Random Uniform Clumped Number of Individuals per SubQuadrat. Number of Individuals per SubQuadrat


 Paulina Rice
 1 years ago
 Views:
Transcription
1 41 Population ecology Lab 4: Population dispersion patterns I. Introduction to population dispersion patterns The dispersion of individuals in a population describes their spacing relative to each other. Different species and different populations of the same species can exhibit drastically different dispersion patterns. Generally, dispersion can follow one of three basic patterns: random, uniform (evenly spaced or hyperdispersed), or clumped (aggregated or contiguous; see Figure 4.1). Species traits such as territoriality, other social behaviors, dispersal ability, and allelochemistry will shape individual dispersal (i.e., movements within a population), emigration, and immigration, all of which affect population dispersion patterns. In addition to species traits, the distribution of resources or microhabitats links population dispersion patterns to the surrounding abiotic environment. A. B. C. Random Uniform Clumped D. E. F. Percentage of Quadrats Percentage of Quadrats Percentage of Quadrats Number of Individuals per SubQuadrat Number of Individuals per SubQuadrat Number of Individuals per SubQuadrat Figure 4.1: Common dispersion patterns are represented above. Figures A, B, and C represent the spacing of individuals within a population relative to each other. The entire square indicates the entire quadrat, and each small square indicates one subquadrat. Figures D, E, and F indicate the number of individuals within each subquadrat. Note that Figure D is derived from a randomly dispersed population, and that it indicates a Poisson distribution.
2 42 II. Measuring population dispersion Population dispersion is commonly quantified by population ecologists. With mobile organisms, this requires intensive sampling; therefore, we will measure the dispersion patterns of less mobile species. Analyses of population dispersion patterns usually follow a standard method in which observed patterns are compared to predicted, random dispersion patterns modeled on the Poisson distribution. Deviations from the predicted, random pattern suggest that the population under study exhibits either a uniform or clumped dispersion pattern. In today s lab exercise, we will utilize two different techniques to characterize the dispersion pattern of our focal species: (1) a quadratbased method and (2) a pointtoplant method. Quadrat Method The quadrat method involves counting the frequency of occurrences of the species of interest in each of the 100 individual 10 X 10 cm subquadrats that compose the 1 m 2 quadrat. If the individuals within the population are randomly dispersed, there will be a random number of individuals in each quadrat, centered about the mean (see Figure 4.1 A & D). If the individuals in the population are uniformly dispersed, there will be the same number of individuals in each subquadrat (see Figure 4.1 B & E). If the individuals in the population are clumped in dispersion, there will be a few quadrats with many individuals, and many quadrats with no individuals (see Figure 4.1 C & F). To analyze the data from the quadrat method we will use a chisquare test of hypothesis. The chisquare test compares a given distribution to the Poisson distribution. We will use an equation to generate a Poisson distribution with the characteristics that we would expect from a randomly dispersed plant species that has a mean number of plants per subquadrat equal to our sample population. This equation is called the Poisson expression by Cox (2001), and it looks like this: where e = the base of the natural log = , µ = mean, and x = the frequency category. In Excel, the formula would look like this: =(µ^x)/((exp(µ))*(fact(x))) For example, we sample 40 subquadrats/cells. Nine cells have 0 individuals, 22 have 1 individual, 6 have 2, 2 have 3, 1 has 4 and none of the quadrats/cells have 5 or more individuals (Table 1). Given these values, we can calculate the Poisson probability P(x i ) for each category.
