1 The closed unbounded filter Closed unbounded sets Stationary sets in generic extensions... 9


 Kathlyn King
 1 years ago
 Views:
Transcription
1 Contents I Stationary Sets 3 by Thomas Jech 1 The closed unbounded filter Closed unbounded sets Splitting stationary sets Generic ultrapowers Stationary sets in generic extensions Some combinatorial principles Reflection Reflecting stationary sets A hierarchy of stationary sets Canonical stationary sets Full reflection Saturation κ + saturation Precipitousness The closed unbounded filter on P κ λ Closed unbounded sets in P κ A Splitting stationary sets
2 2 CONTENTS 4.3 Saturation Proper forcing and other applications Proper forcing Projective and Cohen Boolean algebras Reflection Reflection principles Nonreflecting stationary sets Stationary tower forcing
3 I. Stationary Sets Thomas Jech 1. The closed unbounded filter 1.1. Closed unbounded sets Stationary sets play a fundamental role in modern set theory. This chapter attempts to explain this role and to describe the structure of stationary sets of ordinals and their generalization. The concept of stationary sets first appeared in the 1950 s; the definition is due to G. Bloch [16], and the fundamental theorem on stationary sets was proved by G. Fodor in [24]. However, the concept of a stationary set is implicit in the work of P. Mahlo [71]. The precursor of Fodor s Theorem is the 1929 result of P. Alexandroff and P. Urysohn [2]: if f(α) <αfor all α such that 0 <α<ω 1,thenf is constant on an uncountable set. Let us call an ordinal function f regressive if f(α) <αwhenever α>0. Fodor s Theorem (Theorem 1.5) states that every regressive function on a stationary set is constant on a stationary set. As a consequence, a set S ω 1 is stationary if and only if every regressive function on S is constant on an uncountable set. In this section we develop the theory of closed unbounded and stationary subsets of a regular uncountable cardinal. If X is a set of ordinals, then α is a limit point of X if α > 0and sup(x α) =α. AsetX κ is closed (in the order topology on κ) ifand only if X includes Lim(X), the set of all limit points of X less than κ. 3
4 4 I. Stationary Sets 1.1 Definition. Let κ be a regular uncountable cardinal. A set C κ is closed unbounded (or club for short) if it is closed and also an unbounded subset of κ. AsetS κ is stationary if S C for every closed unbounded C κ. It is easily seen that the intersection of any number of closed sets is closed. The basic observation is that if C 1 and C 2 are both closed unbounded, then C 1 C 2 is also closed unbounded. This leads to the following basic property. 1.2 Proposition. The intersection of less than κ closed unbounded subsets of κ is closed unbounded. Consequently, the closed unbounded sets generate a κcomplete filter on κ called the closed unbounded filter. The dual ideal (which is κcomplete and contains all singletons) consists of all sets that are disjoint from some closed unbounded sets the nonstationary sets, and is thus called the nonstationary ideal, denoted I NS. If I is any nontrivial ideal on κ, theni + denotes the set P (κ) I of all Ipositive sets. Thus stationary subsets of κ are exactly those that are I NS positive. 1.3 Definition. Let X α : α<κ be a κsequence of subsets of κ. Its diagonal intersection is the set α<κ X α = {ξ <κ: ξ α<ξ X α} ; its diagonal union is Σ α<κ X α = {ξ <κ: ξ α<ξ X α}. The following lemma states that the closed unbounded filter is closed under diagonal intersections (or dually, that the nonstationary ideal is closed under diagonal unions): 1.4 Lemma. If C α : α<κ is a sequence of closed unbounded subsets of κ, then its diagonal intersection is closed unbounded. This immediately implies Fodor s Theorem: 1.5 Theorem (Fodor [24]). If S is a stationary subset of κ and if f is a regressive function on S, then there exists some γ<κsuch that f(α) =γ on a stationary subset of S. Proof. Let us assume that for each γ<κthere exists a closed unbounded set C γ such that f(α) γ for each α S C γ.letc = γ<κ C γ.asc is closed unbounded, there exists an α>0ins C. By the definition of C it follows that f(α) α, a contradiction.
5 1. The closed unbounded filter 5 A nontrivial κcomplete ideal I on κ is called normal (and so is its dual filter) if I is closed under diagonal unions; equivalently, if for every A I +, every regressive function on A is constant on some Ipositive set. Thus Fodor s Theorem (or Lemma 1.4) states that the nonstationary ideal (and the club filter) is normal. In fact, the nonstationary ideal is the smallest normal κcomplete ideal on κ: 1.6 Proposition. If F is a normal κcomplete filter on κ, thenf contains all closed unbounded sets. Proof. If C is a club subset of κ, let a α : α<κ be the increasing enumeration of C. Then C α<κ {ξ : a α+1 <ξ<κ} F, because F contains all final segments (being nontrivial and κcomplete). In other words, if I is normal, then every Ipositive set is stationary. The quotient algebra B = P (κ)/i NS is a κcomplete Boolean algebra, where the Boolean operations α<γ and α<γ for γ<κare induced by α<γ and α<γ. Fodor s Theorem implies that B is in fact κ+ complete: if {X α : α<κ} is a collection of subsets of κ, then α<κ X α and Σ α<κ X α are, respectively, the greatest lower bound and the least upper bound of the equivalence classes X α /I NS B. This observation also shows that if X α : α<κ and Y α : α<κ are two enumerations of the same collection, then α X α and α Y α differ only by a nonstationary set. The following characterization of the club filter is often useful, in particular when used in its generalized form (see Section 6). Let F :[κ] <ω κ; an ordinal γ < κ is a closure point of F if F (α 1,...,α n ) <γwhenever α 1,...,α n <γ. It is easy to see that the set Cl F of all closure points of F is a club. Conversely, if C is a club, define F :[κ] <ω κ by letting F (e) be the least element of C greater than max(e). It is clear that Cl F =Lim(C). Thus every club contains Cl F for some F, and we have this characterization of the club filter: 1.7 Proposition. The club filter is generated by the sets Cl F, for all F : [κ] <ω κ. AsetS κ is stationary if and only if for every F :[κ] <ω κ, S contains a closure point of F Splitting stationary sets It is not immediately obvious that the club filter is not an ultrafilter, that is that there exist stationary sets that are costationary, i.e. whose comple
