Extending Hypothesis Testing. pvalues & confidence intervals


 Ezra Payne
 1 years ago
 Views:
Transcription
1 Extending Hypothesis Testing pvalues & confidence intervals
2 So far: how to state a question in the form of two hypotheses (null and alternative), how to assess the data, how to answer the question by using a statistic and an associated measure of the probability of observing our statistic, given the current state or null hypothesis.
3 Next: We will use the pvalue to: make inferences about the population assign a level of confidence
4 Review the Steps Phase 1: State the Question 1. Evaluate and describe the data 2. Review assumptions 3. State the questionin the form of hypotheses Phase 2: Decide How to Answer the Question 4. Decide on a summary numbera statisticthat reflects the question 5. How could random variation affect that statistic? 6. State a decision rule, using the statistic, to answer the question
5 Detailed Steps (cont) Phase 3: Answer the Question 7. Calculate the statistic 8. Make a statistical decision 9. State the substantive conclusion Phase 4: Communicate the Answer to the Question 10. Document our understanding with text, tables, or figures
6 Clarify & Generalize the steps Step 2: Assumptions: Representative: Is the observed data representative of the population? Independence: Are the observations (responses of interest) independent? Size: Is the size of the sample large enough to make generalizations to the population at large?
7 Size Assumption So, how large is large enough? Ruleofthumb: N large enough to expect to see five of each of the two outcomes Both of the following must be true: p 0 n > 5 (1 p 0 ) n > 5
8 In the CPR study p 0 = 0.06 and n = 278, so: p 0 n = = > 5 (1 p 0 ) n = (1 0.06) 278 = > 5
9 Common Mistakes Using the observed proportion rather than the hypothesized proportion Compare the observed number of events of interest to five Why Not? We always operate under the assumption that the null hypothesis is true so use the null proportion!
10 Step 2 is particularly important: If the data do not meet the assumptions, then the statistical tests applied to test the hypothesis will not be valid Only proceed to steps 3 10 if the assumptions are met
11 Step 4 For the CPR example, we used a specific statistic, the proportion p The statistic and decision rules can be more generally defined and applied to all situations for testing a proportion.
12 Review CPR Simulation H0: The population survival proportion is 0.06 or less if the observed proportion p (x = 23 survivors or less). HA: The population survival proportion is larger than 0.06 if the observed proportion p > (x = 24 or more survivors).
13 Recall for the CPR simulations, the results looked similar to a normal distribution
14 Applied vs. Theoretical The smooth curve is the theoretical distribution of a normal curve under the null hypothesis Centered on the population value (p0 = 0.06) with proportions farther away from this center being less likely to occur Use the theoretical distribution to determine if our observed proportion is different from our assumed proportion
15 General Test Statistic observed p  hypothesized p standard error of the hypothesized p z = pˆ p0 p0 0 n ( 1 p )
16 observed proportion assumed proportion z = standard error of p 0 p pˆ p0 ( 1 ) 0 p0 n
17 Why p 0? Calculate the test statistic under the assumption that the null hypothesis is true. We are not concerned about how the variability of the observed data will affect our hypothesis testing result We believe the null hypothesis and the variability in the observed data should be assumed to be the same as the variability under the null hypothesis.
18 Zscore Using the zscore allows us to use a decision rule based on the standard normal distribution, rather than the proportion, p. The standard normal distribution ~N(0,1) The cutoff for the decision rule does not change for different values of p, n, and p 0.
19 For an a = 0.05, the z value is 1.645, ( 5% of the N(0,1) values are greater than 1.645)
20 General Decision Rule H 0 : proportion p p 0. Choose this if z z critical and pvalue α. H A : proportion p > p 0. Choose this if z > z critical and pvalue < α.
21 Clarify Steps w/ CPR Example 1. Evaluate and describe the data We observed n = 278 CPR patients who received instructions by phone, of whom x = 29 survived to hospital discharge. The characteristic of interest is survival proportion, p = 29/278 = The intent is to compare the outcomes in this study to a = 0.06 survival rate presumed to be typical.
