Figure Figure 40.2


 Irma Briggs
 2 years ago
 Views:
Transcription
1 40 Regular Polygos Covex ad Cocave Shapes A plae figure is said to be covex if every lie segmet draw betwee ay two poits iside the figure lies etirely iside the figure. A figure that is ot covex is called a cocave figure. Figure 40.1 shows a set of covex figures. Figure 40.1 O the other had, Figure 40.2 shows cocave figures. To show that a figure is cocave, it is eough to fid two poits withi the figure whose correspodig lie segmet is ot completely iside the figure. Figure 40.2 Regular Polygos By a closed curve we mea a curve that starts from oe poit ad eds i that same poit. By a simple curve we mea a curve that does ot cross itself. By a simple closed curve we mea a a curve i the plae that starts 1
2 ad eds i the same locatio without crossig itself. Several examples of curves are show i Figure Figure 40.3 A polygo is a simple closed curve made up of lie segmets. A polygo whose lie segmets are cogruet ad whose iterior agles are all cogruet is called a regular polygo. If a regular polygo cosists of sides the we will refer to it as regular go. Figure 40.4 shows several tpyes of regular gos. Figure
3 Agles of iterest i a regular go are the followig: A vertex agle (also called a iterior agle) is formed by two cosecutive sides. A cetral agle is formed by the segmets coectig two cosecutive vertices to the ceter of the regular go. A exterior agle is formed by oe side together with the extesio of a adjacet side as show i Figure 40.5 Figure 40.5 Agles Measures i Regular Polygos Let s first fid the measure of a cetral agle i a regular go. Coectig the ceter of the go to the vertices we create cogruet cetral agles. Sice the sum of the measures of the cetral agles is 360 the the measure of each cetral agle is 360. Next, we will fid the measure of each iterior agle of a regular go. We will use the method of recogizig patters for that purpose. Sice the agles are cogruet the the measure of each is the sum of the agles divided by. Hece, we eed to fid the sum of the iterior agles. This ca be achieved by dividig the go ito triagles ad usig the fact that the sum of the three iterior agles i a triagle is 180. The table below suggests a way for computig the measure of a vertex agle i a regular go for =3,4,5,6,7,8. 3
4 So, i geeral, the measure of a iterior agle of a regular go is ( 2) 180 = To measure the exterior agles i a regular go, otice that the iterior agle ad the correspodig adjacet exterior agle are supplemetary. See Figure Thus, the measure of each exterior agle is 180 ( 2) 180 = 360. Figure 40.6 Example 40.1 (a) Fid the measure of each iterior agle of a regular decago (i.e., =10). (b) Fid the umber of sides of a regular polygo, each of whose iterior agles has a measure of
5 Solutio. (a) The measure of each agle is: (10 2) 180 (b) We are give that ( 2) 180 that 360 = = 175 or = 72 5 = = 5. Thus, = 360 Practice Problems = 175. This implies Problem 40.1 List the umerical values of the shapes that are covex. Problem 40.2 Determie how may diagoals each of the followig has: (a) 20go (b) 100go (c) go Problem 40.3 I a regular polygo, the measure of each iterior agle is 162. How may sides does the polygo have? Problem 40.4 Two sides of a regular octago are exteded as show i the followig figure. Fid the measure of 1. Problem 40.5 Draw a quadrilateral that is ot covex. Problem 40.6 What is the sum of the iterior agle measures of a 40go? 5
6 Problem 40.7 A Caadia ickel has the shape of a regular dodecago (12 sides). How may degrees are i each iterior agle? Problem 40.8 Is a rectagle a regular polygo? Why or why ot? Problem 40.9 Fid the measures of the iterior, exterior, ad cetral agles of a 12go. Problem Suppose that the measure of the iterior agle of a regular polygo is 176. What is the measure of the cetral agle? Problem The measure of the exterior agle of a regular polygo is 10. How may sides does this polygo have? Problem The measure of the cetral agle of a regular polygo is 12. How may sides does this polygo have? Problem The sum of the measures of the iterior agles of a regular polygo is How may sides does the polygo have? Problem How may lies of symmetry does each of the followig have? (a) a regular petago (b) a regular octago (c) a regular hexago. Problem How may rotatioal symmetry does a petago have? 6
Lesson 2.4: Angle Properties in Polygons, page 99
Lesso 2.4: Agle Properties i Polygos, page 99 1. a) S(12) = 180 (12 2) S(12) = 180 (10) S(12) = 1800 A dodecago has 12 sides, so is 12. The sum of the iterior agles i a regular dodecago is 1800. S(12)
More informationSum of Exterior Angles of Polygons TEACHER NOTES
Sum of Exterior Agles of Polygos TEACHER NOTES Math Objectives Studets will determie that the iterior agle of a polygo ad a exterior agle of a polygo form a liear pair (i.e., the two agles are supplemetary).