6 6 I. Stationary Sets ment is stationary. The basic result is the following theorem of Solovay: 1.8 Theorem (Solovay [85]). Let κ be a regular uncountable cardinal. Then every stationary subset of κ can be partitioned into κ disjoint stationary sets. Solovay s proof of this basic result of combinatorial set theory uses methods of forcing and large cardinals, and we shall describe it later in this section. For an elementary proof, see e.g. [49], p To illustrate the combinatorics involved, let us prove a special case of Solovay s theorem. 1.9 Proposition. There exist ℵ 1 pairwise disjoint stationary subsets of ω 1. Proof. For every limit ordinal α<ω 1, choose an increasing sequence {a α n } n=0 with limit α. We claim that there is an n such that for all η<ω 1,there are stationary many α such that a α n η: Otherwise there exists, for each n, someη n such that a α n η n for only a nonstationary set of α s. By ω 1  completeness, for all but a nonstationary set of α s the sequences {a α n} n are bounded by sup n η n. A contradiction. Thus let n be such that for all η, thesets η = {α : a α n η} is stationary. The function f(α) =a α n is regressive and so by Fodor s Theorem, there is some γ η η such that T η = {α : a α n = γ η} is stationary. Clearly, there are ℵ 1 distinct values of γ η and therefore ℵ 1 mutually disjoint sets T η. Let κ be a regular uncountable cardinal, and let λ<κbe regular. Let E κ λ = {α <κ:cf α = λ}. For each λ, E κ λ is a stationary set. An easy modification of the proof of 1.9 above shows that for every regular λ<κ, every stationary subset of E κ λ can be split into κ disjoint stationary sets. The union λ Eκ λ is the set of all singular limit ordinals. Its complement is the set Reg of all regular cardinals α<κ. The set Reg is stationary just in case κ is a Mahlo cardinal Generic ultrapowers Let M be a transitive model of ZFC, and let κ be a cardinal in M. LetU be an Multrafilter, i.e. an ultrafilter on the set algebra P (κ) M. Using functions f M on κ, onecanformanultrapowern = Ult U (M), which is
7 1. The closed unbounded filter 7 a model of ZFC but not necessarily wellfounded: f = g {α : f(α) =g(α)} U, f g {α : f(α) g(α)} U. The (equivalence classes of) constant functions c x (α) =x provide an elementary embedding j :(M,ɛ) (N, ), where j(x) =c x, for all x M. An Multrafilter U is Mκcomplete if it is closed under intersections of families {X α : α<γ} M, for all γ<κ; U is normal if every regressive f M is constant on a set in U Proposition. Let U be a nonprincipal Mκcomplete, normal M ultrafilter on κ. Then the ordinals of N have a wellordered initial segment of order type at least κ +1, j(γ) =γ for all γ<κ,andκ is represented in N by the diagonal function d(α) =α. Now let κ be a regular uncountable cardinal and consider the forcing notion (P, <) wherep is the collection of all stationary subsets of κ, andthe ordering is by inclusion. Let B be the complete Boolean algebra B = B(P ), the completion of (P, <). Equivalently, B is the completion of the Boolean algebra P (κ)/i NS. Let us consider the generic extension V [G] givenby a generic G P. It is rather clear that G is a nonprincipal V κcomplete normal ultrafilter on κ. Thus Proposition 1.10 applies, where N = Ult G (V ). The model Ult G (V ) is called a generic ultrapower. There is more on generic ultrapowers in Foreman s chapter in this volume; here we use them to present the original argument of Solovay s [85]. First we prove a lemma (that will be generalized in Section 2): 1.11 Lemma. Let κ be a regular uncountable cardinal, and let S be a stationary set. Then the set T = {α S : either α/ Reg or S α is not a stationary subset of α} is stationary. Proof. Let C be a club and let us show that T C is nonempty. Let α be the least element of the nonempty set S C where C =Lim(C ω). If α is not regular, then α T C and we are done, so assume that α Reg. Now C α is a club subset of α disjoint from S α, andsoα T. We shall now outline the proof of Solovay s Theorem: Proof. (Theorem 1.8.) Let S be a stationary subset of κ that cannot be partitioned into κ disjoint stationary sets. By 1.9 and the remarks following
8 8 I. Stationary Sets its proof, we have S Reg. Let I = I NS S, i.e. I = {X κ : X S I NS }.TheidealI is κsaturated, i.e. every disjoint family W I + has size less than κ; equivalently,b = P (κ)/i has the κchain condition. I is also κcomplete and normal. Let G I + be generic, and let N = Ult G (V ) be the generic ultrapower. As I is κsaturated, N is wellfounded (this is proved by showing that every name f for a function in V on κ can be replaced by an actual function on κ). Thus we have (in V [G]) an elementary embedding j : V N where N is a transitive class, j(γ) =γ for all γ<κ,andκ is represented in N by the diagonal function d(α) =α. Note that if A κ is any set (in V ), then A N: this is because A = j(a) κ; infacta is represented by the function f(α) =A α. Now we use the fact that κc.c. forcing preserves stationarity (cf. Theorem 1.13 below). Thus S is stationary in V [G], and because N V [G], S is a stationary set in the model N. By the ultrapower theorem we have V [G] S α is stationary for Galmost all α. This, translated into forcing, gives {α S : S α is not stationary} I but that contradicts Lemma Another major application of generic ultrapowers is Silver s Theorem: 1.12 Theorem (Silver [84]). Let λ be a singular cardinal of uncountable cofinality. If 2 α = α + for all cardinals α<λ,then2 λ = λ +. Silver s Theorem is actually stronger than this. It assumes only that 2 α = α + for a stationary set of α s (see Section 2 for the definition of stationary when λ is not regular). The proof uses a generic ultrapower. Even though Ult G (V ) is not necessarily well founded, the method of generic ultrapowers enables one to conclude that 2 λ = λ + when 2 α = α + holds almost everywhere. Silver s Theorem can be proved by purely combinatorial methods [10, 11]. In [30], Galvin and Hajnal used combinatorial properties of stationary sets to prove a substantial generalization of Silver s Theorem (superseded only by Shelah s powerful pcf theory). For further generalizations using stationary sets and generic ultrapowers, see [51] and [52]. One of the concepts introduced in [30] is the GalvinHajnal norm of an ordinal function. If f and g are ordinal functions on a regular uncountable
9 1. The closed unbounded filter 9 cardinal κ, letf<gif {α <κ: f(α) <g(α)} contains a club. The relation < is a wellfounded partial order, and the norm f is the rank of f in the relation <. We remark that if f<g, then in the generic ultrapower (by I NS ), the ordinal represented by f is smaller than the ordinal represented by g. By induction on η one can easily show that for each η<κ + there exists a canonical function f η : κ κ of norm η, i.e. f η = η and whenever h = η, then{α : f η (α) h(α)} contains a club. (Proof: Let f 0 (α) =0, f η+1 (α) =f η (α) +1. If η<κ + is a limit ordinal, let λ =cfη and let η = lim ξ λ η ξ. If λ < κ, let f η (α) = sup ξ<λ f ηξ (α) andifλ = κ, let f η (α) =sup ξ<α f ηξ (α).) A canonical function of norm κ + may or may not exist, but is consistent with ZFC (cf. [53]). The existence of canonical function f η for all η is equiconsistent with a measurable cardinal [50] Stationary sets in generic extensions Let M and N be transitive models and let M N. Let κ be a regular uncountable cardinal and let S M be a subset of κ. Clearly, if S is stationary in the model N, thens is stationary in M; the converse is not necessarily true, and κ may even not be regular or uncountable in N. It is important to know which forcing extensions preserve stationarity and we shall return to the general case in Section 5. For now, we state two important special cases: 1.13 Theorem. Let κ be a regular uncountable cardinal and let P be a notion of forcing. (a) If P satisfies the κchain condition, then every club C V [G] has aclubsubsetd in the ground model. Hence every stationary S remains stationary in V [G]. (b) If P is λclosed for every λ < κ, then every stationary S remains stationary in V [G]. Proof. (outline) (a) This follows from this basic fact on forcing: if P is κc.c., then every unbounded A κ in V [G] has an unbounded subset in V. (b) Let p Ċ is a club; we find a γ S and a q p such that q γ Ċ as follows: we construct an increasing continuous ordinal sequence {γ α } α<κ and a decreasing sequence {p α } of conditions such that p α+1 γ α+1 Ċ,