22 2. Review assumptions There are three assumptions: Representativeness: From the design of the study, it is clear that subjects are representative of cardiacarrest victims in cities with a quickresponse emergency system. Independence: The response of one cardiacarrest victim does not depend on the response of others. The subjects are independent. Sufficient size: Since, n = = > 5, and (1 ) n = (1 0.06) 278 = > 5, this assumption is valid.
23 3. State the question in the form of hypotheses The intent is to show that phonecpr is superior to doing nothing. Thus, the alternative hypothesis is that there are higher than 6% survival rates: H 0 : p 0.06 H A : p > 0.06.
24 4. Decide on a summary number a statistic that reflects the question We ll use the zscore: z = pˆ p0 ( 1 p ) p0 0 n
25 5. How could random variation affect that statistic? If the null hypothesis is true, then z is zero. Since the assumptions are met, z is normally distributed. Large values of z reflect higher survival proportions and thus favor the alternative hypothesis.
26 6. State a decision rule, using the statistic, to answer the question General Choose to believe (at α = 0.05): H 0 : Choose this if pvalue α H A : Choose this if pvalue < α For CPR Example, for an α = 0.05: H 0 : p 0.06 Choose this if pvalue 0.05 H A : p > Choose this if pvalue < 0.05
27 7. Calculate the statistic z pˆ p = = p0 0 n 278 ( 1 p ) 0.06( ) = = Recall that a zvalue to the right of 3 is unlikely. In fact, the associated pvalue is p = (we ll talk about calculating pvalues later).
28 8. Make a statistical decision Reject the null hypothesis since pvalue < The observed value of the summary statistic is larger than what is expected by chance alone.
29 9. State the substantive conclusion We conclude that the survival proportion is larger than 0.06.
30 10. Document our understanding with text, tables, or figures Does dispatcherinstructed bystanderadministered CPR improve the chances of survival? Without this intervention it is presumed that the survival probability will be unchanged (at 6%). From this study, which used n = 278 patients, we observed p = (x = 29 survived until hospital discharge). The observed rate was compared to the hypothesized rate using the z test statistic. We reject the hypothesis p 0.06 in favor of the alternative hypothesis that the survival probability is larger than 6% (z = 3.09, pvalue = ).
31 Universal Decision Rule H 0 : nullhypothesis. Choose this if pvalue α (usually 0.05). H A : alternativehypothesis. Choose this if pvalue < α (usually 0.05).
32 How do we determine pvalues? pvalues can be determined from standard normal tables, such as Table A.1 in the Statistical Sleuth.,715 Tedious and you need to be careful what the table gives as the proportion it could be the opposite of what you are looking for! Use a calculator
33
34 Calculation note: Software might return a pvalue as 0 or not possible Determine the number of decimal places the calculator reports (when it will return a 0 value) Then report p < or p <
35 Confidence Intervals Often, researchers want to use a less rigid approach to hypothesis testing by estimating the parameter and placing upper and lower bounds (or limits) on the estimate. The interval is called a confidence interval.
36 The confidence interval approach allows us to make statements about a population parameter without referring to hypotheses Also gives a range of values that reflects our degree of certainty.
37 Definitions Inference: An inference is a conclusion that patterns observed in the data are present in the broader population. Statistical Inference: A statistical inference is an inference justified by a probability model (distribution) linking the data to the broader population. Parameter: A parameter is an unknown numerical value describing a feature of a distribution.
38 More Definitions Statistic: A statistic is any value that can be calculated from the observed data. Estimate: An estimate is a statistic used as a guess (or estimate) of a parameter.
39 General Definition estimate ± (reliability coefficient) (standard error) Estimating a parameter with an interval involves three components: The point estimate. The standard error of the estimate. This describes how much variability we expect. A reliability coefficient. This describes our degree of certainty.
