Random Uniform Clumped Number of Individuals per Sub-Quadrat. Number of Individuals per Sub-Quadrat

Size: px
Start display at page:

Download "Random Uniform Clumped. 0 1 2 3 4 5 6 7 8 9 Number of Individuals per Sub-Quadrat. Number of Individuals per Sub-Quadrat"

Transcription

1 4-1 Population ecology Lab 4: Population dispersion patterns I. Introduction to population dispersion patterns The dispersion of individuals in a population describes their spacing relative to each other. Different species and different populations of the same species can exhibit drastically different dispersion patterns. Generally, dispersion can follow one of three basic patterns: random, uniform (evenly spaced or hyper-dispersed), or clumped (aggregated or contiguous; see Figure 4.1). Species traits such as territoriality, other social behaviors, dispersal ability, and allelochemistry will shape individual dispersal (i.e., movements within a population), emigration, and immigration, all of which affect population dispersion patterns. In addition to species traits, the distribution of resources or microhabitats links population dispersion patterns to the surrounding abiotic environment. A. B. C. Random Uniform Clumped D. E. F. Percentage of Quadrats Percentage of Quadrats Percentage of Quadrats Number of Individuals per Sub-Quadrat Number of Individuals per Sub-Quadrat Number of Individuals per Sub-Quadrat Figure 4.1: Common dispersion patterns are represented above. Figures A, B, and C represent the spacing of individuals within a population relative to each other. The entire square indicates the entire quadrat, and each small square indicates one sub-quadrat. Figures D, E, and F indicate the number of individuals within each sub-quadrat. Note that Figure D is derived from a randomly dispersed population, and that it indicates a Poisson distribution.

2 4-2 II. Measuring population dispersion Population dispersion is commonly quantified by population ecologists. With mobile organisms, this requires intensive sampling; therefore, we will measure the dispersion patterns of less mobile species. Analyses of population dispersion patterns usually follow a standard method in which observed patterns are compared to predicted, random dispersion patterns modeled on the Poisson distribution. Deviations from the predicted, random pattern suggest that the population under study exhibits either a uniform or clumped dispersion pattern. In today s lab exercise, we will utilize two different techniques to characterize the dispersion pattern of our focal species: (1) a quadrat-based method and (2) a point-to-plant method. Quadrat Method The quadrat method involves counting the frequency of occurrences of the species of interest in each of the 100 individual 10 X 10 cm sub-quadrats that compose the 1 m 2 quadrat. If the individuals within the population are randomly dispersed, there will be a random number of individuals in each quadrat, centered about the mean (see Figure 4.1 A & D). If the individuals in the population are uniformly dispersed, there will be the same number of individuals in each sub-quadrat (see Figure 4.1 B & E). If the individuals in the population are clumped in dispersion, there will be a few quadrats with many individuals, and many quadrats with no individuals (see Figure 4.1 C & F). To analyze the data from the quadrat method we will use a chi-square test of hypothesis. The chi-square test compares a given distribution to the Poisson distribution. We will use an equation to generate a Poisson distribution with the characteristics that we would expect from a randomly dispersed plant species that has a mean number of plants per sub-quadrat equal to our sample population. This equation is called the Poisson expression by Cox (2001), and it looks like this: where e = the base of the natural log = , µ = mean, and x = the frequency category. In Excel, the formula would look like this: =(µ^x)/((exp(µ))*(fact(x))) For example, we sample 40 sub-quadrats/cells. Nine cells have 0 individuals, 22 have 1 individual, 6 have 2, 2 have 3, 1 has 4 and none of the quadrats/cells have 5 or more individuals (Table 1). Given these values, we can calculate the Poisson probability P(x i ) for each category.