10 10 I. Stationary Sets and if α is a limit ordinal, then γ α = lim ξ<α γ ξ and p α is a lower bound of {p ξ } ξ<α. There is some limit ordinal α such that γ α S. It follows that p α γ α Ċ. We shall now describe the standard way of controlling stationary sets in generic extensions, so called shooting a club. First we deal with the simplest case when κ = ℵ 1. Let S be a stationary subset of ω 1, and consider the following forcing P S (cf. [9]): The forcing conditions are all bounded closed sets p of countable ordinals such that p S. A condition q is stronger than p if q endextends p, i.e. p = q α for some α. It is clear that this forcing produces ( shoots ) a closed unbounded subset of S in the generic extension, thus the complement of S becomes nonstationary. The main point of [9] is that ω 1 is preserved and in fact V [G] adds no new countable sets. Also, every stationary subset of S remains stationary. The forcing P S has the obvious generalization to κ>ℵ 1, but more care is required to guarantee that no new small sets of ordinals are added. For instance, this is the case when S contains the set Sing of all singular ordinals <κ. For a more detailed discussion of this problem see [1] Some combinatorial principles There has been a proliferation of combinatorial principles involving closed unbounded and stationary sets. Most can be traced back to Jensen s investigation of the fine structure of L [59] and generalize either Jensen s diamond ( ) or square ( ). These principles are discussed elsewhere in this volume; we conclude this section by briefly mentioning diamond and clubguessing, and only their typical special cases Theorem ( (ℵ 1 ), Jensen [59]). Assume V = L. There exists a sequence a α : α<ω 1 with each a α α, such that for every A ω 1,theset {α <ω 1 : A α = a α } is stationary. (Note that every A ω is equal to some a α,andso (ℵ 1 ) implies 2 ℵ0 = ℵ 1.) 1.15 Theorem ( (E ℵ2 ℵ 0 ), Gregory [40]). Assume GCH. There exists a sequence a α : α E ℵ2 ℵ 0 with each a α α, such that for every A ω 2,the set {α <ω 2 : A α = a α } is stationary Theorem (Clubguessing, Shelah [82]). There exists a sequence c α : α E ℵ3 ℵ 1,whereeachc α isaclosedunboundedsubsetofα, such that for every club C ω 3,theset{α : c α C} is stationary.
11 2. Reflection 11 Unlike most generalizations of square and diamond, Theorem 1.16 is a theorem of ZFC but we note that the gap (between ℵ 1 and ℵ 3 )isessential. 2. Reflection 2.1. Reflecting stationary sets An important property of stationary sets is reflection. Itisusedinseveral applications, and provides a structure among stationary sets it induces a well founded hierarchy. Natural questions about reflection and the hierarchy are closely related to large cardinal properties. We start with a generalization of stationary sets. Let α be a limit ordinal of uncountable cofinality, say cf α = κ>ℵ 0.AsetS α is stationary if it meets every closed unbounded subset of α. The closed unbounded subsets of α generate a κcomplete filter, and Fodor s Theorem 1.5 yields this: 2.1 Lemma. If f is a regressive function on a stationary set S α, then there exists a γ<αsuch that f(ξ) <γ on a stationary subset of S. If S is a set of ordinals and α is a limit ordinal such that cf α>ω,we say that S is stationary in α if S α is a stationary subset of α. 2.2 Definition. Let κ be a regular uncountable cardinal and let S be a stationary subset of κ. If α < κ and cf α > ω, S reflects at α if S is stationary in α. S reflects if it reflects at some α<κ. It is implicit in the definition that κ>ℵ 1. For our first observation, let α<κbe such that cf α>ω. There is a club C α of order type cf α such that every element of C has cofinality < cf α. Thus if S κ is such that every β S has cofinality cf α, thens does not reflect at α. In particular, if κ = λ + where λ is regular, then the stationary set E κ λ does not reflect. On the other hand, if λ<κis regular and λ + <κ,thene κ λ reflects at every α<κsuch that cf α>λ. To investigate reflection systematically, let us first look at the simplest case, when κ = ℵ 2. Let E 0 = E ℵ2 ℵ 0 and E 1 = E ℵ2 ℵ 1. The set E 1 does not reflect; can every stationary S E 0 reflect? Let us recall Jensen s Square Principle [59]: ( κ ) There exists a sequence C α : α Lim (κ + ) such that
12 12 I. Stationary Sets (i) C α is club in α, (ii) if β Lim(C α ), then C β = C α β, (iii) if cf α<κ,then C α <κ. Now assume that ω1 holds and let C α : α Lim (ω 2 ) be a square sequence. Note that for each α E 1, the order type of C α is ω 1. It follows that there exists a countable limit ordinal η such that the set S = {γ E 0 : γ is the η th element of some C α } is stationary. But for every α E 1, S has at most one element in common with C α,andsos does not reflect. Thus ω1 implies that there is a nonreflecting stationary subset of E ℵ2 ℵ 0. Since ω1 holds unless ℵ 2 is Mahlo in L, the consistency strength of every S E ℵ2 ℵ 0 reflects is at least a Mahlo cardinal. This is in fact the exact strength: 2.3 Theorem (HarringtonShelah [41]). The following are equiconsistent: (i) the existence of a Mahlo cardinal. (ii) every stationary set S E ℵ2 ℵ 0 reflects. Theorem 2.3 improves a previous result of Baumgartner [6] who proved the consistency of (ii) from a weakly compact cardinal. Note that (ii) implies that every stationary set S E ℵ2 ℵ 0 reflects at stationary many α E ℵ2 ℵ 1. A related result of Magidor (to which we return later in this section) gives this equiconsistency: 2.4 Theorem (Magidor [70]). The following are equiconsistent: (i) the existence of a weakly compact cardinal, (ii) every stationary set S E ℵ2 ℵ 0 reflectsatalmostallα E ℵ2 ℵ 1. Here, almost all means all but a nonstationary set. Let us now address the question whether it is possible that every stationary subset of κ reflects. We have seen that this is not the case when κ is the successor of a regular cardinal. Thus κ must be either inaccessible or κ = λ + where λ is singular. Note that because a weakly compact cardinal is Π 1 1 indescribable, every stationary subset of it reflects. In [68], Kunen showed that it is consistent that every stationary S κ reflects while κ is not weakly compact. In [76] it is shown that the consistency strength of every stationary subset of κ reflects is strictly between greatly Mahlo and weakly compact. (For definition of greatly Mahlo, see Section 2.2.)
