# Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Save this PDF as:

Size: px
Start display at page:

Download "Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde"

## Transcription

1 Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde MATHEMATICS COMPETITION WISKUNDE KOMPETISIE GRADES 10 AND 11 GRADE 10 EN 11 AUGUST 2015 AUGUSTUS 2015 TIME: 2 HOURS TYD: 2 URE 2012 OUTEURSREG VOORBEHOU, UNIVERSITEIT VAN PRETORIA 2012 COPYRIGHT RESERVED, UNIVERSITY OF PRETORIA

2 INSTRUCTIONS INSTRUKSIES No calculators or other calculation Geen sakrekenaars of ander aids are allowed. rekenhulpmiddels word toegelaat nie. Mark allocation Puntetoekenning Every question counts 1 mark. Elke vraag tel 1 punt. Random guessing is not advisable, Raaiery word nie aanbeveel nie, as the mark allocated to a question aangesien die punt toegeken aan die may be deducted for a wrong answer. vraag afgetrek mag word vir n n verkeerde antwoord. Every question has five possible Elke vraag het vyf moontlike answers, (A) to (E). antwoorde, (A) tot (E). Only ONE answer is correct. Slegs EEN antwoord is korrek. Colour in the rectangle of the correct Kleur die reghoek van die korrekte answer on the answer sheet. antwoord op die antwoordvel in. Do not colour outside the rectangle. Moenie buite die reghoek inkleur nie. Use a soft pencil. Gebruik n sagte potlood. Example: Voorbeeld: Suppose Question 21 reads: Gestel Vraag 21 is: The smallest integer larger than 1 is Die kleinste heelgetal groter as 1 is (A) 0 (B) 1 (C) 1 (D) 2 (E) 3 The correct answer is 2, which is answer (D). On the answer sheet you must colour in the rectangle (D) against Die korrekte antwoord is 2, en dit is antwoord (D). Op die antwoordvel moet jy die reghoek (D) inkleur teenoor Question 21. Vraag 21. Question 21 / Vraag 21 (A) (B) (C) (D) (E) 1

3 Question 1 Vraag 1 If 2 + x = 3, then x = As 2 + x = 3, dan is x = (A) 1 (B) 7 (C) 7 (D) 49 (E) 121 Question 2 Vraag 2 0, 70 0, 36 is equal to 0, 70 0, 36 is gelyk aan (A) 0, 252 (B) 2, 52 (C) 25, 2 (D) 252 (E) 0, 0252 Question 3 Vraag 3 The value of is Die waarde van is (A) 27 5 (B) 27 6 (C) 3 12 (D) 3 7 (E) 3 8 Question 4 Vraag 4 The table below shows some of the results of a survey by radio station Jacaranda FM. What percentage of the males surveyed listens to the station? Die tabel hieronder toon van die resultate van n steekproef deur radiostasie Jakaranda FM. Watter persentasie van die mans in die steekproef luister na die stasie? (A) 48 (B) 52 (C) 55 (D) 75 (E) 78 Question 5 Vraag 5 A car travels r km on a liter of petrol. Petrol costs s rands per liter. The cost of the petrol, in rands, for a journey of t km is (A) st r (B) rt s (C) r st n Motor kan r km met n liter petrol ry. Petrol kos s rand per liter. Die koste van die petrol, in rand, vir n reis van t km is (D) rs t (E) t rs 1

4 Question 6 Vraag 6 If m > 0 and the points (m; 3) and (1; m) lie on a line with slope m, then m is (A) 1 (B) 2 (C) 3 (D) 2 (E) 5 As m > 0 en die punte (m; 3) en (1; m) le op n lyn met helling m, dan is m Question 7 Vraag 7 If n! = n, what is the value of 11! 4!7!? As n! = n, wat is die waarde van 11! 4!7!? (A) 1 (B) 110 (C) 120 (D) 210 (E) 330 Question 8 Vraag 8 A triangle has vertices A(0; 0), B(2; 3) and n Driehoek het hoekpunte A(0; 0), B(2; 3) C(4; 5). What is the area of triangle en C(4; 5). Wat is die oppervlak van ABC? driehoek ABC? (A) 0.5 (B) 1 (C) 1.5 (D) 2 (E) 2.5 Question 9 Vraag 9 Solve for x if 2 x + 2 x+2 = 20. Los op vir x as 2 x + 2 x+2 = 20. (A) 2 (B) 1 (C) 0 (D) 1 (E) 2 Question 10 Vraag 10 In the figure, what is the size of angle CBA? In die figuur, wat is die grootte van hoek CBA? (A) 90 (B) 108 (C) 120 (D) 132 (E) 144 2