3 4-3 Table 1: Example data -- there are 40 total sub-quadrats, 44 total individuals, and a mean of 1.1 individuals per sub-quadrat. Number of Individuals per Sub-Quadrat (x i ) Number of Sub-Quadrats (f i ) f i x i * 0 = * 22 = * 6 = * 2 = * 1 = * 0 = 0 Σ To calculate the mean value for data in this format use the following equation: where f is the number of sub-quadrats and x is the number of individuals per sub-quadrat for each row in Table 1. We can use the Poisson probabilities to generate expected probabilities with which we can calculate expected values for each row in Table 1. We can then use these expected probabilities to calculate expected values using the equation below (essentially, multiply each probability above by the total number of quadrats, in this case, 40.): Use these expected values to compare with our observed values using a chi-square test. The test statistic for the chi-square test is χ 2 : In this example, the expected values for quadrats with three or more individuals are combined for the χ 2 analysis because those quadrats have small sample sizes (2 quadrats with 3 individuals, 1 quadrat with 4 individuals, and no quadrats with 5 individuals). If the expected frequency for any category is less than 1, you must add them together, using summed fi values to calculate χ 2 (see Table 2). You will also need to calculate the degrees of freedom to locate the χ 2 statistic on a table: df = k-2

4 4-4 where k is the number of categories remaining after you perform any necessary adding (2 in our example, Table 2). The χ 2 statistic for our example is (Table 2). You can look this up on the χ 2 table, or use the following Excel formula to get a precise p-value: =CHIDIST(χ 2,df) where χ 2 is the test statistic you calculated and df are the degrees of freedom. Table 2. Example of a Poisson Table -- Asterisk (*) denotes that the categories for 3, 4, and 5 individuals per quadrat were combined into one class in order to better meet assumptions of the χ 2 test. Number of Observed individuals Frequency per quadrat (O) (x i ) P(x) Expected Frequency E (O-E) 2 /E * 0.226* Σ By plotting the observed and expected values from Table 2, we can see that our data conform closely to the Poisson distribution (Graph 1). Graph 1. Graph of example data.

5 4-5 Point-to-plant Method The point-to-plant distance method utilizes a ratio to detect deviation from a random dispersion pattern. We use this method to sample dispersion for organisms that cannot easily be sampled using a 1 m 2 quadrat (like trees or species that occur much more spaced out). To collect the appropriate data, you will haphazardly select a point of origin (by throwing an object of some sort), and then measure the distance from that point to the nearest two individuals of the species of interest. Each team will measure 10 haphazardly selected points. These data will be used to calculate the sample coefficient of aggregation (A): where n = the number of sample points, and d = the distance from the selected location and tree 1 or 2. The closest tree should be recorded as d 1. This coefficient of aggregation will always be between 0 and 1, and the expected value of A for a randomly dispersed population is 0.5. The z-equation is used to determine if A is significantly different from 0.5: where n = the number of sample points, = the standard deviation of A values for a randomly dispersed population. The calculated z is looked up on the z table to find a p-value for the null hypothesis that A is not significantly different from 0.5. You can use excel to look up a precise p-value from the z-table (z is your calculated z-value): =1-NORMSDIST(z) If A is significantly less than 0.5, the dispersion is uniform, and if A is significantly greater than 0.5, the dispersion is aggregated. Note that this is very similar to the equation for a t-test from the first lab. The z-equation is simply a special version of the t-equation, except that the degrees of freedom are irrelevant because the number of sample points (n) must always be greater than 30, and the population variance must be known. III. Objective The field portion of today s lab will involve collecting data on the dispersion pattern of populations of a small, herbaceous plant and a large tree species chosen by your TA. The objective of Lab 4 is determine if the dispersion patterns of the populations you investigate are random, uniform, or clumped.