3 43 Table 1: Example data  there are 40 total subquadrats, 44 total individuals, and a mean of 1.1 individuals per subquadrat. Number of Individuals per SubQuadrat (x i ) Number of SubQuadrats (f i ) f i x i * 0 = * 22 = * 6 = * 2 = * 1 = * 0 = 0 Σ To calculate the mean value for data in this format use the following equation: where f is the number of subquadrats and x is the number of individuals per subquadrat for each row in Table 1. We can use the Poisson probabilities to generate expected probabilities with which we can calculate expected values for each row in Table 1. We can then use these expected probabilities to calculate expected values using the equation below (essentially, multiply each probability above by the total number of quadrats, in this case, 40.): Use these expected values to compare with our observed values using a chisquare test. The test statistic for the chisquare test is χ 2 : In this example, the expected values for quadrats with three or more individuals are combined for the χ 2 analysis because those quadrats have small sample sizes (2 quadrats with 3 individuals, 1 quadrat with 4 individuals, and no quadrats with 5 individuals). If the expected frequency for any category is less than 1, you must add them together, using summed fi values to calculate χ 2 (see Table 2). You will also need to calculate the degrees of freedom to locate the χ 2 statistic on a table: df = k2
4 44 where k is the number of categories remaining after you perform any necessary adding (2 in our example, Table 2). The χ 2 statistic for our example is (Table 2). You can look this up on the χ 2 table, or use the following Excel formula to get a precise pvalue: =CHIDIST(χ 2,df) where χ 2 is the test statistic you calculated and df are the degrees of freedom. Table 2. Example of a Poisson Table  Asterisk (*) denotes that the categories for 3, 4, and 5 individuals per quadrat were combined into one class in order to better meet assumptions of the χ 2 test. Number of Observed individuals Frequency per quadrat (O) (x i ) P(x) Expected Frequency E (OE) 2 /E * 0.226* Σ By plotting the observed and expected values from Table 2, we can see that our data conform closely to the Poisson distribution (Graph 1). Graph 1. Graph of example data.
5 45 Pointtoplant Method The pointtoplant distance method utilizes a ratio to detect deviation from a random dispersion pattern. We use this method to sample dispersion for organisms that cannot easily be sampled using a 1 m 2 quadrat (like trees or species that occur much more spaced out). To collect the appropriate data, you will haphazardly select a point of origin (by throwing an object of some sort), and then measure the distance from that point to the nearest two individuals of the species of interest. Each team will measure 10 haphazardly selected points. These data will be used to calculate the sample coefficient of aggregation (A): where n = the number of sample points, and d = the distance from the selected location and tree 1 or 2. The closest tree should be recorded as d 1. This coefficient of aggregation will always be between 0 and 1, and the expected value of A for a randomly dispersed population is 0.5. The zequation is used to determine if A is significantly different from 0.5: where n = the number of sample points, = the standard deviation of A values for a randomly dispersed population. The calculated z is looked up on the z table to find a pvalue for the null hypothesis that A is not significantly different from 0.5. You can use excel to look up a precise pvalue from the ztable (z is your calculated zvalue): =1NORMSDIST(z) If A is significantly less than 0.5, the dispersion is uniform, and if A is significantly greater than 0.5, the dispersion is aggregated. Note that this is very similar to the equation for a ttest from the first lab. The zequation is simply a special version of the tequation, except that the degrees of freedom are irrelevant because the number of sample points (n) must always be greater than 30, and the population variance must be known. III. Objective The field portion of today s lab will involve collecting data on the dispersion pattern of populations of a small, herbaceous plant and a large tree species chosen by your TA. The objective of Lab 4 is determine if the dispersion patterns of the populations you investigate are random, uniform, or clumped.
6 46 IV. Instructions Before setting out to sample your focal species, complete the following prefield instructions: 1) Generate several testable hypotheses as a class that you can test with today s exercise. 2) Discuss how to record the 2 different kinds of dispersion data. Set up field data sheets for your sampling procedures. 3) Divide into groups and work as teams in the field. Work should be divided up so that all team members get to experience each aspect of the exercise. 4) Be sure that you have all the field sampling equipment that you will need. 5) All field teams should participate in sampling all habitats. Your TA will pool data from all teams to generate larger datasets for each population that you investigated. Use these complete datasets for your analysis. Field instructions: Sampling for the quadrat method will involve 1 m x 1 m quadrats that are divided into 100 subquadrats each 10 cm x 10 cm. Randomly locate your group s quadrat within the population identified by your TA and determine how many individuals of the species indicated by your TA you find in your quadrat. Record data for each species by counting the number of individuals of the given species in all of your 100 subquadrats. Keep track of which grid you are counting (e.g., by using numbers to label columns and letters to label rows, then identifying each grid with a numberletter designation). To perform the pointtoplant distance method, locate the required number of random points in the population of interest. Measure the distance from each random point to the two nearest trees of the focal species. Once you are finished, you will have two distances (in meters) for each random point: the distance from the point to the nearest tree and the distance from the point to the next nearest tree. You will use these data to calculate the coefficient of aggregation (A) for your focal population in order carry out the ztest to determine the dispersion pattern of the population.