5 Question 11 Vraag 11 (a 1 + b 1 ) 1 is equal to (a 1 + b 1 ) 1 is gelyk aan (A) a 2 + b 2 (B) ab a + b (C) a + b (D) a b (E) a + b ab Question 12 Vraag 12 In the triangle BC and DE are parallel. Which of the following is always true if AB = p, BD = q,ac = r and CE = s? In die driehoek is BC en DE parallel. Watter een van die volgende is altyd waar as AB = p, BD = q,ac = r en CE = s? (A) p+q=r+s (B) p-q=r-s (C) pq=rs (D) p q = r s (E) None of these/geen van die Question 13 Vraag 13 Which one of the numbers below is a term of this arithmetic sequence 4, 11, 18, 25,...? (Note the common difference!) Watter een van die volgende getalle is n term van die rekenkundige ry 4, 11, 18, 25,...? (Let op die gemene verskil!) (A) 1000 (B) 2000 (C) 3000 (D) 4000 (E)

6 Question 14 Vraag 14 The graph of 5 + 2y 3x = 0 is translated 3 units to the right. What is the equation of the new graph? Die grafiek 5+2y 3x = 0 word 3 eenhede na regs getransleer. Wat is die vergelyking van hiernie nuwe grafiek? (A) y 3x = 0 (B) 8 + 2y 3x = 0 (C) 4 + 2y 3x = 0 (D) 2 + 2y 3x = 0 (E) y 3x = 0 Question 15 Vraag 15 Jack tosses one coin and Jill tosses two coins. What is the probability that Jack and Jill gets the same number of heads? Jack skiet een muntstuk en Jill skiet twee muntstukke op. Wat is die waarskynlikheid dat Jack en Jill dieselfde aantal koppe kry? (A) 1 4 (B) 3 8 (C) 1 2 (D) 2 3 (E) 3 4 Question 16 Vraag 16 There are 29 people in a room. Of these, 11 speak Afrikaans, 24 speak English and 3 speak neither Afrikaans nor English. How many people in the room speak both Afrikaans and English? (A) 3 (B) 4 (C) 6 (D) 8 (E) 9 Daar is 29 persone in n vertrek. Uit die groep, 11 kan Afrikaans praat, 24 kan Engels praat en 3 persone praat nie een van Afrikaans of Engels. Hoeveel persone in die groep kan beide Afrikaans en Engels praat? Question 17 Vraag 17 At a certain point there are n people at a party. After that, 31 women leave the party, leaving twice as many men as women in the party. Later 55 men leave, leaving three times as many women as men in the party. What is the number n? Op n sekere stadium was daar n mense by n partyjie. Na n rukkie verlaat 31 vrouens die partytjie, wat twee keer soveel mans as vroue by die partyjie laat. Daarna verlaat 55 mans die partytjie, wat nou drie keer soveel vroue as mans by die partytjie laat. Wat is die waarde van n? (A) 100 (B) 115 (C) 105 (D) 130 (E) None of these/geen van die 4

7 Question 18 Vraag 18 If f(x) = x 2 1, calculate f(f(x) + x). As f(x) = x 2 1, bereken f(x) f(f(x) + x). f(x) (A) x 2 + x + 1 (B) x 2 + 2x + 1 (C) x 2 + x (D) x 2 + 2x + 2 (E) x 2 + 2x Question 19 Vraag 19 x If of x + y + z. 8 y = y = 15 z z 10 x = 2, find the value Indien x = = 8 y 15 z waarde van x + y + z. y z 10 x = 2, bepaal die (A) 22 (B) 44 (C) 31 (D) 53 (E) 67 Question 20 Vraag 20 Three semi-circles with diameters AB, BC and AC are drawn as shown below. A circle is inscribed in this diagram so that it touches all three of the semi-circles. Find the radius of this circle if AB = 4 and BC = 2. Drie semi-sirkels met middellyne AB, BC en AC word geteken soos hieronder aangetoon. n Sirkel wat aan al die semisirkels raak, word binne die figuur geteken. Bereken die radius van die sirkel as AB = 4 en BC = 2. (A) 3 7 (B) 4 7 (C) 5 7 (D) 6 7 (E) None of these/geen van die 5

### Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde MATHEMATICS COMPETITION WISKUNDE KOMPETISIE GRADES 0 AND GRADE 0 EN SEPTEMBER 04 SEPTEMBER 04 TIME: HOURS TYD:

### Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde MATHEMATICS COMPETITION WISKUNDE KOMPETISIE GRADES 8 AND 9 GRADE 8 EN 9 AUGUST 2015 AUGUSTUS 2015 TIME: 2 HOURS

### Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde MATHEMATICS COMPETITION WISKUNDE KOMPETISIE GRADES 8 AND 9 GRADE 8 EN 9 SEPTEMBER 204 SEPTEMBER 204 TIME: 2

### UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

VAN/SURNAME: UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS VOORNAME/FIRST NAMES: WTW 162 DYNAMICAL PROCESSES EKSAMEN

### UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

VAN/SURNAME: UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS VOORNAME / FIRST NAMES: WTW 128 SEMESTERTOETS 2 / SEMESTER

NATIONAL SENI CERTIFICATE GRADE/GRAAD MATHEMATICS P/WISKUNDE V EXEMPLAR 0/MODEL 0 MEMANDUM MARKS: 0 PUNTE: 0 This memandum consists of pages. Hierdie memandum bestaan uit bladse. Mathematics P/Wiskunde

### Vermenigvuldig en Afdeling (Intermediêre fase)

Vermenigvuldig en Afdeling (Intermediêre fase) My Huiswerk Boek(4) Naam: Jaar: Skool: Declaration This booklet is not sold or used for profit making. It is used solely for educational purposes. You may

### Die vrae uit ou vraestelle, toetsvraestelle, en modelvraestelle is individueel gekies en uitgehaal vir

Die vrae uit ou vraestelle, toetsvraestelle, en modelvraestelle is individueel gekies en uitgehaal vir Kategorisering Dieselfde vraag kan by meer as een afdeling van die sillabus voorkom, of meer as een

### NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2014 MATHEMATICS P1/WISKUNDE V1 MEMORANDUM

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2014 MATHEMATICS P1/WISKUNDE V1 MEMORANDUM MARKS/PUNTE: 150 Hierdie memorandum bestaan uit 16 bladsye./ This memorandum

### MARK SCHEME for the October/November 2012 series 9679 AFRIKAANS

CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level MARK SCHEME for the October/November 2012 series 9679 AFRIKAANS 9679/02 Paper 2 (Reading and Writing), maximum raw mark 70 This mark scheme is published

### JAARLIKSE NASIONALE ASSESSERING 2013 GRAAD 6 WISKUNDE MODELVRAE

JAARLIKSE NASIONALE ASSESSERING 2013 GRAAD 6 WISKUNDE MODELVRAE Hierdie boekie bestaan uit 20 bladsye, die voorblad uitgesluit. RIGLYNE BY DIE GEBRUIK VAN JAARLIKSE NASIONALE ASSESSERINGSVOORBEELDE (ANA)

### 1. Die vraestel bestaan uit 5 vrae. Beantwoord alle vrae. 3. n Goedgekeurde sakrekenaar mag gebruik word.

CAMI Education (Pty) Ltd Reg. No. 1996/017609/07 CAMI House Fir Drive, Northcliff P.O. Box 1260 CRESTA, 2118 Tel: +27 (11) 476-2020 Fax : 086 601 4400 web: www.camiweb.com e-mail: info@camiweb.com GRAAD

Addisionele Behandelings Indien die chirurg besluit dat jy verdere behandeling nodig het, sal jy na 'n onkoloog ('n mediese dokter wat in die behandeling van kanker spesialiseer) verwys word. Onthou, elke

### Semester Test 1 Semestertoets 1 FSK March 2013 / 15 Maart Time 2½ hours Max. Total 65 Marks Max Tyd 2½ ure Maks. Totaal 65 punte Maks

Physics Department Fisika Departement Semester Test 1 Semestertoets 1 FSK116 15 March 13 / 15 Maart 13 Surname and initials Van en voorletters Signature Handtekening MEMO Student number Studentenommer

### Cork Institute of Technology. CIT Mathematics Examination, Paper 1 Sample Paper A

Cork Institute of Technology CIT Mathematics Examination, 2015 Paper 1 Sample Paper A Answer ALL FIVE questions. Each question is worth 20 marks. Total marks available: 100 marks. The standard Formulae