6 4-6 IV. Instructions Before setting out to sample your focal species, complete the following pre-field instructions: 1) Generate several testable hypotheses as a class that you can test with today s exercise. 2) Discuss how to record the 2 different kinds of dispersion data. Set up field data sheets for your sampling procedures. 3) Divide into groups and work as teams in the field. Work should be divided up so that all team members get to experience each aspect of the exercise. 4) Be sure that you have all the field sampling equipment that you will need. 5) All field teams should participate in sampling all habitats. Your TA will pool data from all teams to generate larger datasets for each population that you investigated. Use these complete datasets for your analysis. Field instructions: Sampling for the quadrat method will involve 1 m x 1 m quadrats that are divided into 100 subquadrats each 10 cm x 10 cm. Randomly locate your group s quadrat within the population identified by your TA and determine how many individuals of the species indicated by your TA you find in your quadrat. Record data for each species by counting the number of individuals of the given species in all of your 100 sub-quadrats. Keep track of which grid you are counting (e.g., by using numbers to label columns and letters to label rows, then identifying each grid with a number-letter designation). To perform the point-to-plant distance method, locate the required number of random points in the population of interest. Measure the distance from each random point to the two nearest trees of the focal species. Once you are finished, you will have two distances (in meters) for each random point: the distance from the point to the nearest tree and the distance from the point to the next nearest tree. You will use these data to calculate the coefficient of aggregation (A) for your focal population in order carry out the z-test to determine the dispersion pattern of the population.

7 4-7 Literature Cited Cox, G. W General Ecology Laboratory Manual, 8th edition. McGraw-Hill, New York. Further Reading Cornell, H. V The notion of minimum distance or why rare species are clumped. Oecologia 52(2): Zavala-Hurtado, J. A., P. L. Valverde, M. C. Herrera-Fuentes, A. Diaz-Solis Influence of leaf-cutting ants (Atta mexicana) on performance and dispersion patterns of perennial desert shrubs in an inter-tropical region of Central Mexico. Journal of Arid Environments 46(1):

Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

More information

2. DATA AND EXERCISES (Geos2911 students please read page 8)

2. DATA AND EXERCISES (Geos2911 students please read page 8) 2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is

More information

Statistics for Management II-STAT 362-Final Review

Statistics for Management II-STAT 362-Final Review Statistics for Management II-STAT 362-Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.

ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer. ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard

More information

The. The test is a statistical test to compare observed results with theoretical expected results. The calculation generates a

The. The test is a statistical test to compare observed results with theoretical expected results. The calculation generates a The 2 Test Use this test when: The measurements relate to the number of individuals in particular categories; The observed number can be compared with an expected number which is calculated from a theory.

More information

Difference of Means and ANOVA Problems

Difference of Means and ANOVA Problems Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

More information

13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations.

13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. 13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. Data is organized in a two way table Explanatory variable (Treatments)

More information

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170

Recommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170 Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label

More information

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1)

Class 19: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.1) Spring 204 Class 9: Two Way Tables, Conditional Distributions, Chi-Square (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

More information

Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

More information

Describing Populations Statistically: The Mean, Variance, and Standard Deviation

Describing Populations Statistically: The Mean, Variance, and Standard Deviation Describing Populations Statistically: The Mean, Variance, and Standard Deviation BIOLOGICAL VARIATION One aspect of biology that holds true for almost all species is that not every individual is exactly

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY

CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY CHAPTER 11 CHI-SQUARE: NON-PARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples

More information

Elementary Statistics Sample Exam #3

Elementary Statistics Sample Exam #3 Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to

More information

Goodness of Fit. Proportional Model. Probability Models & Frequency Data

Goodness of Fit. Proportional Model. Probability Models & Frequency Data Probability Models & Frequency Data Goodness of Fit Proportional Model Chi-square Statistic Example R Distribution Assumptions Example R 1 Goodness of Fit Goodness of fit tests are used to compare any

More information

Box plots & t-tests. Example

Box plots & t-tests. Example Box plots & t-tests Box Plots Box plots are a graphical representation of your sample (easy to visualize descriptive statistics); they are also known as box-and-whisker diagrams. Any data that you can