7 47 Literature Cited Cox, G. W General Ecology Laboratory Manual, 8th edition. McGrawHill, New York. Further Reading Cornell, H. V The notion of minimum distance or why rare species are clumped. Oecologia 52(2): ZavalaHurtado, J. A., P. L. Valverde, M. C. HerreraFuentes, A. DiazSolis Influence of leafcutting ants (Atta mexicana) on performance and dispersion patterns of perennial desert shrubs in an intertropical region of Central Mexico. Journal of Arid Environments 46(1):
ChiSquare Test. Contingency Tables. Contingency Tables. ChiSquare Test for Independence. ChiSquare Tests for GoodnessofFit
ChiSquare Tests 15 Chapter ChiSquare Test for Independence ChiSquare Tests for Goodness Uniform Goodness Poisson Goodness Goodness Test ECDF Tests (Optional) McGrawHill/Irwin Copyright 2009 by The
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More information2. DATA AND EXERCISES (Geos2911 students please read page 8)
2. DATA AND EXERCISES (Geos2911 students please read page 8) 2.1 Data set The data set available to you is an Excel spreadsheet file called cyclones.xls. The file consists of 3 sheets. Only the third is
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More informationThe. The test is a statistical test to compare observed results with theoretical expected results. The calculation generates a
The 2 Test Use this test when: The measurements relate to the number of individuals in particular categories; The observed number can be compared with an expected number which is calculated from a theory.
More informationDifference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
More information13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations.
13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. Data is organized in a two way table Explanatory variable (Treatments)
More informationRecommend Continued CPS Monitoring. 63 (a) 17 (b) 10 (c) 90. 35 (d) 20 (e) 25 (f) 80. Totals/Marginal 98 37 35 170
Work Sheet 2: Calculating a Chi Square Table 1: Substance Abuse Level by ation Total/Marginal 63 (a) 17 (b) 10 (c) 90 35 (d) 20 (e) 25 (f) 80 Totals/Marginal 98 37 35 170 Step 1: Label Your Table. Label
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationTechnology StepbyStep Using StatCrunch
Technology StepbyStep Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate
More informationDescribing Populations Statistically: The Mean, Variance, and Standard Deviation
Describing Populations Statistically: The Mean, Variance, and Standard Deviation BIOLOGICAL VARIATION One aspect of biology that holds true for almost all species is that not every individual is exactly
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationCHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY
CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples
More informationElementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
More informationGoodness of Fit. Proportional Model. Probability Models & Frequency Data
Probability Models & Frequency Data Goodness of Fit Proportional Model Chisquare Statistic Example R Distribution Assumptions Example R 1 Goodness of Fit Goodness of fit tests are used to compare any
More informationBox plots & ttests. Example
Box plots & ttests Box Plots Box plots are a graphical representation of your sample (easy to visualize descriptive statistics); they are also known as boxandwhisker diagrams. Any data that you can
More informationCATEGORICAL DATA ChiSquare Tests for Univariate Data
CATEGORICAL DATA ChiSquare Tests For Univariate Data 1 CATEGORICAL DATA ChiSquare Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationComparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
More information21. Lab 2: Field sampling. I. Introduction to ecological systems
21 Lab 2: Field sampling I. Introduction to ecological systems Ecologists frequently refer to their subject of study as a system that they investigate (O'Neill 2001). A group of potentially interbreeding
More informationAP: LAB 8: THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationBowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology StepbyStep  Excel Microsoft Excel is a spreadsheet software application
More information112 Goodness of Fit Test
112 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a oneway frequency table). We will use a hypothesis
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More informationLAB : THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationBiostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY
Biostatistics: DESCRIPTIVE STATISTICS: 2, VARIABILITY 1. Introduction Besides arriving at an appropriate expression of an average or consensus value for observations of a population, it is important to
More informationIntroduction to Hypothesis Testing. Copyright 2014 Pearson Education, Inc. 91
Introduction to Hypothesis Testing 91 Learning Outcomes Outcome 1. Formulate null and alternative hypotheses for applications involving a single population mean or proportion. Outcome 2. Know what Type
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationTesting Research and Statistical Hypotheses
Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you
More informationFor example, enter the following data in three COLUMNS in a new View window.