13 2. Reflection 13 If, in addition, we require that κ be a successor cardinal, then much stronger assumptions are necessary. The argument we gave above using ω1 works for any κ: 2.5 Proposition (Jensen). If λ holds, then there is a nonreflecting stationary subset of E λ+ ℵ 0. As the consistency strength of λ for singular λ is at least a strong cardinal (as shown by Jensen), one needs at least that for the consistency of every stationary S λ + reflects. In [70], Magidor proved the consistency of every stationary subset of ℵ ω+1 reflects from the existence of infinitely many supercompact cardinals. We mention the following applications of nonreflecting stationary sets: 2.6 Theorem (MeklerShelah [76]). The following are equiconsistent: (i) every stationary S κ reflects, (ii) every κfree abelian group is κ + free. 2.7 Theorem (Tryba [90]). If a regular cardinal κ is Jónsson, then every stationary S κ reflects. 2.8 Theorem (Todorčević [88]).If Rado s Conjecture holds, then for every regular κ>ℵ 1, every stationary S E κ ℵ 0 reflects A hierarchy of stationary sets Consider the following operation (the Mahlo operation) on stationary sets. For a stationary set S κ, thetrace of S is the set of all α at which S reflects: Tr(S) ={α <κ:cfα>ωand S α is stationary}. The following basic properties of trace are easily verified. 2.9 Lemma. (a) If S T,thenTr(S) Tr(T ), (b) Tr(S T )=Tr(S) Tr(T ), (c) Tr(Tr(S)) Tr(S), (d) if S T mod I NS,thenTr(S) Tr(T ) mod I NS. Property (d) shows that the Mahlo operation may be considered as an operation on the Boolean algebra P (κ)/i NS.
14 14 I. Stationary Sets If λ<κis regular, let M κ λ = {α <κ:cfα λ}, and note that Tr(Eκ λ ) = Tr(M κ λ )=Mκ λ +. The Mahlo operation on P (κ)/i NS can be iterated α times, for α<κ +. Let M 0 = κ M α+1 = Tr(M α ) M α = ξ<κ M αξ (α limit,α= {α ξ : ξ<κ}). The sets M α are defined mod I NS (the limit stages depend on the enumeration of α). The sequence {M α } α<κ + is decreasing mod I NS,andwhen α<κ,thenm α = M κ λ where λ is the αth regular cardinal. Note that κ is (weakly) Mahlo just in case M κ = Reg is stationary, and that by Lemma 1.11, {M α } α is strictly decreasing (mod I NS,aslongasM α is stationary). Following [13], κ is called greatly Mahlo if M α is stationary for every α<κ +. We shall now consider the following relation between stationary subsets of κ Definition (Jech [47]). S<T iff S α is stationary for almost all α T. In other words, S < T iff Tr(S) T mod I NS. As an example, if λ<µare regular, then E κ λ < Eκ µ. Note also that the language of generic ultrapowers gives this description of <: 2.11 Proposition. S<T iff T S is stationary in Ult G (V ). The following lemma states the basic properties of < Lemma. (a) A<Tr(A), (b) if A<Band B<Cthan A<C, (c) if A A and B B mod I NS,andifA<B,thenA <B. By (c), < can be considered a relation on P (κ)/i NS. By Proposition 1.11, < is irreflexive and so it is a partial ordering. The next theorem shows that the partial ordering < is well founded Theorem (Jech [47]). The relation < is well founded. Proof. Assume to the contrary that there are stationary sets such that A 1 > A 2 >A 3 >. Therefore there are clubs C n such that A n C n Tr(A n+1 )
15 2. Reflection 15 for n =1, 2,...Foreachn, let B n = A n C n Lim(C n+1 ) Lim(Lim(C n+2 )) Each B n is stationary, and for every n, B n Tr(B n+1 ). Let α n =min(b n ). Since B n+1 α n is stationary, we have α n+1 <α n, and therefore, a decreasing sequence α 1 >α 2 >α 3 >. A contradiction. As < is well founded, we can define the order of stationary sets A κ, and of the cardinal κ: o(a) =sup{o(x)+1:x<a}, o(κ) =sup{o(a)+1:a κ stationary}. We also define o(ℵ 0 ) = 0, and o(α) =o(cf (α)) for every limit ordinal α. Note that o(e κ ℵ 0 ) = 0, and in general o(e κ λ )=o(mκ λ )=α, ifλ is the α th regular cardinal. Also, o(ℵ n )=n, o(κ) κ +1 iff κ is Mahlo, and o(κ) κ + iff κ is greatly Mahlo Canonical stationary sets If λ is the α th regular cardinal, then E κ λ has order α; moreover, the set is canonical, in the sense explained below. In fact, canonical stationary sets exist for all orders α<κ +. Let E be a stationary set of order α. IfX E is stationary, then o(x) o(e). We call E canonical of order α if (i) every stationary X E has order α, and (ii) E meets every set of order α. Clearly, a canonical set of order α is unique (mod I NS ), and two canonical sets of different orders are disjoint (mod I NS ). In the following proposition, maximal and is meant mod I NS Proposition (Jech [47]). A canonical set E of order α exists iff there exists a maximal set M of order α. Then(modI NS ) E M Tr(M),M E Tr(E), and Tr(E) Tr(M). One can show that the sets M α obtained by iterating the Mahlo operation are maximal (as long as they are stationary). Thus when we let E α = M α Tr(M α ), we get canonical stationary sets, of all orders α<κ + (for α<o(κ)). The canonical stationary sets E α and the canonical function f α (of Galvin Hajnal norm α) are closely related:
16 16 I. Stationary Sets 2.15 Proposition (Jech [47]). For every α<κ +, α<o(κ), E α {ξ<κ: f α (ξ) =o(ξ)} Full reflection Let us address the question of what is the largest possible amount of reflection, for stationary subsets of a given κ. As A<Bmeans that A reflects at almost all points of B, we would like to maximize the relation <. But A<Bimplies that o(a) <o(b), so we might ask whether it is possible that A<Bfor any two stationary sets such that o(a) <o(b). By Magidor s Theorem 2.4 it is consistent that S<E ℵ2 ℵ 1, and therefore S<Tfor every S of order 0 and every T of order 1. However, this does not generalize, as the following lemma shows that when κ ℵ 3, then there exist S and T with o(s) =0ando(T ) = 1 such that S T Lemma (JechShelah [54]). If κ ℵ 3, then there exist stationary sets S E κ ℵ 0 and T E κ ℵ 1 such that S does not reflect at any α T. Proof. Let S γ, γ<ω 2, be pairwise disjoint stationary subsets of E κ ℵ 0,and let C α, α E κ ℵ 1, be such that for every α, C α is a club subset of α, oforder type ω 1. Because at most ℵ 1 of the sets S γ meet each C α,thereexistsfor each α some γ(α) such that C α S γ(α) =. There exists some γ such that the set T = {α : γ(α) =γ} is stationary; let S = S γ. For every α T, S C α = and so S does not reflect at α. This lemma illustrates some of the difficulties involved when dealing with reflection at singular ordinals. This problem is investigated in detail in [54], where the best possible consistency result is proved for stationary subsets of the ℵ n, n<ω. Let us say that a stationary set S κ reflects fully at regular cardinals if for any stationary set T of regular cardinals o(s) <o(t ) implies S<T, and let us call Full Reflection the statement that every stationary subset of κ reflects fully at regular cardinals. Full Reflection is of course nontrivial only if κ is a Mahlo cardinal. A modification of Theorem 2.4 shows that Full Reflection for a Mahlo cardinal is equiconsistent with weak compactness. The following theorem establishes the consistency strength of Full Reflection for cardinals in the Mahlo hierarchy:
