The Central Limit Theorem Part 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Central Limit Theorem Part 1"

Transcription

1 The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question: If we average all of those values (all 400 of those 0s and s) together, what s the probability that the result will be 0.57 or more? 2. Building an Understanding We could approach the question by starting simple and looking at one coin. We assign X to be the average number of heads for the one flip, but of course for one coin this is just the number of heads. The flip results are T and H, corresponding to 0 and respectively, so we have distribution as follows. Remember this is the distribution for the average number of heads. which corresponds to the histogram x 0 p(x) /2 /2 Now let s do two coins. We assign X 2 to be the average number of heads. The flip results are TT, TH, HT and HH, corresponding to 0, /2, /2 and respectively (remember, average the number of heads per pair of rolls), so we have distribution as follows. Remember this is the distribution for the average number of heads. x 0 /2 p(x) /4 /2 /4

2 Now let s do three coins. We assign X 3 to be the average number of heads. The flip results are TTT, TTH, THT, THH, HTT, HTH, HHT and HHH, corresponding to 0, /3, /3, 2/3, /3, 2/3, 2/3 and respectively, so we have distribution as follows. Remember this is the distribution for the average number of heads. x 0 /3 2/3 p(x) /8 3/4 3/8 /8 Almost last but not least, before we jump to our result, let s do four coins. We assign X 4 to be the average number of heads. The flip results are TTTT, TTTH, TTHT, TTHH, THTT, THTH, THHT, THHH, HTTT, HTTH, HTHT, HTHH, HHTT, HHTH, HHHT and HHHH, corresponding to 0, /4, /4, 2/4, /4, 2/4, 2/4, 3/4, /4, 2/4, 2/4, 3/4, 2/4, 3/4, 3/4 and respectively. so we have distribution as follows. Remember this is the distribution for the average number of heads. x 0 /4 2/4 3/4 4/4 p(x) /6 4/6 6/6 4/6 /6 What do you see? The probability distribution is becoming a normal distribution! The more coins we flip the closer it becomes! Just to convince you here s the eight coin histogram. We ve scaled it up vertically so you can see what s going on - the highest rectangle is actually only 70/256 = high.

3 3. The Central Limit Theorem: The CLT states that our observation is accurate. More rigorously it states that if we have an event with random variable X (think a single coin toss, counting heads) and if we repeat it n times and assign X n to be the average of the results (think n coin tosses with X n being the average number of heads) then as n gets larger the distribution approaches a normal distribution. What s fascinating about this is that it s true no matter what the probability distribution function for the single variable is. It could be coin tosses, dice rolls, exponential distributions, whatever. In the long term the average outcome approaches the normal distribution. This is useful for us because it says that if we are interested in the average outcome of a very large number of flips (or any random variable at all) we can get an approximation by looking at the corresponding normal distribution rather than by actually flipping lots of coins. For large n the probability distribution for the average outcome is approximately a normal distribution. Since a normal distribution is determined completely by the mean µ and standard deviation σ we just need to determine what those would be for the normal distribution corresponding to our very large n. The CLT gives us the result as: The corresponding normal distribution has µ = E(X). The corresponding normal distribution has σ = σ(x)/ n. Note: You shouldn t look at this and say It s obvious! because it s not. The CLT is not easy to prove - we are unable to prove it with the mathematics we currently know.

4 4. Application: Some examples: Example : We flip 400 coins, assigning for head and 0 for tail each time. What s the probability that the average outcome will be greater than or equal to 0.57? If X is the outcome for a single coin and X 400 is the average outcome of 400 coins then for X we have E(X) = /2() + /2(0) = /2 σ(x) = V ar(x) = /2( /2) 2 + /2(0 /2) 2 = /2 The CLT says that the corresponding approximating normal distribution has µ = /2 σ = (/2)/ 400 = In friendly terms 400-Coin Flip Average Outcome Distribution Normal Distribution with µ = /2 and σ = So our desired value is P(0.57 X 400 < ) but by the CLT we can this approximate with the normal distribution. We find the corresponding z-scores x = = z = x = 0.57 = z = ( )/0.025 = 2.8 and so P(0.57 X 400 < ) P(2.8 Z < ) = = 0.26% This means that the probability of getting an average outcome of over 0.57 from flipping 400 coins is approximately 0.26%.