Statistics with Statview  18 Paired ttest A paired ttest compares two groups of measurements when the data in the two groups are in some way paired between the groups (e.g., before and after on the
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationHypothesis Testing hypothesis testing approach formulation of the test statistic
Hypothesis Testing For the next few lectures, we re going to look at various test statistics that are formulated to allow us to test hypotheses in a variety of contexts: In all cases, the hypothesis testing
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationWhen to use a ChiSquare test:
When to use a ChiSquare test: Usually in psychological research, we aim to obtain one or more scores from each participant. However, sometimes data consist merely of the frequencies with which certain
More informationAP Statistics 1998 Scoring Guidelines
AP Statistics 1998 Scoring Guidelines These materials are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More information4. Sum the results of the calculation described in step 3 for all classes of progeny
F09 Biol 322 chi square notes 1. Before proceeding with the chi square calculation, clearly state the genetic hypothesis concerning the data. This hypothesis is an interpretation of the data that gives
More informationAP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
More informationThe ChiSquare Test. STAT E50 Introduction to Statistics
STAT 50 Introduction to Statistics The ChiSquare Test The Chisquare test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed
More informationConsider a system that consists of a finite number of equivalent states. The chance that a given state will occur is given by the equation.
Probability and the ChiSquare Test written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to determine the chance that a given state will occur in a system
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More informationChiSquare Tests. In This Chapter BONUS CHAPTER
BONUS CHAPTER ChiSquare Tests In the previous chapters, we explored the wonderful world of hypothesis testing as we compared means and proportions of one, two, three, and more populations, making an educated
More information4) The goodness of fit test is always a one tail test with the rejection region in the upper tail. Answer: TRUE
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 13 Goodness of Fit Tests and Contingency Analysis 1) A goodness of fit test can be used to determine whether a set of sample data comes from a specific
More informationTest Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 51: 2 x 2 Contingency Table
ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live
More informationJMP INTRO Lab Activities
Lab Activity Hypothesis Testing the ztest The StanfordBinet IQ test is nationally normed with a mean of 100 and a standard deviation of 15. A principal in an elementary school believes that her students
More informationLAB 4 ASSIGNMENT CONFIDENCE INTERVALS AND HYPOTHESIS TESTING. Using Data to Make Decisions
LAB 4 ASSIGNMENT CONFIDENCE INTERVALS AND HYPOTHESIS TESTING This lab assignment will give you the opportunity to explore the concept of a confidence interval and hypothesis testing in the context of a
More informationFactors affecting online sales
Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4
More informationBivariate Statistics Session 2: Measuring Associations ChiSquare Test
Bivariate Statistics Session 2: Measuring Associations ChiSquare Test Features Of The ChiSquare Statistic The chisquare test is nonparametric. That is, it makes no assumptions about the distribution
More informationECOLOGICAL SAMPLING What is a sample?
ECOLOGICAL SAMPLING What is a sample? A portion, piece, or segment that is representative of a whole Why do we sample? NONINVASIVE SAMPLING Because it is usually impossible to count all the plants or
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationFat Content in Ground Meat: A statistical analysis
Volume 25: Mini Workshops 385 Fat Content in Ground Meat: A statistical analysis Mary Culp Canisius College Biology Department 2001 Main Street Buffalo, NY 142081098 culpm@canisius.edu Mary Culp has been
More informationStatistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
More informationBiodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D.
Biodiversity Data Analysis: Testing Statistical Hypotheses By Joanna Weremijewicz, Simeon Yurek, Steven Green, Ph. D. and Dana Krempels, Ph. D. In biological science, investigators often collect biological
More informationRegents Biology LAB. STUDY OF POPULATION DENSITY ON A SUBURBAN LAWN
Period Date LAB. STUDY OF POPULATION DENSITY ON A SUBURBAN LAWN Ecological communities are built on the interactions between the creatures (both plants and animals) that live there and the physical environment
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More informationUnit 24 Hypothesis Tests about Means
Unit 24 Hypothesis Tests about Means Objectives: To recognize the difference between a paired t test and a twosample t test To perform a paired t test To perform a twosample t test A measure of the amount
More informationData analysis. Data analysis in Excel using Windows 7/Office 2010
Data analysis Data analysis in Excel using Windows 7/Office 2010 Open the Data tab in Excel If Data Analysis is not visible along the top toolbar then do the following: o Right click anywhere on the toolbar
More informationSydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.
Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under
More informationMAT X Hypothesis Testing  Part I
MAT 2379 3X Hypothesis Testing  Part I Definition : A hypothesis is a conjecture concerning a value of a population parameter (or the shape of the population). The hypothesis will be tested by evaluating
More informationData Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationOneSample ttest. Example 1: Mortgage Process Time. Problem. Data set. Data collection. Tools
OneSample ttest Example 1: Mortgage Process Time Problem A faster loan processing time produces higher productivity and greater customer satisfaction. A financial services institution wants to establish
More informationPsychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck!
Psychology 60 Fall 2013 Practice Exam Actual Exam: Next Monday. Good luck! Name: 1. The basic idea behind hypothesis testing: A. is important only if you want to compare two populations. B. depends on
More informationYou have data! What s next?
You have data! What s next? Data Analysis, Your Research Questions, and Proposal Writing Zoo 511 Spring 2014 Part 1:! Research Questions Part 1:! Research Questions Write down > 2 things you thought were
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationNormality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com
More informationChisquare test Testing for independeny The r x c contingency tables square test
Chisquare test Testing for independeny The r x c contingency tables square test 1 The chisquare distribution HUSRB/0901/1/088 Teaching Mathematics and Statistics in Sciences: Modeling and Computeraided
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationTo open a CMA file > Download and Save file Start CMA Open file from within CMA
Example name Effect size Analysis type Level Diastolic BP Mean difference Basic Basic Synopsis This analysis includes five studies where persons who donated a kidney were compared with persons in a control
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationMetaRegression CHAPTER 20
CHAPTER 20 MetaRegression Introduction Fixedeffect model Fixed or random effects for unexplained heterogeneity Randomeffects model INTRODUCTION In primary studies we use regression, or multiple regression,
More informationCRJ Doctoral Comprehensive Exam Statistics Friday August 23, :00pm 5:30pm
CRJ Doctoral Comprehensive Exam Statistics Friday August 23, 23 2:pm 5:3pm Instructions: (Answer all questions below) Question I: Data Collection and Bivariate Hypothesis Testing. Answer the following
More informationThe Chi Square Test. Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed.
The Chi Square Test Diana Mindrila, Ph.D. Phoebe Balentyne, M.Ed. Based on Chapter 23 of The Basic Practice of Statistics (6 th ed.) Concepts: TwoWay Tables The Problem of Multiple Comparisons Expected
More informationSTT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables
Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random
More informationBIOSTATISTICS QUIZ ANSWERS
BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationChapter 23. Two Categorical Variables: The ChiSquare Test
Chapter 23. Two Categorical Variables: The ChiSquare Test 1 Chapter 23. Two Categorical Variables: The ChiSquare Test TwoWay Tables Note. We quickly review twoway tables with an example. Example. Exercise
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationBusiness Statistics. Lecture 8: More Hypothesis Testing
Business Statistics Lecture 8: More Hypothesis Testing 1 Goals for this Lecture Review of ttests Additional hypothesis tests Twosample tests Paired tests 2 The Basic Idea of Hypothesis Testing Start
More informationCHAPTER 11 CHISQUARE AND F DISTRIBUTIONS
CHAPTER 11 CHISQUARE AND F DISTRIBUTIONS CHISQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chisquare tests of independence we use the hypotheses. H0: The variables are independent
More informationMATH Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHISQUARE TEST
MATH 1342. Chapter 23 April 15 and 17, 2013 page 1 of 8 CHAPTER 23: COMPARING TWO CATEGORICAL VARIABLES THE CHISQUARE TEST Relationships: Categorical Variables Chapter 21: compare proportions of successes
More informationABSORBENCY OF PAPER TOWELS
ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationChi Square for Contingency Tables
2 x 2 Case Chi Square for Contingency Tables A test for p 1 = p 2 We have learned a confidence interval for p 1 p 2, the difference in the population proportions. We want a hypothesis testing procedure
More informationStatistics 104: Section 7
Statistics 104: Section 7 Section Overview Reminders Comments on Midterm Common Mistakes on Problem Set 6 Statistical Week in Review Comments on Midterm Overall, the midterms were good with one notable
More informationHaving a coin come up heads or tails is a variable on a nominal scale. Heads is a different category from tails.
Chisquare Goodness of Fit Test The chisquare test is designed to test differences whether one frequency is different from another frequency. The chisquare test is designed for use with data on a nominal
More informationConfidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More information3.6: General Hypothesis Tests
3.6: General Hypothesis Tests The χ 2 goodness of fit tests which we introduced in the previous section were an example of a hypothesis test. In this section we now consider hypothesis tests more generally.
More informationUnit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
More information