More informationregular polygon Wkbj :37:30
regular polygo Wkbj79 20130321 13:37:30 A regular polygo is a polygo such that all of its sides are cogruet ad all of its iterior agles are cogruet; that is, a polygo which is both equilateral ad equiagular.
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More informationTrigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is
0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values
More informationTangent circles in the ratio 2 : 1. Hiroshi Okumura and Masayuki Watanabe. In this article we consider the following old Japanese geometry problem
116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio
More information1 The Binomial Theorem: Another Approach
The Biomial Theorem: Aother Approach Pascal s Triagle I class (ad i our text we saw that, for iteger, the biomial theorem ca be stated (a + b = c a + c a b + c a b + + c ab + c b, where the coefficiets
More informationConvexity, Inequalities, and Norms
Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for
More informationRepeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.
5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers
More informationCycloidal Areas without Calculus
TOM M APOSTOL ad MAMIKON A MNATSAKANIAN Cycloidal Areas without Calculus Itroductio For ceturies atheaticias have bee iterested i curves that ca be costructed by siple echaical istruets Aog these curves
More informationx(x 1)(x 2)... (x k + 1) = [x] k n+m 1
1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,
More informationSection 11.3: The Integral Test
Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult
More informationMath 113 HW #11 Solutions
Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate
More informationYour organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:
Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network
More informationIn nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008
I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces
More informationNATIONAL SENIOR CERTIFICATE GRADE 11
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 007 MARKS: 50 TIME: 3 hours This questio paper cosists of pages, 4 diagram sheets ad a page formula sheet. Please tur over Mathematics/P DoE/Exemplar
More informationThe discovery and proof of the 11 nets of the cube was the first informal
Electroic Supplemetary Material NETS OF THE CUBE: PROBLEM STATEMENT The discovery ad proof of the 11 ets of the cube was the first iformal mathematics activity that was preseted i the course. Studets were
More informationGrade 7. Strand: Number Specific Learning Outcomes It is expected that students will:
Strad: Number Specific Learig Outcomes It is expected that studets will: 7.N.1. Determie ad explai why a umber is divisible by 2, 3, 4, 5, 6, 8, 9, or 10, ad why a umber caot be divided by 0. [C, R] [C]
More informationMath 475, Problem Set #6: Solutions
Math 475, Problem Set #6: Solutios A (a) For each poit (a, b) with a, b oegative itegers satisfyig ab 8, cout the paths from (0,0) to (a, b) where the legal steps from (i, j) are to (i 2, j), (i, j 2),
More informationThe second difference is the sequence of differences of the first difference sequence, 2
Differece Equatios I differetial equatios, you look for a fuctio that satisfies ad equatio ivolvig derivatives. I differece equatios, istead of a fuctio of a cotiuous variable (such as time), we look for
More informationG r a d e 6 M a t h e m a t i c s. Shape and Space
G r a d e 6 M a t h e m a t i c s Shape ad Space Grade 6: Shape ad Space (Measuremet) (6.SS.1, 6.SS.2) Edurig Uderstadig(s): All measuremets are comparisos. The uit of measure must be of the same ature
More informationLesson 15 ANOVA (analysis of variance)