5 Example 2: Suppose the random variable X corresponds to rolling a die with winnings and losings given as follows: Rolling a wins $2, rolling a 2 or 3 wins $7, rolling a 4 wins nothing and rolling a 5 or 6 loses $6. Suppose we roll 2000 dice and average our winnings from each roll. What s the probability that we ll win under $0.75? Here X is the random variable that gives the average of one roll. Of course the average for just one roll is the same as the winnings for that one roll and so E(X) = 2(/6) + 7(2/6) + 0(/6) 6(2/6) = 4/6 = 2/3 σ(x) = (2 2/3) 2 (/6) + (7 2/3) 2 (2/6) + (0 2/3) 2 (/6) + ( 6 2/3) 2 (2/6) = 257/9 Let X 2000 be the random variable corresponding to the average earnings for 2000 rolls. The CLT says that the corresponding approximating normal distribution has µ = 2/3 σ = 257/9/ 2000 = 257/8000 In friendly terms 2000-Dice Roll Average Earnings Distribution Normal Distribution with µ = 2/3 and σ = 257/8000 Our desired value is P( < X ) but by the CLT we can approximate with the normal distribution. We find the corresponding z-scores x = = z = x = 0.75 = z = (0.75 2/3)/ 257/ and so P( < X ) Z( < Z < 0.70) = 75.80% Note that this makes sense. If the average winnings per roll is $2/3 $0.66 then after a lot of rolls we ought to be pretty close to that. Having under $0.75 on average is pretty likely!

6 Example 3: The lifespan of a bacterium is randomly distributed with mean 5 days and standard deviation 2 days. Suppose you have 60 bacteria in your lab. What s the probability that the average lifespan will be over 4.8 days? Let X be the random variable corresponding to the lifespan of an individual bacterium and let X 60 correspond to the average of the lifespans of the 60 bacteria. Since X is already given to be distributed with E(X) = 5 σ(x) = 2 the CLT says that the corresponding approximating normal distribution has µ = 5 σ = 2/ 60 In friendly terms 60-Bacteria Average Lifespan Distribution Normal Distribution with µ = 5 and σ = 2/ 60 Our desired value is P(4.8 X 2000 ) but by the CLT we can approximate with the normal distribution. We find the corresponding z-scores x = = z = x = 4.8 = z = (4.8 5)/(2/ 60).26 and so P(4.8 X 60 < ) P(.26 Z < ) = = 89.62% Note that this seems reasonable. If the expected lifespan of a single organism is 5 days and we have a bunch of them then very probably the average lifespan of all of them will be over 4.8 days.

7 Example 4: The lifespan of a bacterium is distributed with mean 5 days and standard deviation 2 days. Suppose you have 60 bacteria in your lab. Over what age can you expect 70% of the bacteria to live? We ve reversed the question here, giving the desired percentage and asking for the age. Initially nothing changes from the previous problem. Let X be the random variable corresponding to the lifespan of an individual bacterium and let X 60 correspond to the average of the lifespans of the 60 bacteria. Since X is already given to be distributed with E(X) = 5 σ(x) = 2 the CLT says that the corresponding approximating normal distribution has µ = 5 σ = 2/ 60 Now things change. We want to know M such that P(M X 000 < ) = 0.7 but by the CLT we can approximate with the normal distribution. We find the corresponding z-scores x = = z = x = M = z = (M 5)/(2/ 60) and so P(M X 000 < ) = P ( (M 5)/(2 ) 60) Z < We wish this probability to be as close to 0.7 as possible. Since this probability is the area to the right of (M 5)/(2 60) we want the area to the left to be as close to 0.3 as possible. We reverse-lookup on the table and get the closest value Thus (M 5)/(2/ 60) = 0.52 M 5 =.04/ 60 M = 5.04/ 60 M 4.92 and so 70% of the bacteria will live over 4.92 days. We should note that this is important if we re collecting bacteria to study and we want to collect a sufficient quantity so that enough will survive for our study.