More information

CATEGORICAL DATA Chi-Square Tests for Univariate Data

CATEGORICAL DATA Chi-Square Tests for Univariate Data CATEGORICAL DATA Chi-Square Tests For Univariate Data 1 CATEGORICAL DATA Chi-Square Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Comparing Multiple Proportions, Test of Independence and Goodness of Fit

Comparing Multiple Proportions, Test of Independence and Goodness of Fit Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2

More information

2-1. Lab 2: Field sampling. I. Introduction to ecological systems

2-1. Lab 2: Field sampling. I. Introduction to ecological systems 2-1 Lab 2: Field sampling I. Introduction to ecological systems Ecologists frequently refer to their subject of study as a system that they investigate (O'Neill 2001). A group of potentially interbreeding

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

More information

11-2 Goodness of Fit Test

11-2 Goodness of Fit Test 11-2 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a one-way frequency table). We will use a hypothesis

More information

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013 Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY

Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to

More information

Introduction to Hypothesis Testing. Copyright 2014 Pearson Education, Inc. 9-1

Introduction to Hypothesis Testing. Copyright 2014 Pearson Education, Inc. 9-1 Introduction to Hypothesis Testing 9-1 Learning Outcomes Outcome 1. Formulate null and alternative hypotheses for applications involving a single population mean or proportion. Outcome 2. Know what Type

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

More information

For example, enter the following data in three COLUMNS in a new View window.

For example, enter the following data in three COLUMNS in a new View window. Statistics with Statview - 18 Paired t-test A paired t-test compares two groups of measurements when the data in the two groups are in some way paired between the groups (e.g., before and after on the

More information

9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test. Neyman-Pearson lemma 9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

More information

Hypothesis Testing hypothesis testing approach formulation of the test statistic

Hypothesis Testing hypothesis testing approach formulation of the test statistic Hypothesis Testing For the next few lectures, we re going to look at various test statistics that are formulated to allow us to test hypotheses in a variety of contexts: In all cases, the hypothesis testing

More information

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Null Hypothesis Significance Testing Signifcance Level, Power, t-tests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is

More information

When to use a Chi-Square test:

When to use a Chi-Square test: When to use a Chi-Square test: Usually in psychological research, we aim to obtain one or more scores from each participant. However, sometimes data consist merely of the frequencies with which certain

More information

AP Statistics 1998 Scoring Guidelines

AP Statistics 1998 Scoring Guidelines AP Statistics 1998 Scoring Guidelines These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement

More information

The Goodness-of-Fit Test

The Goodness-of-Fit Test on the Lecture 49 Section 14.3 Hampden-Sydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20

More information

4. Sum the results of the calculation described in step 3 for all classes of progeny

4. Sum the results of the calculation described in step 3 for all classes of progeny F09 Biol 322 chi square notes 1. Before proceeding with the chi square calculation, clearly state the genetic hypothesis concerning the data. This hypothesis is an interpretation of the data that gives

More information

AP Statistics 2002 Scoring Guidelines

AP Statistics 2002 Scoring Guidelines AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought

More information

The Chi-Square Test. STAT E-50 Introduction to Statistics

The Chi-Square Test. STAT E-50 Introduction to Statistics STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed

More information

Consider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation.

Consider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation. Probability and the Chi-Square Test written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to determine the chance that a given state will occur in a system

More information

Lecture 7: Binomial Test, Chisquare

Lecture 7: Binomial Test, Chisquare Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two

More information

Chi-Square Tests. In This Chapter BONUS CHAPTER

Chi-Square Tests. In This Chapter BONUS CHAPTER BONUS CHAPTER Chi-Square Tests In the previous chapters, we explored the wonderful world of hypothesis testing as we compared means and proportions of one, two, three, and more populations, making an educated

More information

4) The goodness of fit test is always a one tail test with the rejection region in the upper tail. Answer: TRUE