Outlie Variability betwee group variability withi group variability total variability Fratio Computatio sums of squares (betwee/withi/total degrees of freedom (betwee/withi/total mea square (betwee/withi
More informationThe following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles
The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio
More information8.3 POLAR FORM AND DEMOIVRE S THEOREM
SECTION 8. POLAR FORM AND DEMOIVRE S THEOREM 48 8. POLAR FORM AND DEMOIVRE S THEOREM Figure 8.6 (a, b) b r a 0 θ Complex Number: a + bi Rectagular Form: (a, b) Polar Form: (r, θ) At this poit you ca add,
More informationReview for College Algebra Final Exam
Review for College Algebra Fial Exam (Please remember that half of the fial exam will cover chapters 14. This review sheet covers oly the ew material, from chapters 5 ad 7.) 5.1 Systems of equatios i
More informationMath 105: Review for Final Exam, Part II  SOLUTIONS
Math 5: Review for Fial Exam, Part II  SOLUTIONS. Cosider the fuctio fx) =x 3 l x o the iterval [/e, e ]. a) Fid the x ad ycoordiates of ay ad all local extrema ad classify each as a local maximum or
More information2.4 Angles. Establish that for 180 the direction doesn t matter. If you started off facing North, you would be facing South.
2.4 Agles Agle ca sometimes refer to a corer (vertex) or to the size of the agle at that vertex. I diagrams we ted to use capital letters to represet poits or sizes of agles ad lower case letters to represet
More informationFOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10
FOUNDATIONS OF MATHEMATICS AND PRECALCULUS GRADE 10 [C] Commuicatio Measuremet A1. Solve problems that ivolve liear measuremet, usig: SI ad imperial uits of measure estimatio strategies measuremet strategies.
More informationUsing Excel to Construct Confidence Intervals
OPIM 303 Statistics Ja Stallaert Usig Excel to Costruct Cofidece Itervals This hadout explais how to costruct cofidece itervals i Excel for the followig cases: 1. Cofidece Itervals for the mea of a populatio
More information.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth
Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,
More informationGENERATING A FRACTAL SQUARE
GENERATING A FRACTAL SQUARE I 194 the Swedish mathematicia Helge vo Koch(187194 itroduced oe o the earliest ow ractals, amely, the Koch Sowlae. It is a closed cotiuous curve with discotiuities i its derivative
More informationMath Discrete Math Combinatorics MULTIPLICATION PRINCIPLE:
Math 355  Discrete Math 4.14.4 Combiatorics Notes MULTIPLICATION PRINCIPLE: If there m ways to do somethig ad ways to do aother thig the there are m ways to do both. I the laguage of set theory: Let
More informationExample Consider the following set of data, showing the number of times a sample of 5 students check their per day:
Sectio 82: Measures of cetral tedecy Whe thikig about questios such as: how may calories do I eat per day? or how much time do I sped talkig per day?, we quickly realize that the aswer will vary from day
More informationChapter Gaussian Elimination
Chapter 04.06 Gaussia Elimiatio After readig this chapter, you should be able to:. solve a set of simultaeous liear equatios usig Naïve Gauss elimiatio,. lear the pitfalls of the Naïve Gauss elimiatio
More informationApproximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find
1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.
More informationLecture 10: Ray Tracing and Constructive Solid Geometry. Interactive Computer Graphics. Ray tracing with secondary rays. Ray tracing: Shadows
Iteractive Computer Graphics Lecture 10: Ray Tracig ad Costructive Solid Geometry Ray tracig with secodary rays Ray tracig usig just primary rays produces images similar to ormal polygo rederig techiques
More informationQuestion 2: How is a loan amortized?