8 Problems Approximate all final answers to four places beyond the decimal point. Any intermediate value which is awkward (annoying square roots for example) may be approximated to four places beyond the decimal point. Any value which needs to be looked up in the standard normal table should be approximated as necessary first. Use when appropriate. Any value which needs to be reverse-looked up in the standard normal table should be reverse-looked up to the closest value.. Suppose you flip 2500 coins, assigning to heads and 0 to tails. (a) Calculate E(X) and σ(x) for a single flip. (c) What is the probability of the average outcome being between 0.49 and 0.52? (d) What is the probability of the average outcome being over 0.525? 2. Suppose you flip 000 coins. Each head wins $2 and each tail loses $.50. (a) Calculate E(X) and σ(x) for a single flip. (c) What is the probability of your average earnings being $0.27 or more? What would your total earnings be if this were the case? (d) What is the probability of your average earnings being a dime or less? 3. Suppose you roll 3600 dice. Rolling a,2 or 3 wins $3. Rolling a 4 or 5 loses $4. Rolling a 6 loses $2. (a) Calculate E(X) and σ(x) for a single roll. (c) What is the probability of your average earnings being positive? (d) Your average earnings have 80% probability of being below what value? 4. A honeybee drone has an expected lifespan which is exponentially distributed with mean 45 days. You collect one thousand honeybee drones. (a) What is the standard deviation? (b) If you pick a random bee, what is the probability it will live over 47 days? Note: This has nothing to do with the CLT! (c) Calculate µ and σ for the corresponding approximating normal distribution. (d) What is the probability that the average lifespan of all the bees in your collection will be over 47 days? (e) Under what average age will 0% of your honeybees live?

9 5. A certain drug is to be rated either effective or ineffective. Suppose lab results indicate the drug is effective 75% of the time and ineffective 25% of the time. An effective drug increases the lifespan of a patient by 5 years while an ineffective drug causes a complication which decreases the lifespan of a patient by year. As part of a study you administer the drug to 0000 patients. (a) Calculate E(X) and σ(x) for a single patient. (c) What is the probablity that the average lifespan increase will be 3.55 or more years? (d) What gain in lifespan will 25% of your patients experience? 6. A certain event is a random variable with PDF given by f(x) = x for x e. (a) Find E(X) and σ(x) for this event. (c) If this event occurs 900 times what is the probability of the average outcome being below.72? (d) There is a 90% probability that the average outcome is above which value?

MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables

MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables MATH 10: Elementary Statistics and Probability Chapter 4: Discrete Random Variables Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you

More information

Chapter 4 - Practice Problems 2

Chapter 4 - Practice Problems 2 Chapter - Practice Problems 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated probability. 1) If you flip a coin three times, the

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin

More information

5_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

5_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 5_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A prix fixed menu offers a choice of 2 appetizers, 4 main

More information

Math 141. Lecture 3: The Binomial Distribution. Albyn Jones 1. 1 Library 304. jones/courses/141

Math 141. Lecture 3: The Binomial Distribution. Albyn Jones 1. 1 Library 304.  jones/courses/141 Math 141 Lecture 3: The Binomial Distribution Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Outline Coin Tossing Coin Tosses Independent Coin Tosses Crucial Features

More information

Basics of Probability

Basics of Probability Basics of Probability August 27 and September 1, 2009 1 Introduction A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is called the theory of probability.