17 3. Saturation Theorem (JechShelah [55]). The following are equiconsistent, for every α κ + : (i) κ is Π 1 αindescribable, (ii) κ is αmahlo and Full Reflection holds. (A regular cardinal κ is αmahlo if o(κ) κ + α; κ is Π 1 1 indescribable iff it is weakly compact.) Full Reflection is also consistent with large cardinals. The paper [57] proves the consistency of Full Reflection with the existence of a measurable cardinal. This has been improved and further generalized in [38]. Finally, the paper [91] shows that any wellfounded partial order of size κ + can be realized by the reflection ordering < on stationary subsets of κ, in some generic extension (using P 2 κstrong κ in the ground model). 3. Saturation 3.1. κ + saturation By Solovay s 1.8 every stationary subset of κ can be split into κ disjoint stationary sets. In other words, for every stationary S κ, theideali NS S is not κsaturated. A natural question is if the nonstationary ideal can be κ + saturated. An ideal I on κ is κ + saturated if the Boolean algebra P (κ)/i has the κ + chain condition. Thus I NS S is κ + saturated when there do not exist κ + stationary subsets of S such that the intersection of any two of them is nonstationary. The existence and properties of κ + saturated ideals have been thoroughly studied since their introduction in [85], and involve large cardinals. The reader will find more details in Foreman s chapter in this volume. We shall concentrate on the special case when I is the nonstationary ideal. The main question, whether the nonstationary ideal can be κ + saturated, has been answered. But a number of related questions are still open. 3.1 Theorem (GitikShelah [37]). The nonstationary ideal on κ is not κ +  saturated, for every regular cardinal κ ℵ Theorem (Shelah). It is consistent, relative to the existence of a Woodin cardinal, that the nonstationary ideal on ℵ 1 is ℵ 2 saturated.
18 18 I. Stationary Sets The consistency result in Theorem 3.2 was first proved in [87] using a strong determinacy assumption. That hypothesis was reduced in [92] to AD, while in [27], the assumption was the existence of a supercompact cardinal. Shelah s result (announced in [81]) is close to optimal: by Steel [86], the saturation of I NS plus the existence of a measurable cardinal imply the existence of an inner model with a Woodin cardinal. All the models mentioned in the preceding paragraph satisfy 2 ℵ0 > ℵ 1. This may not be accidental, and it has been conjectured that the saturation of I NS on ℵ 1 implies that 2 ℵ0 > ℵ 1. In fact, Woodin proved this [94] under the addional assumption that there exists a measurable cardinal. We note in passing that by [27], 2 ℵ0 = ℵ 1 is consistent with I NS S being saturated for some stationary S. Woodin s construction [94] yields a model (starting from AD) in which the ideal I NS is ℵ 1 dense, i.e. the algebra P (ω 1 )/I NS has a dense set of size ℵ 1. This, and Woodin s more recent work using Steel s inner model theory, gives the following equiconsistency. 3.3 Theorem (Woodin). The following are equiconsistent: (i) ZF + AD, (ii) there are infinitely many Woodin cardinals, (iii) the nonstationary ideal on ℵ 1 is ℵ 1 dense. As for the continuum hypothesis, Shelah proved in [80] that if I NS is ℵ 1 dense, then 2 ℵ0 =2 ℵ1. We remark that the mere existence of a saturated ideal affects cardinal arithmetic, cf. [63] and [52]. Let us now return to Theorem 3.1. The general result proved in [37] is this: 3.4 Theorem (GitikShelah [37]). If ν is a regular cardinal and ν + <κ, then I NS E κ ν is not κ+ saturated. The proof of 3.4 combines an earlier result of Shelah (Theorem 3.7 below) with an application of the method of guessing clubs (as in 1.16). The earlier result uses generic ultrapowers and states that if κ = λ + and ν cfλ is regular, then no ideal concentrating on E κ ν is κ + saturated. The method of generic ultrapowers is well suited for κ + saturated ideals. Forcing with P (κ)/i where I is a normal κcomplete κ + saturated ideal makes the generic ultrapower N = Ult G (V ) well founded, preserves the cardinal κ +, and satisfies P N (κ) =P V [G] (κ). It follows that all cardinals
19 3. Saturation 19 <κare preserved in V [G], and it is obvious that if E κ ν G, thenn (and therefore V [G] as well) satisfies cf κ = ν. Shelah s Theorem 3.7 below follows from a simple combinatorial lemma. Let λ be a cardinal and let α<λ + be a limit ordinal. Let us call a family {X ξ : ξ<λ + } a strongly almost disjoint (s.a.d.) family of subsets of α if every X ξ α is unbounded, and if for every ϑ<λ + there exist ordinals δ ξ <α,forξ<ϑ, such that the sets X ξ δ ξ, ξ<ϑ, are pairwise disjoint. Note that if κ is a regular cardinal than there is a s.a.d. family {X ξ : ξ<κ + } of subsets of κ. 3.5 Lemma. If α < λ + and cf α cf λ, then there exists no strongly almost disjoint family of subsets of α. Proof. Assume to the contrary that {X ξ : ξ<λ + } is a s.a.d. family of subsets of α. We may assume that each X ξ has order type cf α. Let f be a function mapping λ onto α. Since cf λ cfα there exists for each ξ some γ ξ <λsuch that X ξ f γ ξ is cofinal in α. There is some γ and a set W λ + of size λ such that γ ξ = γ for all ξ W. Let ϑ>sup W. By the assumption on the X ξ there exist ordinals δ ξ <α, ξ<ϑ, such that the X ξ δ ξ are pairwise disjoint. Thus f 1 (X ξ δ ξ ), ξ W,areλ pairwise disjoint subsets of γ. A contradiction. 3.6 Corollary (Shelah [79]). If κ is a regular cardinal and if a forcing P makes cf κ cf κ, thenp collapses κ +. Proof. Assume that κ + is not collapsed; thus in V [G], (κ + ) V = λ + where λ = κ. In V there is a s.a.d. family {X ξ : ξ<(κ + ) V }, and it remains a s.a.d. family in V [G], of size λ +. Since cf κ cfλ, inv [G], this contradicts Lemma Theorem (Shelah). If κ = λ +,ifν cf λ is regular and if I is a normal κcomplete κ + saturated ideal on κ, thene κ ν I. Proof. If not, then forcing with Ipositive subsets of E κ ν well as cf λ, andmakescfκ = ν; a contradicton. preserves κ + as Theorem 3.4 leaves open the following problem: If λ is a regular cardinal, can I NS E λ+ λ be λ ++ saturated? (For instance can I NS E ℵ2 ℵ 1 be ℵ 3  saturated?) Let us also mention that for all regular ν and κ not excluded by Corollary 3.7, it is consistent that I NS S is κ + saturated for some S E κ ν (see [33]).