### MARKETING MANAGEMENT

Faculty of Management DEPARTMENT OF MARKETING MANAGEMENT National Diploma: Marketing BCom (Marketing Managment) Department of Marketing Management Discover the world of marketing If you re wondering why

### IMPLEMENTING AN EFFECTIVE INFORMATION SECURITY AWARENESS PROGRAM

IMPLEMENTING AN EFFECTIVE INFORMATION SECURITY AWARENESS PROGRAM by AMANDA WOLMARANS DISSERTATION Submitted in fulfilment of the requirements for the degree MASTER OF SCIENCE in COMPUTER SCIENCE in the

### GCSE 9-1 Mathematics Higher Tier Grade 9 Tough Paper Paper 1

GCSE 9-1 Mathematics Higher Tier Grade 9 Tough Paper Paper 1 Total marks 80 1 Hour 30 minutes PLEASE NOTE: This paper does not claim the questions included are Grade 9 questions. This paper was designed

### CMY 117 SEMESTERTOETS 2 / SEMESTER TEST 2

DEPARTEMENT CHEMIE DEPARTMENT OF CHEMISTRY CMY 117 SEMESTERTOETS 2 / SEMESTER TEST 2 DATUM / DATE: 13 May / Mei 2013 PUNTE / MARKS: 100 TYD / TIME: 3 ure / hours Afdeling A / Section A: 40 Afdeling B /

### HOEKE EN LYNE ANGLES AND LINES

HOEKE EN LYNE NGLES ND LINES n lyn het geen eindpunte nie line has no endpoints n lynstuk is deel van n lyn met twee eindputne line segment is part of a line n straal is n deel van n lyn met een eindpunt

### AMC 8 Practice Questions Example

AMC 8 Practice Questions Example Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially shaded. What percent of the total

### HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 1999 MATHEMATICS PAPER 2

99-CE MATHS Paper HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 999 MATHEMATICS PAPER 5 am 45 pm (½ hours) Subject Code 80 Read carefully the instructions on the Answer

### HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 2001 MATHEMATICS PAPER 2

00-CE MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 00 MATHEMATICS PAPER 5 am 45 pm (½ hours) Subject Code 80 Read carefull the instructions on the Answer Sheet

### 1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.

1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Write your name here Surname Other names Edexcel IGCSE Centre Number Mathematics A Paper 3H Monday 6 June 2011 Afternoon Time: 2 hours Candidate Number Higher Tier Paper Reference 4MA0/3H You must have:

### GETALLE EN GETAL- VERWANTSKAPPE

MODULE MODULE-HOOFSTUKKE Getalle en getalpatrone 2 Geldsake SLEUTELVAARDIGHEDE die neerskryf van rasionale getalle as eindige of repeterende desimale getalle die vermoë om te identifiseer tussen watter

### Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Friday 11 June 2010 Morning Time: 1 hour 45 minutes

### Contents /Inhoud. Compiled by / Saamgestel deur: Dr Gerrit Stols

Contents /Inhoud Number System / Getallestelsel... 2 Exponents / Eksponente... 6 Ratio, rate and proportion / Verhoudings, tempo s en eweredighede... 8 Finance / Finansies... 10 Products / Produkte...

### Funksies en Grafieke: Inleiding en kernbegrippe

OpenStax-CNX module: m39661 1 Funksies en Grafieke: Inleiding en kernbegrippe Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

### SECONDARY FOUR NORMAL ACADEMIC PRELIMINARY EXAMINATION 2013 MATHEMATICS 4042/01 PAPER 1

Name Class Registration Number SECONDARY FOUR NORMAL ACADEMIC PRELIMINARY EXAMINATION 013 MATHEMATICS 404/01 PAPER 1 Duration: hours Candidates answer on the Question Paper READ THESE INSTRUCTIONS FIRST

### UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level *4274470357* MATHEMATICS (SYLLABUS D) 4024/11 Paper 1 October/November 2012 2 hours Candidates answer

### Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Friday 10 June 2011 Morning Time: 1 hour 45 minutes

Centre No. Candidate No. Paper Reference 1 3 8 0 4 H Paper Reference(s) 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Higher Tier Friday 10 June 2011 Morning Time: 1 hour 45 minutes

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### (a) (b) (c) (d) (e) Cannot be determined from the information given.