40 Estimate Calculate the observed proportion: p = x / n In the CPR case p =
41 Standard Error The standard error we use here is different from that used in hypothesis testing. Recall that earlier we were in the mindset of hypothesis testing. Here we are not doing hypothesis testing here. We re just estimating a confidence interval based upon the observed data
42 Standard Error of phat SE p ˆ = pˆ ( 1 pˆ) n Note that the standard error of the estimate gets smaller as n gets larger. We expect less variability in an estimate if we use more data to make the estimate.
43 CPR Example For n = 278 and = 0.104, the associated standard error is: SE p ˆ pˆ ˆ = = n ( 1 p) 0.104( ) 278 =
44 Reliability coefficient The reliability coefficient reflects how sure we want to be: 95% sure 90% sure 99% sure Based on the standard normal for those proportions
45
46 Reliability Coefficients Commonly Used For 90% confidence, use z = For 95% confidence, use z = For 99% confidence, use z =
47 Confidence Interval pˆ z SE p ˆ ± ( 1 α 2) ( ) ± ( 0.068, 0.140)
48 Using a sentence: In the first case study there were 29 survivors (out of n = 278 studied) yielding a 95% confidence interval on the population survival proportion of [0.068, 0.140]. That is, We re 95% confident that the survival proportion is between and
49 Is there a 100% CI? Yes, it is [0,1] But this is a silly answer and doesn t make a conclusive statement about the population estimate. This is the same for all proportions!
50 Using the 10 Steps The Changes to the 10 Steps are minimal: 3. State the question (CI) 4. Decide on a summary statistic that reflects the question (CI formula). 5. How could random variation affect that statistic? (If the assumptions are met, then this interval will cover the population proportion 95% of the time )
51 6. Determine the reliability coefficient and standard error to be used in the CI 7. Calculate the interval 8. Compare the interval to comparison value (If there is a comparison value, does the interval include it?)
52 9. State the substantive conclusion: Something like: We estimate the population proportion of to be [lower, upper] with 95% confidence perhaps which does not include the hypothesized value of. 10. Document our understanding with text
53 Summary We have looked at several methods to assess and describe data and underlying populations. We can use simulations, zscores, pvalues, or confidence intervals about an estimate to make conclusions about observed data and broader populations. Next, we ll look at sample size and precision of estimates and the design of a study to estimate population proportions.
Steps to Answering the Questions with Data
Hypothesis Testing Steps to Answering the Questions with Data How does science advance knowledge? How do we answer questions about the world using observations? Generally, science forms a question and
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationp ˆ (sample mean and sample
Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics
More informationOnline 12  Sections 9.1 and 9.2Doug Ensley
Student: Date: Instructor: Doug Ensley Course: MAT117 01 Applied Statistics  Ensley Assignment: Online 12  Sections 9.1 and 9.2 1. Does a Pvalue of 0.001 give strong evidence or not especially strong
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationChapter 7 Notes  Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:
Chapter 7 Notes  Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a
More informationAP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
More informationWater Quality Problem. Hypothesis Testing of Means. Water Quality Example. Water Quality Example. Water quality example. Water Quality Example
Water Quality Problem Hypothesis Testing of Means Dr. Tom Ilvento FREC 408 Suppose I am concerned about the quality of drinking water for people who use wells in a particular geographic area I will test
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 19: Confidence Intervals for Percentages Tessa L. ChildersDay UC Berkeley 28 July 2014 By the end of this lecture... You will be able to: Estimate
More informationHypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
More informationThe Basics of a Hypothesis Test
Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationHomework 6 Solutions
Math 17, Section 2 Spring 2011 Assignment Chapter 20: 12, 14, 20, 24, 34 Chapter 21: 2, 8, 14, 16, 18 Chapter 20 20.12] Got Milk? The student made a number of mistakes here: Homework 6 Solutions 1. Null
More informationConfidence Interval: pˆ = E = Indicated decision: < p <
Hypothesis (Significance) Tests About a Proportion Example 1 The standard treatment for a disease works in 0.675 of all patients. A new treatment is proposed. Is it better? (The scientists who created
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationPoint and Interval Estimates
Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Sample Practice problems  chapter 121 and 2 proportions for inference  Z Distributions Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide
More informationHomework 5 Solutions
Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationAnnouncements. Unit 4: Inference for numerical variables Lecture 1: Bootstrap, paired, and two sample. Rent in Durham.
