates 74LS20 8 Inputs Gates 74LS30 13 Inputs Gates

### Table 1 Comparison of DC, Uni-Polar and Bi-polar Stepper Motors

Electronics Exercise 3: Uni-Polar Stepper Motor Controller / Driver Mechatronics Instructional Laboratory Woodruff School of Mechanical Engineering Georgia Institute of Technology Lab Director: I. Charles

### PURDUE UNIVERSITY NORTH CENTRAL

ECET 109/159 PURDUE UNIVERSITY NORTH CENTRAL Electrical and Computer Engineering Technology Department All Semesters ECET Lab Report Format and Guidelines I. Introduction. Part of being technically educated

### Flip-Flops, Registers, Counters, and a Simple Processor

June 8, 22 5:56 vra235_ch7 Sheet number Page number 349 black chapter 7 Flip-Flops, Registers, Counters, and a Simple Processor 7. Ng f3, h7 h6 349 June 8, 22 5:56 vra235_ch7 Sheet number 2 Page number

### INTEGRATED CIRCUITS. NE558 Quad timer. Product data Supersedes data of 2001 Aug 03. 2003 Feb 14

INTEGRATED CIRCUITS Supersedes data of 2001 Aug 03 2003 Feb 14 DESCRIPTION The Quad Timers are monolithic timing devices which can be used to produce four independent timing functions. The output sinks

### Operating Manual Ver.1.1

4 Bit Binary Ripple Counter (Up-Down Counter) Operating Manual Ver.1.1 An ISO 9001 : 2000 company 94-101, Electronic Complex Pardesipura, Indore- 452010, India Tel : 91-731- 2570301/02, 4211100 Fax: 91-731-

### ASYNCHRONOUS COUNTERS

LB no.. SYNCHONOUS COUNTES. Introduction Counters are sequential logic circuits that counts the pulses applied at their clock input. They usually have 4 bits, delivering at the outputs the corresponding

### IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays

IEC 00-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays Application Note July 1999 AN9612.2 Author: Wayne Austin The SP720, SP721, SP723, and SP724 are protection

### Memory Elements. Combinational logic cannot remember

Memory Elements Combinational logic cannot remember Output logic values are function of inputs only Feedback is needed to be able to remember a logic value Memory elements are needed in most digital logic

### LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

### BJT Amplifier Circuits

JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:

### CHAPTER 3 Boolean Algebra and Digital Logic

CHAPTER 3 Boolean Algebra and Digital Logic 3.1 Introduction 121 3.2 Boolean Algebra 122 3.2.1 Boolean Expressions 123 3.2.2 Boolean Identities 124 3.2.3 Simplification of Boolean Expressions 126 3.2.4

### 74LS193 Synchronous 4-Bit Binary Counter with Dual Clock

74LS193 Synchronous 4-Bit Binary Counter with Dual Clock General Description The DM74LS193 circuit is a synchronous up/down 4-bit binary counter. Synchronous operation is provided by having all flip-flops

### Chapter 5. Sequential Logic

Chapter 5 Sequential Logic Sequential Circuits (/2) Combinational circuits: a. contain no memory elements b. the outputs depends on the current inputs Sequential circuits: a feedback path outputs depends

### EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS

1 EXPERIMENT NUMBER 5 BASIC OSCILLOSCOPE OPERATIONS The oscilloscope is the most versatile and most important tool in this lab and is probably the best tool an electrical engineer uses. This outline guides

### Chapter 8. Sequential Circuits for Registers and Counters

Chapter 8 Sequential Circuits for Registers and Counters Lesson 3 COUNTERS Ch16L3- "Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline Counters T-FF Basic Counting element State

### CHAPTER 16 MEMORY CIRCUITS

CHPTER 6 MEMORY CIRCUITS Chapter Outline 6. atches and Flip-Flops 6. Semiconductor Memories: Types and rchitectures 6.3 Random-ccess Memory RM Cells 6.4 Sense-mplifier and ddress Decoders 6.5 Read-Only

### ENGI 241 Experiment 5 Basic Logic Gates

ENGI 24 Experiment 5 Basic Logic Gates OBJECTIVE This experiment will examine the operation of the AND, NAND, OR, and NOR logic gates and compare the expected outputs to the truth tables for these devices.

### Operational Amplifier - IC 741

Operational Amplifier - IC 741 Tabish December 2005 Aim: To study the working of an 741 operational amplifier by conducting the following experiments: (a) Input bias current measurement (b) Input offset