1. The geometric mean of six numbers is approximately 14.508. (The geometric mean of n numbers is the nth root of the product.) If three of the numbers are doubled and the other three are tripled, what

### Friday 11 January 2013 Morning

H Friday 11 January 2013 Morning GCSE APPLICATIONS OF MATHEMATICS A381/02 Applications of Mathematics 1 (Higher Tier) *A316900113* Candidates answer on the Question Paper. OCR supplied materials: None

### 1. By how much does 1 3 of 5 2 exceed 1 2 of 1 3? 2. What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3.

1 By how much does 1 3 of 5 exceed 1 of 1 3? What fraction of the area of a circle of radius 5 lies between radius 3 and radius 4? 3 A ticket fee was \$10, but then it was reduced The number of customers

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### THE NGK OFFICIALS PENSION FUND INTERIM RULING IN TERMS OF SECTION 30J OF THE PENSION FUNDS ACT OF 1956

IN THE TRIBUNAL OF THE PENSION FUNDS ADJUDICATOR In the complaint between: CASE NO: PFA/KZN/398/99/KM A.M.E. STEYN Complainant and THE NGK OFFICIALS PENSION FUND Respondent INTERIM RULING IN TERMS OF SECTION

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### CIRCUMFERENCE AND AREA OF A CIRCLE

CIRCUMFERENCE AND AREA OF A CIRCLE 1. AC and BD are two perpendicular diameters of a circle with centre O. If AC = 16 cm, calculate the area and perimeter of the shaded part. (Take = 3.14) 2. In the given

### Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.

Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Monday 18 May 2009 Afternoon Time: 1 hour 45

### Junior Math Circles November 18, D Geometry II

1 University of Waterloo Faculty of Mathematics Junior Math Circles November 18, 009 D Geometry II Centre for Education in Mathematics and Computing Two-dimensional shapes have a perimeter and an area.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### Paper Reference. Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Thursday 5 November 2009 Morning Time: 1 hour 45 minutes

Centre No. Candidate No. Paper Reference 1 3 8 0 3 H Surname Signature Paper Reference(s) 1380/3H Edexcel GCSE Mathematics (Linear) 1380 Paper 3 (Non-Calculator) Higher Tier Thursday 5 November 2009 Morning

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Write your name here Surname Other names Edexcel IGCSE Mathematics B Paper 1 Centre Number Candidate Number Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes Paper Reference 4MB0/01 You must have: Ruler

### Mathematics (Project Maths Phase 1)

2011. S133S Coimisiún na Scrúduithe Stáit State Examinations Commission Junior Certificate Examination Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Ordinary Level Time: 2 hours 300 marks Running

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2014 MATHEMATICS P2/WISKUNDE V2 MEMORANDUM MARKS/PUNTE: 150 This memorandum consists of 12 pages./ Hierdie memorandum

### 4.4 Transforming Circles

Specific Curriculum Outcomes. Transforming Circles E13 E1 E11 E3 E1 E E15 analyze and translate between symbolic, graphic, and written representation of circles and ellipses translate between different

### GEOMETRY (Common Core)

GEOMETRY (COMMON CORE) The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY (Common Core) Wednesday, August 12, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The

### egyptigstudentroom.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *5128615949* MATHEMATICS 0580/04, 0581/04 Paper 4 (Extended) May/June 2007 Additional Materials:

### CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

### Category 5: Speech and Drama

0 1 Category 5: Speech and Drama The classes in which groups may participate, the different sections and the MAXIMUM duration of each section are listed below: CLASS Foundation (Gr 1-3) PRIMARY SCHOOL

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. SAMPLE RESPONSE SET

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. SAMPLE RESPONSE SET Table of Contents Question 29................... 2 Question 30...................

### Cadet Name: Date: A) 2 B) 5 C) 7 D) 14 E) 28. 2. (ACTMTPT:Q4) Find the value of x. A) 40 B) 50 C) 60 D) 75 E) 90

Cadet Name: Date: 1. (ACTMTPT:Q1) The average (arithmetic mean) of x and y is 5, the average of x and z is 8, and the average of y and z is 11. What is the value of z? A) 2 B) 5 C) 7 D) 14 E) 28 2. (ACTMTPT:Q4)

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 26, 2004 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Monday, January 26, 2004 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your name and the

### Afstand. Siyavula Uploaders. 1 WISKUNDE 2 Bonnie en Tommie gaan see toe 3 OPVOEDERS AFDELING 4 Memorandum

OpenStax-CNX module: m32005 1 Afstand Siyavula Uploaders This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 WISKUNDE 2 Bonnie en Tommie gaan see toe

### Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Centre No. Candidate No. Paper Reference 1 3 8 0 2 F Paper Reference(s) 1380/2F Edexcel GCSE Mathematics (Linear) 1380 Paper 2 (Calculator) Foundation Tier Friday 12 November 2010 Morning Time: 1 hour

Advanced GMAT Math Questions Version Quantitative Fractions and Ratios 1. The current ratio of boys to girls at a certain school is to 5. If 1 additional boys were added to the school, the new ratio of

NATIONAL SENI CERTIFICATE NASIONALE SENI SERTIFIKAAT GRADE/GRAAD MATHEMATICS P/WISKUNDE V NOVEMBER 0 MEMANDUM MARKS/PUNTE: 50 This memorandum consists of 3 pages. Hierdie memorandum bestaan uit 3 bladsye.

### Mathematics (Project Maths Phase 3)

2014. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 9 June Morning 9:30 12:00 300

### If a question asks you to find all or list all and you think there are none, write None.

If a question asks you to find all or list all and you think there are none, write None 1 Simplify 1/( 1 3 1 4 ) 2 The price of an item increases by 10% and then by another 10% What is the overall price

### Policy on Student Leadership Development and Training

Department of Student Affairs (DSA) Policy on Student Leadership Development and Training Document type: Policy Document number: Rt 461/10 1. PURPOSE 1.1.1 Background It is the mission of UP to deliver

### CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE I. Thursday, August 16, 2001 8:30 to 11:30 a.m.

The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE I Thursda, August 16, 2001 8:30 to 11:30 a.m., onl Notice... Scientific calculators

### Mathematics (Project Maths)

2010. M128 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination Mathematics (Project Maths) Paper 2 Ordinary Level Monday 14 June Morning 9:30 12:00 300 marks Examination

### Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources Circle Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section. R1 I

### http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

### ANNEXURE TO ASSESSMENT INSTRUCTION 17 OF 2014 CHIEF MARKERS REPORT ON MARKING OF 2013 NATIONAL SENIOR CERTIFICATE EXAMINATION (NSC)

ANNEXURE TO ASSESSMENT INSTRUCTION 17 OF 2014 CHIEF MARKERS REPORT ON MARKING OF 2013 NATIONAL SENIOR CERTIFICATE EXAMINATION (NSC) SUBJECT PAPER PAGE ACCOUNTING 1 10 AFRIKAANS FIRST ADDITIONAL LANGUAGE

GRAAD 3 Geletterdheid OFENINGE Graad 1: VRAAG 1.? Lees van enkel woorde (Vaardigheid)? Gebruik visuele leidrade om sin te maak sowel as kennis of fonetiek en sigwoorde (Assesseringstandaard).? LU3? Kies

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### DO NOW Geometry Regents Lomac Date. due. Coordinate Plane: Equation of a Circle

DO NOW Geometry Regents Lomac 2014-2015 Date. due. Coordinate Plane: Equation of a Circle 8.5 (DN) TEAR OFF The Circle PAGE AND THEN DO THE DO NOW ON BACK OF PACKET (1) What do right triangles have to

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

### Higher Mathematics Homework A

Non calcuator section: Higher Mathematics Homework A 1. Find the equation of the perpendicular bisector of the line joining the points A(-3,1) and B(5,-3) 2. Find the equation of the tangent to the circle

### 13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Write your name here Surname Other names Pearson Edexcel International GCSE Centre Number Mathematics B Paper 1R Candidate Number Wednesday 14 May 2014 Morning Time: 1 hour 30 minutes Paper Reference 4MB0/01R

### 116 Chapter 6 Transformations and the Coordinate Plane

116 Chapter 6 Transformations and the Coordinate Plane Chapter 6-1 The Coordinates of a Point in a Plane Section Quiz [20 points] PART I Answer all questions in this part. Each correct answer will receive

### 24HourAnswers.com. Online Homework. Focused Exercises for Math SAT. Skill Set 12: Geometry - 2D Figures and 3D Solids

24HourAnsers.com Online Homeork Focused Exercises for Math SAT Skill Set 12: Geometry - 2D Figures and 3D Solids Many of the problems in this exercise set came from The College Board, riters of the SAT