4) The goodness of fit test is always a one tail test with the rejection region in the upper tail. Answer: TRUE Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 13 Goodness of Fit Tests and Contingency Analysis 1) A goodness of fit test can be used to determine whether a set of sample data comes from a specific

More information

Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table

Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live

More information

JMP INTRO Lab Activities

JMP INTRO Lab Activities Lab Activity Hypothesis Testing the z-test The Stanford-Binet IQ test is nationally normed with a mean of 100 and a standard deviation of 15. A principal in an elementary school believes that her students

More information

LAB 4 ASSIGNMENT CONFIDENCE INTERVALS AND HYPOTHESIS TESTING. Using Data to Make Decisions

LAB 4 ASSIGNMENT CONFIDENCE INTERVALS AND HYPOTHESIS TESTING. Using Data to Make Decisions LAB 4 ASSIGNMENT CONFIDENCE INTERVALS AND HYPOTHESIS TESTING This lab assignment will give you the opportunity to explore the concept of a confidence interval and hypothesis testing in the context of a

More information

Factors affecting online sales

Factors affecting online sales Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

More information

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution

More information

ECOLOGICAL SAMPLING What is a sample?

ECOLOGICAL SAMPLING What is a sample? ECOLOGICAL SAMPLING What is a sample? A portion, piece, or segment that is representative of a whole Why do we sample? NON-INVASIVE SAMPLING Because it is usually impossible to count all the plants or

More information

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE TWO-WAY ANOVA UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

More information

Fat Content in Ground Meat: A statistical analysis

Fat Content in Ground Meat: A statistical analysis Volume 25: Mini Workshops 385 Fat Content in Ground Meat: A statistical analysis Mary Culp Canisius College Biology Department 2001 Main Street Buffalo, NY 14208-1098 culpm@canisius.edu Mary Culp has been

More information

Statistical Functions in Excel

Statistical Functions in Excel Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.

More information

Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D.

Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D. Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D. In biological science, investigators often collect biological

More information

Regents Biology LAB. STUDY OF POPULATION DENSITY ON A SUBURBAN LAWN

Regents Biology LAB. STUDY OF POPULATION DENSITY ON A SUBURBAN LAWN Period Date LAB. STUDY OF POPULATION DENSITY ON A SUBURBAN LAWN Ecological communities are built on the interactions between the creatures (both plants and animals) that live there and the physical environment

More information

Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...

Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test... Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................

More information

Unit 24 Hypothesis Tests about Means

Unit 24 Hypothesis Tests about Means Unit 24 Hypothesis Tests about Means Objectives: To recognize the difference between a paired t test and a two-sample t test To perform a paired t test To perform a two-sample t test A measure of the amount

More information

Data analysis. Data analysis in Excel using Windows 7/Office 2010

Data analysis. Data analysis in Excel using Windows 7/Office 2010 Data analysis Data analysis in Excel using Windows 7/Office 2010 Open the Data tab in Excel If Data Analysis is not visible along the top toolbar then do the following: o Right click anywhere on the toolbar

More information

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p. Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

More information

MAT X Hypothesis Testing - Part I

MAT X Hypothesis Testing - Part I MAT 2379 3X Hypothesis Testing - Part I Definition : A hypothesis is a conjecture concerning a value of a population parameter (or the shape of the population). The hypothesis will be tested by evaluating

More information

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools. Tools for Summarizing Data Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

More information

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

More information

Sampling and Hypothesis Testing

Sampling and Hypothesis Testing Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus

More information

One-Sample t-test. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools

One-Sample t-test. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools One-Sample t-test Example 1: Mortgage Process Time Problem A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to establish

More information

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!

Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on

More information

You have data! What s next?