Questio 2: How is a loa amortized? Decreasig auities may be used i auto or home loas. I these types of loas, some amout of moey is borrowed. Fixed paymets are made to pay off the loa as well as ay accrued
More informationThe Nine Dots Puzzle Extended to nxnx xn Points
The Nie Dots Puzzle Exteded to xx x Poits Marco Ripà 1 ad Pablo Remirez 2 1 Ecoomics Istitutios ad Fiace, Roma Tre Uiversity, Rome, Italy Email: marcokrt1984@yahoo.it 2 Electromechaical Egieerig, UNLPam,
More informationUse symmetry of ellipse Divide the quadrant into two regions
Midpoit Ellipse Algorithm Use symmetry of ellipse Divide the quadrat ito two regios the boudary of two regios is the poit at which the curve has a slope of 1. Process by takig uit steps i the x directio
More informationSearching Algorithm Efficiencies
Efficiecy of Liear Search Searchig Algorithm Efficiecies Havig implemeted the liear search algorithm, how would you measure its efficiecy? A useful measure (or metric) should be geeral, applicable to ay
More informationStatistical Methods. Chapter 1: Overview and Descriptive Statistics
Geeral Itroductio Statistical Methods Chapter 1: Overview ad Descriptive Statistics Statistics studies data, populatio, ad samples. Descriptive Statistics vs Iferetial Statistics. Descriptive Statistics
More informationLesson 12. Sequences and Series
Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or
More information3. Continuous Random Variables
Statistics ad probability: 31 3. Cotiuous Radom Variables A cotiuous radom variable is a radom variable which ca take values measured o a cotiuous scale e.g. weights, stregths, times or legths. For ay
More informationThe Field of Complex Numbers
The Field of Complex Numbers S. F. Ellermeyer The costructio of the system of complex umbers begis by appedig to the system of real umbers a umber which we call i with the property that i = 1. (Note that
More informationChapter 5: Inner Product Spaces
Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples
More informationConfidence Intervals and Sample Size
8/7/015 C H A P T E R S E V E N Cofidece Itervals ad Copyright 015 The McGrawHill Compaies, Ic. Permissio required for reproductio or display. 1 Cofidece Itervals ad Outlie 71 Cofidece Itervals for the
More information4.3. The Integral and Comparison Tests
4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P FEBRUARY/MARCH 009 MARKS: 50 TIME: 3 hours This questio paper cosists of 0 pages, a iformatio sheet ad 3 diagram sheets. Please tur over Mathematics/P DoE/Feb.
More informationFIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix
FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if
More informationMA2108S Tutorial 5 Solution
MA08S Tutorial 5 Solutio Prepared by: LuJigyi LuoYusheg March 0 Sectio 3. Questio 7. Let x := / l( + ) for N. (a). Use the difiitio of limit to show that lim(x ) = 0. Proof. Give ay ɛ > 0, sice ɛ > 0,
More informationI. Chisquared Distributions
1 M 358K Supplemet to Chapter 23: CHISQUARED DISTRIBUTIONS, TDISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad tdistributios, we first eed to look at aother family of distributios, the chisquared distributios.
More informationwhen n = 1, 2, 3, 4, 5, 6, This list represents the amount of dollars you have after n days. Note: The use of is read as and so on.