More information

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52. Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

More information

TRANSFORMATIONS OF RANDOM VARIABLES

TRANSFORMATIONS OF RANDOM VARIABLES TRANSFORMATIONS OF RANDOM VARIABLES 1. INTRODUCTION 1.1. Definition. We are often interested in the probability distributions or densities of functions of one or more random variables. Suppose we have

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

MAT 1000. Mathematics in Today's World

MAT 1000. Mathematics in Today's World MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities

More information

Probability distributions

Probability distributions Probability distributions (Notes are heavily adapted from Harnett, Ch. 3; Hayes, sections 2.14-2.19; see also Hayes, Appendix B.) I. Random variables (in general) A. So far we have focused on single events,

More information

Grade 7/8 Math Circles Fall 2012 Probability

Grade 7/8 Math Circles Fall 2012 Probability 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Probability Probability is one of the most prominent uses of mathematics

More information

Part II - Random Processes

Part II - Random Processes Part II - Random Processes Goals for this unit: Give overview of concepts from discrete probability Give analogous concepts from continuous probability See how the Monte Carlo method can be viewed as sampling

More information

Discrete and Continuous Random Variables. Summer 2003

Discrete and Continuous Random Variables. Summer 2003 Discrete and Continuous Random Variables Summer 003 Random Variables A random variable is a rule that assigns a numerical value to each possible outcome of a probabilistic experiment. We denote a random

More information

H + T = 1. p(h + T) = p(h) x p(t)

H + T = 1. p(h + T) = p(h) x p(t) Probability and Statistics Random Chance A tossed penny can land either heads up or tails up. These are mutually exclusive events, i.e. if the coin lands heads up, it cannot also land tails up on the same

More information

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314

Lesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314 Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space

More information

Probability and the Idea of Chance

Probability and the Idea of Chance Probability and the Idea of Chance Instructions Activity 1. The Idea of Chance Consider a simple demonstration of the operation of chance (i.e., probability) in the tossing of coins. It is usually impossible

More information

Definition of Random Variable A random variable is a function from a sample space S into the real numbers.

Definition of Random Variable A random variable is a function from a sample space S into the real numbers. .4 Random Variable Motivation example In an opinion poll, we might decide to ask 50 people whether they agree or disagree with a certain issue. If we record a for agree and 0 for disagree, the sample space

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Upper primary (some maths ability required) Probability, scientific method, mathematical average, graphing

Upper primary (some maths ability required) Probability, scientific method, mathematical average, graphing Lesson Plan 19 Flipping Coins Brief description Flipping a coin one hundred times might sound mundane but it always produces truly astonishing results. You ll astonish your class by correctly identifying

More information

4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables 4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

More information

Binomial random variables

Binomial random variables Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

Evaluating Statements About Probability

Evaluating Statements About Probability CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Evaluating Statements About Probability Mathematics Assessment Resource Service University of Nottingham

More information

MATH 251 - Introduction to MATLAB

MATH 251 - Introduction to MATLAB KINGDOM OF SAUDI ARABIA - AL-IMAM MUHAMMAD BIN SAUD ISLAMIC UNIVERSITY - FACULTY OF SCIENCES - - May 9, 2011 Semester 2, 1431-1432 (2010-20111) MATH 251 - Introduction to MATLAB Exercise sheet 6 Dr. Samy

More information

Combinatorics. Chapter 1. 1.1 Factorials

Combinatorics. Chapter 1. 1.1 Factorials Chapter 1 Combinatorics Copyright 2009 by David Morin, morin@physics.harvard.edu (Version 4, August 30, 2009) This file contains the first three chapters (plus some appendices) of a potential book on Probability

More information

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Probability: Terminology and Examples Class 2, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of sample space, event and probability function. 2. Be able to

More information

Bayesian Tutorial (Sheet Updated 20 March)

Bayesian Tutorial (Sheet Updated 20 March) Bayesian Tutorial (Sheet Updated 20 March) Practice Questions (for discussing in Class) Week starting 21 March 2016 1. What is the probability that the total of two dice will be greater than 8, given that

More information

Lesson 1: Experimental and Theoretical Probability

Lesson 1: Experimental and Theoretical Probability Lesson 1: Experimental and Theoretical Probability Probability is the study of randomness. For instance, weather is random. In probability, the goal is to determine the chances of certain events happening.