You have data! What s next? You have data! What s next? Data Analysis, Your Research Questions, and Proposal Writing Zoo 511 Spring 2014 Part 1:! Research Questions Part 1:! Research Questions Write down > 2 things you thought were

More information

One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

More information

Normality Testing in Excel

Normality Testing in Excel Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

More information

Chi-square test Testing for independeny The r x c contingency tables square test

Chi-square test Testing for independeny The r x c contingency tables square test Chi-square test Testing for independeny The r x c contingency tables square test 1 The chi-square distribution HUSRB/0901/1/088 Teaching Mathematics and Statistics in Sciences: Modeling and Computer-aided

More information

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

More information

To open a CMA file > Download and Save file Start CMA Open file from within CMA

To open a CMA file > Download and Save file Start CMA Open file from within CMA Example name Effect size Analysis type Level Diastolic BP Mean difference Basic Basic Synopsis This analysis includes five studies where persons who donated a kidney were compared with persons in a control

More information

1.5 Oneway Analysis of Variance

1.5 Oneway Analysis of Variance Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments

More information

Meta-Regression CHAPTER 20

Meta-Regression CHAPTER 20 CHAPTER 20 Meta-Regression Introduction Fixed-effect model Fixed or random effects for unexplained heterogeneity Random-effects model INTRODUCTION In primary studies we use regression, or multiple regression,

More information

CRJ Doctoral Comprehensive Exam Statistics Friday August 23, :00pm 5:30pm

CRJ Doctoral Comprehensive Exam Statistics Friday August 23, :00pm 5:30pm CRJ Doctoral Comprehensive Exam Statistics Friday August 23, 23 2:pm 5:3pm Instructions: (Answer all questions below) Question I: Data Collection and Bivariate Hypothesis Testing. Answer the following

More information

The Chi Square Test. Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed.

The Chi Square Test. Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed. The Chi Square Test Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed.) Concepts: Two-Way Tables The Problem of Multiple Comparisons Expected

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

BIOSTATISTICS QUIZ ANSWERS

BIOSTATISTICS QUIZ ANSWERS BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Chapter 23. Two Categorical Variables: The Chi-Square Test

Chapter 23. Two Categorical Variables: The Chi-Square Test Chapter 23. Two Categorical Variables: The Chi-Square Test 1 Chapter 23. Two Categorical Variables: The Chi-Square Test Two-Way Tables Note. We quickly review two-way tables with an example. Example. Exercise

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

Business Statistics. Lecture 8: More Hypothesis Testing

Business Statistics. Lecture 8: More Hypothesis Testing Business Statistics Lecture 8: More Hypothesis Testing 1 Goals for this Lecture Review of t-tests Additional hypothesis tests Two-sample tests Paired tests 2 The Basic Idea of Hypothesis Testing Start

More information

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

More information

MATH Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHI-SQUARE TEST

MATH Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHI-SQUARE TEST MATH 1342. Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHI-SQUARE TEST Relationships: Categorical Variables Chapter 21: compare proportions of successes

More information

ABSORBENCY OF PAPER TOWELS

ABSORBENCY OF PAPER TOWELS ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

Chi Square for Contingency Tables

Chi Square for Contingency Tables 2 x 2 Case Chi Square for Contingency Tables A test for p 1 = p 2 We have learned a confidence interval for p 1 p 2, the difference in the population proportions. We want a hypothesis testing procedure

More information

Statistics 104: Section 7

Statistics 104: Section 7 Statistics 104: Section 7 Section Overview Reminders Comments on Midterm Common Mistakes on Problem Set 6 Statistical Week in Review Comments on Midterm Overall, the midterms were good with one notable

More information

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.

Having a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails. Chi-square Goodness of Fit Test The chi-square test is designed to test differences whether one frequency is different from another frequency. The chi-square test is designed for use with data on a nominal

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

Section 13, Part 1 ANOVA. Analysis Of Variance

Section 13, Part 1 ANOVA. Analysis Of Variance Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

3.6: General Hypothesis Tests

3.6: General Hypothesis Tests 3.6: General Hypothesis Tests The χ 2 goodness of fit tests which we introduced in the previous section were an example of a hypothesis test. In this section we now consider hypothesis tests more generally.

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information