20 20 I. Stationary Sets If κ is a large cardinal, then I NS Reg can be κ + saturated, as the following theorem shows. Of course, κ cannot be too large: if κ is greatly Mahlo, then the canonical stationary sets E α κ α<κ + witness nonsaturation. 3.8 Theorem (JechWoodin [58]). For any α < κ +, the following are equiconsistent: (i) κ is measurable of order α, (ii) κ is αmahlo and the ideal I NS Reg on κ is κ + saturated Precipitousness An important property of saturated ideals is that the generic ultrapower is wellfounded. It has been recognized that this property is important enough to single out and study the class of ideals that have it. The ideals for which the generic ultrapower is well founded are called precipitous. They are described in detail in Foreman s chapter in this volume; here we address the question of when the nonstationary ideal is precipitous. Precipitous ideals were introduced by Jech and Prikry in [51]. There are several equivalent formulations of precipitousness. Let I be an ideal on some set E. AnIpartition is a maximal family of Ipositive sets such that the intersection of any two of them is in I. LetG I denote the infinite game of two players who alternately pick Ipositive sets S n such that S 1 S 2 S 3. The first player wins if n=1 S n =. 3.9 Theorem (JechPrikry [51, 45, 46, 29]). Let I be an ideal on a set E. The following are equivalent: (i) forcing with P (E)/I makes the generic ultrapower wellfounded, (ii) for every sequence {W n } n=1 of Ipartitions there exists a sequence {X n } n=1 such that X n W n for each n, and n=1 X n, (iii) the first player does not have a winning strategy in the game G I. The problem of whether the nonstationary ideal on κ can be precipitous involves large cardinals. For κ = ℵ 1 the exact consistency strength is the existence of a measurable cardinal: 3.10 Theorem (JechMagidorMitchellPrikry [50]). The following are equiconsistent: (i) there exists a measurable cardinal, (ii) the nonstationary ideal on ℵ 1 is precipitous.
x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y).
12. Large cardinals The study, or use, of large cardinals is one of the most active areas of research in set theory currently. There are many provably different kinds of large cardinals whose descriptions
More informationChang s Conjecture and weak square
Chang s Conjecture and weak square Hiroshi Sakai Graduate School of System Informatics, Kobe University hsakai@people.kobeu.ac.jp Abstract We investigate how weak square principles are denied by Chang
More informationContinuous treelike scales
Carnegie Mellon University Research Showcase @ CMU Department of Mathematical Sciences Mellon College of Science 42010 Continuous treelike scales James Cummings Carnegie Mellon University, jcumming@andrew.cmu.edu
More informationThe Power Set Function
The Power Set Function Moti Gitik School of Mathematical Sciences Tel Aviv University Tel Aviv, Israel email: gitik@post.tau.ac.il Abstract We survey old and recent results on the problem of finding a
More informationEMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE DEGREES
EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE ENUMERATION DEGREES AND THE ωenumeration DEGREES MARIYA I. SOSKOVA AND IVAN N. SOSKOV 1. Introduction One of the most basic measures of the complexity of a
More informationCOFINAL MAXIMAL CHAINS IN THE TURING DEGREES
COFINA MAXIMA CHAINS IN THE TURING DEGREES WEI WANG, IUZHEN WU, AND IANG YU Abstract. Assuming ZF C, we prove that CH holds if and only if there exists a cofinal maximal chain of order type ω 1 in the
More informationSETS OF GOOD INDISCERNIBLES AND CHANG CONJECTURES WITHOUT CHOICE
SETS OF GOOD INDISCERNIBLES AND CHANG CONJECTURES WITHOUT CHOICE IOANNA M. DIMITRIOU Abstract. With the help of sets of good indiscernibles above a certain height, we show that Chang conjectures involving
More informationMA651 Topology. Lecture 6. Separation Axioms.
MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples
More informationGENTLY KILLING S SPACES TODD EISWORTH, PETER NYIKOS, AND SAHARON SHELAH
GENTLY KILLING S SPACES TODD EISWORTH, PETER NYIKOS, AND SAHARON SHELAH Abstract. We produce a model of ZFC in which there are no locally compact first countable S spaces, and in which 2 ℵ 0 < 2 ℵ 1. A
More informationMODELS OF SET THEORY
MODELS OF SET THEORY STEFAN GESCHKE Contents 1. First order logic and the axioms of set theory 2 1.1. Syntax 2 1.2. Semantics 2 1.3. Completeness, compactness and consistency 3 1.4. Foundations of mathematics
More informationSETTHEORETIC CONSTRUCTIONS OF TWOPOINT SETS
SETTHEORETIC CONSTRUCTIONS OF TWOPOINT SETS BEN CHAD AND ROBIN KNIGHT AND ROLF SUABEDISSEN Abstract. A twopoint set is a subset of the plane which meets every line in exactly two points. By working
More informationarxiv:math/0510680v3 [math.gn] 31 Oct 2010
arxiv:math/0510680v3 [math.gn] 31 Oct 2010 MENGER S COVERING PROPERTY AND GROUPWISE DENSITY BOAZ TSABAN AND LYUBOMYR ZDOMSKYY Abstract. We establish a surprising connection between Menger s classical covering
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationFUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied
More informationA NEW CONDENSATION PRINCIPLE
A NEW CONDENSATION PRINCIPLE THORALF RÄSCH AND RALF SCHINDLER Abstract. We generalize (A), which was introduced in [Sch ], to larger cardinals. For a regular cardinal κ > ℵ 0 we denote by κ (A) the statement
More informationThe BanachTarski Paradox
University of Oslo MAT2 Project The BanachTarski Paradox Author: Fredrik Meyer Supervisor: Nadia S. Larsen Abstract In its weak form, the BanachTarski paradox states that for any ball in R, it is possible
More information11 Ideals. 11.1 Revisiting Z
11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(
More informationTHE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES
THE SEARCH FOR NATURAL DEFINABILITY IN THE TURING DEGREES ANDREW E.M. LEWIS 1. Introduction This will be a course on the Turing degrees. We shall assume very little background knowledge: familiarity with
More informationSMALL SKEW FIELDS CÉDRIC MILLIET
SMALL SKEW FIELDS CÉDRIC MILLIET Abstract A division ring of positive characteristic with countably many pure types is a field Wedderburn showed in 1905 that finite fields are commutative As for infinite
More informationMetric Spaces. Chapter 1
Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence
More informationThe MarkovZariski topology of an infinite group
Mimar Sinan Güzel Sanatlar Üniversitesi Istanbul January 23, 2014 joint work with Daniele Toller and Dmitri Shakhmatov 1. Markov s problem 1 and 2 2. The three topologies on an infinite group 3. Problem
More informationSOLUTIONS TO ASSIGNMENT 1 MATH 576
SOLUTIONS TO ASSIGNMENT 1 MATH 576 SOLUTIONS BY OLIVIER MARTIN 13 #5. Let T be the topology generated by A on X. We want to show T = J B J where B is the set of all topologies J on X with A J. This amounts
More informationAN INTRODUCTION TO SET THEORY. Professor William A. R. Weiss
AN INTRODUCTION TO SET THEORY Professor William A. R. Weiss October 2, 2008 2 Contents 0 Introduction 7 1 LOST 11 2 FOUND 19 3 The Axioms of Set Theory 23 4 The Natural Numbers 31 5 The Ordinal Numbers
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationTuring Degrees and Definability of the Jump. Theodore A. Slaman. University of California, Berkeley. CJuly, 2005
Turing Degrees and Definability of the Jump Theodore A. Slaman University of California, Berkeley CJuly, 2005 Outline Lecture 1 Forcing in arithmetic Coding and decoding theorems Automorphisms of countable
More informationThis asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.