More information

Section 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016

Section 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016 Section 6.2 ~ Basics of Probability Introduction to Probability and Statistics SPRING 2016 Objective After this section you will know how to find probabilities using theoretical and relative frequency

More information

Pattern matching probabilities and paradoxes A new variation on Penney s coin game

Pattern matching probabilities and paradoxes A new variation on Penney s coin game Osaka Keidai Ronshu, Vol. 63 No. 4 November 2012 Pattern matching probabilities and paradoxes A new variation on Penney s coin game Yutaka Nishiyama Abstract This paper gives an outline of an interesting

More information

I. WHAT IS PROBABILITY?

I. WHAT IS PROBABILITY? C HAPTER 3 PROBABILITY Random Experiments I. WHAT IS PROBABILITY? The weatherman on 0 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

More information

Introduction to the Practice of Statistics Sixth Edition Moore, McCabe

Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.9 What is wrong? Explain what is wrong in each of the following scenarios. (a) If you toss a fair coin

More information

Chapter 4 Probability

Chapter 4 Probability The Big Picture of Statistics Chapter 4 Probability Section 4-2: Fundamentals Section 4-3: Addition Rule Sections 4-4, 4-5: Multiplication Rule Section 4-7: Counting (next time) 2 What is probability?

More information

Chapter 4 - Practice Problems 1

Chapter 4 - Practice Problems 1 Chapter 4 - Practice Problems SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Compare the relative frequency formula

More information

Events. Independence. Coin Tossing. Random Phenomena

Events. Independence. Coin Tossing. Random Phenomena Random Phenomena Events A random phenomenon is a situation in which we know what outcomes could happen, but we don t know which particular outcome did or will happen For any random phenomenon, each attempt,

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2014 by Ching-Han Hsu, Ph.D., BMIR Lab

Ching-Han Hsu, BMES, National Tsing Hua University c 2014 by Ching-Han Hsu, Ph.D., BMIR Lab Lecture 2 Probability BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 2014 by Ching-Han Hsu, Ph.D., BMIR Lab 2.1 1 Sample Spaces and Events Random

More information

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. DISCRETE RANDOM VARIABLES.. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable

More information

Lecture 2: Probability

Lecture 2: Probability Lecture 2: Probability Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 Sample Spaces 3 Event 4 The Probability

More information

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8. Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

X X X X X X X X X X X

X X X X X X X X X X X AP Statistics Solutions to Packet 6 Probability The Study of Randomness The Idea of Probability Probability Models General Probability Rules HW #37 3, 4, 8, 11, 14, 15, 17, 18 6.3 SHAQ The basketball player

More information

Probability experiment. Toss two coins Toss three coins Roll two dice

Probability experiment. Toss two coins Toss three coins Roll two dice Probability experiment Toss two coins Toss three coins Roll two dice Activity 1: An Experiment with 2 coins WE TOSS TWO COINS When we toss two coins at the same time, the possible outcomes are: (two Heads)

More information

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More information

University of California, Los Angeles Department of Statistics. Random variables

University of California, Los Angeles Department of Statistics. Random variables University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.

More information

Topic 6: Conditional Probability and Independence

Topic 6: Conditional Probability and Independence Topic 6: September 15-20, 2011 One of the most important concepts in the theory of probability is based on the question: How do we modify the probability of an event in light of the fact that something

More information

Homework 5 Solutions

Homework 5 Solutions Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

More information

PROBABILITY NOTIONS. Summary. 1. Random experiment

PROBABILITY NOTIONS. Summary. 1. Random experiment PROBABILITY NOTIONS Summary 1. Random experiment... 1 2. Sample space... 2 3. Event... 2 4. Probability calculation... 3 4.1. Fundamental sample space... 3 4.2. Calculation of probability... 3 4.3. Non

More information

Session 8 Probability

Session 8 Probability Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome

More information

Examples of infinite sample spaces. Math 425 Introduction to Probability Lecture 12. Example of coin tosses. Axiom 3 Strong form

Examples of infinite sample spaces. Math 425 Introduction to Probability Lecture 12. Example of coin tosses. Axiom 3 Strong form Infinite Discrete Sample Spaces s of infinite sample spaces Math 425 Introduction to Probability Lecture 2 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 4,

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Probabilistic Strategies: Solutions

Probabilistic Strategies: Solutions Probability Victor Xu Probabilistic Strategies: Solutions Western PA ARML Practice April 3, 2016 1 Problems 1. You roll two 6-sided dice. What s the probability of rolling at least one 6? There is a 1

More information

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1 Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables

More information

Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.