### 43 Perimeter and Area

43 Perimeter and Area Perimeters of figures are encountered in real life situations. For example, one might want to know what length of fence will enclose a rectangular field. In this section we will study

### Thursday 8 November 2012 Afternoon

H Thursday 8 November 2012 Afternoon GCSE MATHEMATICS B J567/04 Paper 4 (Higher Tier) *J517181112* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical

### MATHEMATICS: PAPER II

NATIONAL SENIOR CERTIFICATE EXAMINATION SUPPLEMENTARY 2014 MATHEMATICS: PAPER II Time: 3 hours 150 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 10 pages, a

### Answer: = π cm. Solution:

Round #1, Problem A: (4 points/10 minutes) The perimeter of a semicircular region in centimeters is numerically equal to its area in square centimeters. What is the radius of the semicircle in centimeters?

### Calculator allowed. School

Ma KEY STAGE 3 Mathematics test TIER 6 8 Paper 2 Calculator allowed First name Last name School 2008 Remember The test is 1 hour long. You may use a calculator for any question in this test. You will need:

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### MATHEMATICS (SYLLABUS D) 4024/02 Paper 2 For Examination from 2018 SPECIMEN PAPER

Cambridge International Examinations Cambridge Ordinary Level *0123456789* MATHEMATICS (SYLLABUS D) 4024/02 Paper 2 For Examination from 2018 SPECIMEN PAPER Candidates answer on the Question Paper. Additional

Jawapan Additional Mathematics Additional Mathematics Paper 1 SOALAN ULANGKAJI SPM 2011 Additional Mathematics Paper 2 SOALAN ULANGKAJI SPM 2011 SOALAN ULANGKAJI SPM 2011 SOALAN ULANGKAJI SPM 2011 SOALAN

### Coimisiún na Scrúduithe Stáit State Examinations Commission. Leaving Certificate Examination Mathematics

2016. M30 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2016 Mathematics Paper 2 Higher Level Monday 13 June Morning 9:30 12:00 300 marks Examination number

### Winter 2016 Math 213 Final Exam. Points Possible. Subtotal 100. Total 100

Winter 2016 Math 213 Final Exam Name Instructions: Show ALL work. Simplify wherever possible. Clearly indicate your final answer. Problem Number Points Possible Score 1 25 2 25 3 25 4 25 Subtotal 100 Extra

### Grade 7/8 Math Circles March 28, 2012 Gauss Contest Preparation

1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles March 28, 2012 Gauss Contest Preparation Solutions: 1. Evaluate each of the following:

### PRELIMINARY DETERMINATION IN TERMS OF SECTION 30J OF THE PENSION FUNDS ACT OF 1956

IN THE TRIBUNAL OF THE PENSION FUNDS ADJUDICATOR In the complaint between: CASE NO: PFA/FS/92/99 STEPHANUS JOHANNES ROOS Complainant and OVS NYWERHEDE PENSIOEN FONDS BETHLEHEM MOTORS (PTY) LTD First Respondent

### Friday 14 June 2013 Morning

F Friday 14 June 2013 Morning GCSE MATHEMATICS B J567/02 Paper 2 (Foundation Tier) *J517120613* Candidates answer on the Question Paper. OCR supplied materials: None Other materials required: Geometrical

### THE SUPREME COURT OF APPEAL REPUBLIC OF SOUTH AFRICA JUDGMENT. SILTEK HOLDINGS (PTY) LTD (in liquidation) t/a WORKGROUP

THE SUPREME COURT OF APPEAL REPUBLIC OF SOUTH AFRICA JUDGMENT In the matter between: Case number: 081/08 No precedential significance SILTEK HOLDINGS (PTY) LTD (in liquidation) t/a WORKGROUP APPELLANT

### Straight Line. Paper 1 Section A. O xy

PSf Straight Line Paper 1 Section A Each correct answer in this section is worth two marks. 1. The line with equation = a + 4 is perpendicular to the line with equation 3 + + 1 = 0. What is the value of

### MATHEMATICS Unit Pure Core 2

General Certificate of Education January 2008 Advanced Subsidiary Examination MATHEMATICS Unit Pure Core 2 MPC2 Wednesday 9 January 2008 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### NATIONAL QUALIFICATIONS

H Mathematics Higher Paper 1 Practice Paper A Time allowed 1 hour 0 minutes NATIONAL QUALIFICATIONS Read carefull Calculators ma NOT be used in this paper. Section A Questions 1 0 (40 marks) Instructions