3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but
More informationDegrees that are not degrees of categoricity
Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara
More informationTOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS
TOPOLOGY: THE JOURNEY INTO SEPARATION AXIOMS VIPUL NAIK Abstract. In this journey, we are going to explore the so called separation axioms in greater detail. We shall try to understand how these axioms
More informationLow upper bound of ideals, coding into rich Π 0 1 classes
Low upper bound of ideals, coding into rich Π 0 1 classes Antonín Kučera the main part is a joint project with T. Slaman Charles University, Prague September 2007, Chicago The main result There is a low
More informationThere is no degree invariant halfjump
There is no degree invariant halfjump Rod Downey Mathematics Department Victoria University of Wellington P O Box 600 Wellington New Zealand Richard A. Shore Mathematics Department Cornell University
More informationCHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
More informationGENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY
GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY CARL G. JOCKUSCH, JR. AND PAUL E. SCHUPP Abstract. Generic decidability has been extensively studied in group theory, and we now study it in
More informationCellular objects and Shelah s singular compactness theorem
Cellular objects and Shelah s singular compactness theorem Logic Colloquium 2015 Helsinki Tibor Beke 1 Jiří Rosický 2 1 University of Massachusetts tibor beke@uml.edu 2 Masaryk University Brno rosicky@math.muni.cz
More informationEmbeddability and Decidability in the Turing Degrees
ASL Summer Meeting Logic Colloquium 06. Embeddability and Decidability in the Turing Degrees Antonio Montalbán. University of Chicago Nijmegen, Netherlands, 27 July 2 Aug. of 2006 1 Jump upper semilattice
More informationFIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.
FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is
More informationThe fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992), 33 37) Bart de Smit
The fundamental group of the Hawaiian earring is not free Bart de Smit The fundamental group of the Hawaiian earring is not free (International Journal of Algebra and Computation Vol. 2, No. 1 (1992),
More informationNo: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics
No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results
More information1 if 1 x 0 1 if 0 x 1
Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or
More informationF. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
More informationCHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.
CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,
More informationFinite Projective demorgan Algebras. honoring Jorge Martínez
Finite Projective demorgan Algebras Simone Bova Vanderbilt University (Nashville TN, USA) joint work with Leonardo Cabrer March 1113, 2011 Vanderbilt University (Nashville TN, USA) honoring Jorge Martínez
More informationLogic, Algebra and Truth Degrees 2008. Siena. A characterization of rst order rational Pavelka's logic
Logic, Algebra and Truth Degrees 2008 September 811, 2008 Siena A characterization of rst order rational Pavelka's logic Xavier Caicedo Universidad de los Andes, Bogota Under appropriate formulations,
More informationREAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE
REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE CHRISTOPHER HEIL 1.4.1 Introduction We will expand on Section 1.4 of Folland s text, which covers abstract outer measures also called exterior measures).
More informationGROUPS ACTING ON A SET
GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for
More information1. Prove that the empty set is a subset of every set.
1. Prove that the empty set is a subset of every set. Basic Topology Written by MenGen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since
More informationDEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS
DEGREES OF ORDERS ON TORSIONFREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsionfree abelian groups, one of isomorphism
More informationAn example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
More informationFIBRATION SEQUENCES AND PULLBACK SQUARES. Contents. 2. Connectivity and fiber sequences. 3
FIRTION SEQUENES ND PULLK SQURES RY MLKIEWIH bstract. We lay out some foundational facts about fibration sequences and pullback squares of topological spaces. We pay careful attention to connectivity ranges
More informationU.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra
U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory
More informationMinimal R 1, minimal regular and minimal presober topologies
Revista Notas de Matemática Vol.5(1), No. 275, 2009, pp.7384 http://www.saber.ula.ve/notasdematematica/ Comisión de Publicaciones Departamento de Matemáticas Facultad de Ciencias Universidad de Los Andes
More informationThe Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
More informationLinear Algebra. A vector space (over R) is an ordered quadruple. such that V is a set; 0 V ; and the following eight axioms hold:
Linear Algebra A vector space (over R) is an ordered quadruple (V, 0, α, µ) such that V is a set; 0 V ; and the following eight axioms hold: α : V V V and µ : R V V ; (i) α(α(u, v), w) = α(u, α(v, w)),
More informationMathematics for Econometrics, Fourth Edition
Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents
More informationI. GROUPS: BASIC DEFINITIONS AND EXAMPLES
I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called
More informationCOMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH. 1. Introduction
COMBINATORIAL PROPERTIES OF THE HIGMANSIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the HigmanSims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact
More informationSubsets of Euclidean domains possessing a unique division algorithm
Subsets of Euclidean domains possessing a unique division algorithm Andrew D. Lewis 2009/03/16 Abstract Subsets of a Euclidean domain are characterised with the following objectives: (1) ensuring uniqueness
More informationSeparation Properties for Locally Convex Cones
Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam
More informationChapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
More informationExtension of measure
1 Extension of measure Sayan Mukherjee Dynkin s π λ theorem We will soon need to define probability measures on infinite and possible uncountable sets, like the power set of the naturals. This is hard.