Probability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection. 1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Reasoning with Probabilities. Critical Thinking

Reasoning with Probabilities. Critical Thinking Reasoning with Probabilities Critical Thinking Working with Probabilities is Hard What makes it hard? The underlying mathematics: probability theory We don t do well with probability theory, especially

More information

Introduction to Probability

Introduction to Probability 3 Introduction to Probability Given a fair coin, what can we expect to be the frequency of tails in a sequence of 10 coin tosses? Tossing a coin is an example of a chance experiment, namely a process which

More information

15 Chances, Probabilities, and Odds

15 Chances, Probabilities, and Odds 15 Chances, Probabilities, and Odds 15.1 Random Experiments and Sample Spaces 15.2 Counting Outcomes in Sample Spaces 15.3 Permutations and Combinations 15.4 Probability Spaces 15.5 Equiprobable Spaces

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Expectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3).

Expectations. Expectations. (See also Hays, Appendix B; Harnett, ch. 3). Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the

More information

Using Laws of Probability. Sloan Fellows/Management of Technology Summer 2003

Using Laws of Probability. Sloan Fellows/Management of Technology Summer 2003 Using Laws of Probability Sloan Fellows/Management of Technology Summer 2003 Uncertain events Outline The laws of probability Random variables (discrete and continuous) Probability distribution Histogram

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Most of us would probably believe they are the same, it would not make a difference. But, in fact, they are different. Let s see how.

Most of us would probably believe they are the same, it would not make a difference. But, in fact, they are different. Let s see how. PROBABILITY If someone told you the odds of an event A occurring are 3 to 5 and the probability of another event B occurring was 3/5, which do you think is a better bet? Most of us would probably believe

More information

Example: Use the Counting Principle to find the number of possible outcomes of these two experiments done in this specific order:

Example: Use the Counting Principle to find the number of possible outcomes of these two experiments done in this specific order: Section 4.3: Tree Diagrams and the Counting Principle It is often necessary to know the total number of outcomes in a probability experiment. The Counting Principle is a formula that allows us to determine

More information

Distributions. and Probability. Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment

Distributions. and Probability. Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment C Probability and Probability Distributions APPENDIX C.1 Probability A1 C.1 Probability Find the sample space of an experiment. Find the probability of an event. Sample Space of an Experiment When assigning

More information

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com

Probability --QUESTIONS-- Principles of Math 12 - Probability Practice Exam 1 www.math12.com Probability --QUESTIONS-- Principles of Math - Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..

More information

Part III. Lecture 3: Probability and Stochastic Processes. Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149

Part III. Lecture 3: Probability and Stochastic Processes. Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149 Part III Lecture 3: Probability and Stochastic Processes Stephen Kinsella (UL) EC4024 February 8, 2011 54 / 149 Today Basics of probability Empirical distributions Properties of probability distributions

More information

PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE

PROBABILITY. The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE PROBABILITY 53 Chapter 3 PROBABILITY The theory of probabilities is simply the Science of logic quantitatively treated. C.S. PEIRCE 3. Introduction In earlier Classes, we have studied the probability as

More information

Problem sets for BUEC 333 Part 1: Probability and Statistics

Problem sets for BUEC 333 Part 1: Probability and Statistics Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are back-of-chapter exercises from

More information

Discrete probability and the laws of chance

Discrete probability and the laws of chance Chapter 8 Discrete probability and the laws of chance 8.1 Introduction In this chapter we lay the groundwork for calculations and rules governing simple discrete probabilities. These steps will be essential

More information

Homework Assignment #2: Answer Key

Homework Assignment #2: Answer Key Homework Assignment #2: Answer Key Chapter 4: #3 Assuming that the current interest rate is 3 percent, compute the value of a five-year, 5 percent coupon bond with a face value of $,000. What happens if

More information

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.