Announcements Announcements Unit 4: Inference for numerical variables Lecture 1: Bootstrap, paired, and two sample Statistics 101 Mine ÇetinkayaRundel February 26, 2013 Extra credit due Thursday at the
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationMATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample
MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationStats for Strategy Exam 1 InClass Practice Questions DIRECTIONS
Stats for Strategy Exam 1 InClass Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check
More information9.1 Basic Principles of Hypothesis Testing
9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the
More informationBA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420
BA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420 1. Which of the following will increase the value of the power in a statistical test
More informationBasic concepts and introduction to statistical inference
Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationChapter 21. More About Tests and Intervals. Copyright 2012, 2008, 2005 Pearson Education, Inc.
Chapter 21 More About Tests and Intervals Copyright 2012, 2008, 2005 Pearson Education, Inc. Zero In on the Null Null hypotheses have special requirements. To perform a hypothesis test, the null must be
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More information6. Statistical Inference: Significance Tests
6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationIntroduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters  they must be estimated. However, we do have hypotheses about what the true
More informationAP Statistics 2011 Scoring Guidelines
AP Statistics 2011 Scoring Guidelines The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded in
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationStat 411/511 THE RANDOMIZATION TEST. Charlotte Wickham. stat511.cwick.co.nz. Oct 16 2015
Stat 411/511 THE RANDOMIZATION TEST Oct 16 2015 Charlotte Wickham stat511.cwick.co.nz Today Review randomization model Conduct randomization test What about CIs? Using a tdistribution as an approximation
More informationHypothesis Testing: pvalue
STAT 101 Dr. Kari Lock Morgan Paul the Octopus Hypothesis Testing: SECTION 4.2 andomization distribution http://www.youtube.com/watch?v=3esgpumj9e Hypotheses In 2008, Paul the Octopus predicted 8 World
More informationTwoSample TTests Allowing Unequal Variance (Enter Difference)
Chapter 45 TwoSample TTests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when no assumption
More informationBA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394
BA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
More informationAP Statistics 2009 Scoring Guidelines Form B
AP Statistics 2009 Scoring Guidelines Form B The College Board The College Board is a notforprofit membership association whose mission is to connect students to college success and opportunity. Founded
More information" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
More informationChapter 8. Professor Tim Busken. April 20, Chapter 8. Tim Busken. 8.2 Basics of. Hypothesis Testing. Works Cited
Chapter 8 Professor April 20, 2014 In Chapter 8, we continue our study of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More information82 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis
82 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More information1 Hypothesis Testing. H 0 : population parameter = hypothesized value:
1 Hypothesis Testing In Statistics, a hypothesis proposes a model for the world. Then we look at the data. If the data are consistent with that model, we have no reason to disbelieve the hypothesis. Data
More informationExperimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test
Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationOneSample ttest. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools
OneSample ttest Example 1: Mortgage Process Time Problem A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to establish
More informationStatistical Foundations:
Statistical Foundations: Hypothesis Testing Psychology 790 Lecture #9 9/19/2006 Today sclass Hypothesis Testing. General terms and philosophy. Specific Examples Hypothesis Testing Rules of the NHST Game
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationThe Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker
HYPOTHESIS TESTING PHILOSOPHY 1 The Philosophy of Hypothesis Testing, Questions and Answers 2006 Samuel L. Baker Question: So I'm hypothesis testing. What's the hypothesis I'm testing? Answer: When you're
More informationTesting Hypotheses About Proportions
Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine
More informationE205 Final: Version B
Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationBIOSTATISTICS QUIZ ANSWERS
BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never
More informationIntroduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
More informationHypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easytoread notes
More information5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
More informationThe Paired ttest and Hypothesis Testing. John McGready Johns Hopkins University