More information1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on realclosed fields These notes develop the algebraic background needed to understand the model theory of realclosed fields. To understand these notes, a standard graduate course in algebra is
More informationGroup Theory. Contents
Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation
More informationOn The Existence Of Flips
On The Existence Of Flips Hacon and McKernan s paper, arxiv alggeom/0507597 Brian Lehmann, February 2007 1 Introduction References: Hacon and McKernan s paper, as above. Kollár and Mori, Birational Geometry
More informationOn end degrees and infinite cycles in locally finite graphs
On end degrees and infinite cycles in locally finite graphs Henning Bruhn Maya Stein Abstract We introduce a natural extension of the vertex degree to ends. For the cycle space C(G) as proposed by Diestel
More informationAdaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
More informationRow Ideals and Fibers of Morphisms
Michigan Math. J. 57 (2008) Row Ideals and Fibers of Morphisms David Eisenbud & Bernd Ulrich Affectionately dedicated to Mel Hochster, who has been an inspiration to us for many years, on the occasion
More informationFollow links for Class Use and other Permissions. For more information send email to: permissions@pupress.princeton.edu
COPYRIGHT NOTICE: Ariel Rubinstein: Lecture Notes in Microeconomic Theory is published by Princeton University Press and copyrighted, c 2006, by Princeton University Press. All rights reserved. No part
More informationTreerepresentation of set families and applications to combinatorial decompositions
Treerepresentation of set families and applications to combinatorial decompositions BinhMinh BuiXuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no
More informationPOLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS
POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).
More informationA domain of spacetime intervals in general relativity
A domain of spacetime intervals in general relativity Keye Martin Department of Mathematics Tulane University New Orleans, LA 70118 United States of America martin@math.tulane.edu Prakash Panangaden School
More informationA NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES
A NOTE ON INITIAL SEGMENTS OF THE ENUMERATION DEGREES THEODORE A. SLAMAN AND ANDREA SORBI Abstract. We show that no nontrivial principal ideal of the enumeration degrees is linearly ordered: In fact, below
More informationSOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties
SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces
More informationP (A) = lim P (A) = N(A)/N,
1.1 Probability, Relative Frequency and Classical Definition. Probability is the study of random or nondeterministic experiments. Suppose an experiment can be repeated any number of times, so that we
More informationCHAPTER 1 BASIC TOPOLOGY
CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is
More informationDegrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets.
Degrees of Truth: the formal logic of classical and quantum probabilities as well as fuzzy sets. Logic is the study of reasoning. A language of propositions is fundamental to this study as well as true
More informationNotes on Richard Dedekind s Was sind und was sollen die Zahlen?
Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. Onetoone
More informationBANACH AND HILBERT SPACE REVIEW
BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but
More informationx if x 0, x if x < 0.
Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the
More information13 Infinite Sets. 13.1 Injections, Surjections, and Bijections. mcsftl 2010/9/8 0:40 page 379 #385
mcsftl 2010/9/8 0:40 page 379 #385 13 Infinite Sets So you might be wondering how much is there to say about an infinite set other than, well, it has an infinite number of elements. Of course, an infinite
More informationRi and. i=1. S i N. and. R R i
The subset R of R n is a closed rectangle if there are n nonempty closed intervals {[a 1, b 1 ], [a 2, b 2 ],..., [a n, b n ]} so that R = [a 1, b 1 ] [a 2, b 2 ] [a n, b n ]. The subset R of R n is an
More informationThe Ideal Class Group
Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned
More informationConjectures and Questions from Gerald Sacks s Degrees of Unsolvability
Conjectures and Questions from Gerald Sacks s Degrees of Unsolvability Richard A. Shore Department of Mathematics Cornell University Ithaca NY 14853 Abstract We describe the important role that the conjectures
More informationCODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES
CODING TRUE ARITHMETIC IN THE MEDVEDEV AND MUCHNIK DEGREES PAUL SHAFER Abstract. We prove that the firstorder theory of the Medvedev degrees, the firstorder theory of the Muchnik degrees, and the thirdorder
More informationIdeal Class Group and Units
Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals
More informationFinite dimensional topological vector spaces
Chapter 3 Finite dimensional topological vector spaces 3.1 Finite dimensional Hausdorff t.v.s. Let X be a vector space over the field K of real or complex numbers. We know from linear algebra that the
More informationR u t c o r Research R e p o r t. Boolean functions with a simple certificate for CNF complexity. Ondřej Čepeka Petr Kučera b Petr Savický c
R u t c o r Research R e p o r t Boolean functions with a simple certificate for CNF complexity Ondřej Čepeka Petr Kučera b Petr Savický c RRR 22010, January 24, 2010 RUTCOR Rutgers Center for Operations
More informationGlobal Properties of the Turing Degrees and the Turing Jump
Global Properties of the Turing Degrees and the Turing Jump Theodore A. Slaman Department of Mathematics University of California, Berkeley Berkeley, CA 947203840, USA slaman@math.berkeley.edu Abstract
More informationThis chapter is all about cardinality of sets. At first this looks like a
CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },
More informationIntroduction to finite fields
Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at
More informationLecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs
CSE599s: Extremal Combinatorics November 21, 2011 Lecture 15 An Arithmetic Circuit Lowerbound and Flows in Graphs Lecturer: Anup Rao 1 An Arithmetic Circuit Lower Bound An arithmetic circuit is just like
More informationINDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS
INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem
More informationZERODIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS
ZERODIVISOR GRAPHS OF POLYNOMIALS AND POWER SERIES OVER COMMUTATIVE RINGS M. AXTELL, J. COYKENDALL, AND J. STICKLES Abstract. We recall several results of zero divisor graphs of commutative rings. We
More informationMath212a1010 Lebesgue measure.
Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.
More informationA Turán Type Problem Concerning the Powers of the Degrees of a Graph
A Turán Type Problem Concerning the Powers of the Degrees of a Graph Yair Caro and Raphael Yuster Department of Mathematics University of HaifaORANIM, Tivon 36006, Israel. AMS Subject Classification:
More information9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
More informationPoint Set Topology. A. Topological Spaces and Continuous Maps
Point Set Topology A. Topological Spaces and Continuous Maps Definition 1.1 A topology on a set X is a collection T of subsets of X satisfying the following axioms: T 1.,X T. T2. {O α α I} T = α IO α T.
More informationPUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.
PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include
More informationMOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu
Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing
More informationOn an antiramsey type result
On an antiramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider antiramsey type results. For a given coloring of the kelement subsets of an nelement set X, where two kelement
More informationA REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries
Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do
More informationChapter 1. Metric Spaces. Metric Spaces. Examples. Normed linear spaces
Chapter 1. Metric Spaces Metric Spaces MA222 David Preiss d.preiss@warwick.ac.uk Warwick University, Spring 2008/2009 Definitions. A metric on a set M is a function d : M M R such that for all x, y, z
More information