2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are

More information

Binomial random variables (Review)

Binomial random variables (Review) Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

More information

Probability Theory on Coin Toss Space

Probability Theory on Coin Toss Space Probability Theory on Coin Toss Space 1 Finite Probability Spaces 2 Random Variables, Distributions, and Expectations 3 Conditional Expectations Probability Theory on Coin Toss Space 1 Finite Probability

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin

Final Mathematics 5010, Section 1, Fall 2004 Instructor: D.A. Levin Final Mathematics 51, Section 1, Fall 24 Instructor: D.A. Levin Name YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. A CORRECT ANSWER WITHOUT SHOWING YOUR REASONING WILL NOT RECEIVE CREDIT. Problem Points Possible

More information

33 Probability: Some Basic Terms

33 Probability: Some Basic Terms 33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been

More information

What Do You Expect?: Homework Examples from ACE

What Do You Expect?: Homework Examples from ACE What Do You Expect?: Homework Examples from ACE Investigation 1: A First Look at Chance, ACE #3, #4, #9, #31 Investigation 2: Experimental and Theoretical Probability, ACE #6, #12, #9, #37 Investigation

More information

Homework 3 Solution, due July 16

Homework 3 Solution, due July 16 Homework 3 Solution, due July 16 Problems from old actuarial exams are marked by a star. Problem 1*. Upon arrival at a hospital emergency room, patients are categorized according to their condition as

More information

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific

Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Contemporary Mathematics Online Math 1030 Sample Exam I Chapters 12-14 No Time Limit No Scratch Paper Calculator Allowed: Scientific Name: The point value of each problem is in the left-hand margin. You

More information

This is Basic Concepts of Probability, chapter 3 from the book Beginning Statistics (index.html) (v. 1.0).

This is Basic Concepts of Probability, chapter 3 from the book Beginning Statistics (index.html) (v. 1.0). This is Basic Concepts of Probability, chapter 3 from the book Beginning Statistics (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you

More information

I. WHAT IS PROBABILITY?

I. WHAT IS PROBABILITY? C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

Section 6-5 Sample Spaces and Probability

Section 6-5 Sample Spaces and Probability 492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)

More information

Basic Probability Theory (I)

Basic Probability Theory (I) Basic Probability Theory (I) Intro to Bayesian Data Analysis & Cognitive Modeling Adrian Brasoveanu [partly based on slides by Sharon Goldwater & Frank Keller and John K. Kruschke] Fall 2012 UCSC Linguistics

More information

AMC 8 Practice Questions Example

AMC 8 Practice Questions Example AMC 8 Practice Questions Example Each of the following four large congruent squares is subdivided into combinations of congruent triangles or rectangles and is partially shaded. What percent of the total

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

Probability and Hypothesis Testing

Probability and Hypothesis Testing B. Weaver (3-Oct-25) Probability & Hypothesis Testing. PROBABILITY AND INFERENCE Probability and Hypothesis Testing The area of descriptive statistics is concerned with meaningful and efficient ways of

More information

Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22

Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette

More information

( ) = P Z > = P( Z > 1) = 1 Φ(1) = 1 0.8413 = 0.1587 P X > 17

( ) = P Z > = P( Z > 1) = 1 Φ(1) = 1 0.8413 = 0.1587 P X > 17 4.6 I company that manufactures and bottles of apple juice uses a machine that automatically fills 6 ounce bottles. There is some variation, however, in the amounts of liquid dispensed into the bottles

More information

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions... MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

More information

Example 1. so the Binomial Distrubtion can be considered normal

Example 1. so the Binomial Distrubtion can be considered normal Chapter 6 8B: Examples of Using a Normal Distribution to Approximate a Binomial Probability Distribution Example 1 The probability of having a boy in any single birth is 50%. Use a normal distribution

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

More information

Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

More information