This work is licensed under a Creative Commons AttributionNonCommercialShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
More informationLinear Regression with One Regressor
Linear Regression with One Regressor Michael Ash Lecture 10 Analogy to the Mean True parameter µ Y β 0 and β 1 Meaning Central tendency Intercept and slope E(Y ) E(Y X ) = β 0 + β 1 X Data Y i (X i, Y
More informationExample Hypotheses. Chapter 82: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking
Chapter 82: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More informationCONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
More informationHypothesis tests, confidence intervals, and bootstrapping
Hypothesis tests, confidence intervals, and bootstrapping Business Statistics 41000 Fall 2015 1 Topics 1. Hypothesis tests Testing a mean: H0 : µ = µ 0 Testing a proportion: H0 : p = p 0 Testing a difference
More information11. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE
11. CONFIDENCE INTERVALS FOR THE MEAN; KNOWN VARIANCE We assume here that the population variance σ 2 is known. This is an unrealistic assumption, but it allows us to give a simplified presentation which
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationLecture Notes Module 1
Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific
More informationHypothesis Testing. Hypothesis Testing CS 700
Hypothesis Testing CS 700 1 Hypothesis Testing! Purpose: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if
More informationTesting: is my coin fair?
Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible
More informationCHAPTER 15: Tests of Significance: The Basics
CHAPTER 15: Tests of Significance: The Basics The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 15 Concepts 2 The Reasoning of Tests of Significance
More information4) The role of the sample mean in a confidence interval estimate for the population mean is to: 4)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Assume that the change in daily closing prices for stocks on the New York Stock Exchange is a random
More informationC. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
More informationHypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
More informationWISE Power Tutorial All Exercises
ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationHypothesis Testing  II
3σ 2σ +σ +2σ +3σ Hypothesis Testing  II Lecture 9 0909.400.01 / 0909.400.02 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S 3σ 2σ +σ +2σ +3σ Review: Hypothesis
More informationChapter 16 Multiple Choice Questions (The answers are provided after the last question.)
Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible
More informationHypothesis Testing. Barrow, Statistics for Economics, Accounting and Business Studies, 4 th edition Pearson Education Limited 2006
Hypothesis Testing Lecture 4 Hypothesis Testing Hypothesis testing is about making decisions Is a hypothesis true or false? Are women paid less, on average, than men? Principles of Hypothesis Testing The
More informationTRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing.
This is Dr. Chumney. The focus of this lecture is hypothesis testing both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 In this lecture, we will talk about both theoretical
More informationUnit 21 Student s t Distribution in Hypotheses Testing
Unit 21 Student s t Distribution in Hypotheses Testing Objectives: To understand the difference between the standard normal distribution and the Student's t distributions To understand the difference between
More informationMultiple random variables
Multiple random variables Multiple random variables We essentially always consider multiple random variables at once. The key concepts: Joint, conditional and marginal distributions, and independence of
More information2011 # AP Exam Solutions 2011 # # # #1 5/16/2011
2011 AP Exam Solutions 1. A professional sports team evaluates potential players for a certain position based on two main characteristics, speed and strength. (a) Speed is measured by the time required
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More information2 Precisionbased sample size calculations
Statistics: An introduction to sample size calculations Rosie Cornish. 2006. 1 Introduction One crucial aspect of study design is deciding how big your sample should be. If you increase your sample size
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationSample Size Planning, Calculation, and Justification
Sample Size Planning, Calculation, and Justification Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa
More informationTwosample hypothesis testing, I 9.07 3/09/2004
Twosample hypothesis testing, I 9.07 3/09/2004 But first, from last time More on the tradeoff between Type I and Type II errors The null and the alternative: Sampling distribution of the mean, m, given
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More informationInference, Sampling, and Confidence. Inference. Inference
Inference, Sampling, and Confidence Inference defined Sampling Statistics and parameters Sampling distribution Confidence and standard error Estimation Precision and accuracy Estimating sample size 1 Inference
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More information