Geometric eries Before we defie what is meat by a series, we eed to itroduce a related topic, that of sequeces. Formally, a sequece is a fuctio that computes a ordered list. uppose that o day 1, you have
More information{{1}, {2, 4}, {3}} {{1, 3, 4}, {2}} {{1}, {2}, {3, 4}} 5.4 Stirling Numbers
. Stirlig Numbers Whe coutig various types of fuctios from., we quicly discovered that eumeratig the umber of oto fuctios was a difficult problem. For a domai of five elemets ad a rage of four elemets,
More information8.1 Arithmetic Sequences
MCR3U Uit 8: Sequeces & Series Page 1 of 1 8.1 Arithmetic Sequeces Defiitio: A sequece is a comma separated list of ordered terms that follow a patter. Examples: 1, 2, 3, 4, 5 : a sequece of the first
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course O STRUCTURAL RELIABILITY Module # 0 Lecture 1 Course Format: Web Istructor: Dr. Aruasis Chakraborty Departmet of Civil Egieerig Idia Istitute of Techology Guwahati 1. Lecture 01: Basic Statistics
More informationCase Study. Normal and t Distributions. Density Plot. Normal Distributions
Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca
More informationhp calculators HP 12C Platinum Statistics  correlation coefficient The correlation coefficient HP12C Platinum correlation coefficient
HP 1C Platium Statistics  correlatio coefficiet The correlatio coefficiet HP1C Platium correlatio coefficiet Practice fidig correlatio coefficiets ad forecastig HP 1C Platium Statistics  correlatio coefficiet
More informationNOTES AND FORMULAE SPM MATHEMATICS Cone
FORM 3 NOTES. SOLID GEOMETRY (a) Area ad perimeter Triagle NOTES AND FORMULAE SPM MATHEMATICS Coe V = 3 r h A = base height = bh Trapezium A = (sum of two parallel sides) height = (a + b) h Circle Area
More informationSEQUENCES AND SERIES
Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say
More informationConfidence Intervals
Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more
More informationStatistics Lecture 14. Introduction to Inference. Administrative Notes. Hypothesis Tests. Last Class: Confidence Intervals
Statistics 111  Lecture 14 Itroductio to Iferece Hypothesis Tests Admiistrative Notes Sprig Break! No lectures o Tuesday, March 8 th ad Thursday March 10 th Exteded Sprig Break! There is o Stat 111 recitatio
More informationM06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES
IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS
More information5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?
5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso
More informationLecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)
18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the BruMikowski iequality for boxes. Today we ll go over the
More information3.1 Measures of Central Tendency. Introduction 5/28/2013. Data Description. Outline. Objectives. Objectives. Traditional Statistics Average
5/8/013 C H 3A P T E R Outlie 3 1 Measures of Cetral Tedecy 3 Measures of Variatio 3 3 3 Measuresof Positio 3 4 Exploratory Data Aalysis Copyright 013 The McGraw Hill Compaies, Ic. C H 3A P T E R Objectives
More informationLiteral Equations and Formulas
. Literal Equatios ad Formulas. OBJECTIVE 1. Solve a literal equatio for a specified variable May problems i algebra require the use of formulas for their solutio. Formulas are simply equatios that express
More informationDescriptive Statistics
Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote
More informationBond Valuation I. What is a bond? Cash Flows of A Typical Bond. Bond Valuation. Coupon Rate and Current Yield. Cash Flows of A Typical Bond
What is a bod? Bod Valuatio I Bod is a I.O.U. Bod is a borrowig agreemet Bod issuers borrow moey from bod holders Bod is a fixedicome security that typically pays periodic coupo paymets, ad a pricipal
More information3. Covariance and Correlation
Virtual Laboratories > 3. Expected Value > 1 2 3 4 5 6 3. Covariace ad Correlatio Recall that by takig the expected value of various trasformatios of a radom variable, we ca measure may iterestig characteristics
More information1. C. The formula for the confidence interval for a population mean is: x t, which was
s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : pvalue
More informationA NONRECURSIVE ALGORITHM FOR POLYGON TRIANGULATION. Predrag S. STANIMIROVI], Predrag V. KRTOLICA, Rade STANOJEVI] 1. INTRODUCTION AND PRELIMINARIES
Yugoslav Joural of Operatios Research 13 (2003), Number 1, 6167 A NONRECURSIVE ALGORITHM FOR POLYGON TRIANGULATION Predrag S. STANIMIROVI], Predrag V. KRTOLICA, Rade STANOJEVI] Faculty of Sciece ad Mathematics,
More informationS. Tanny MAT 344 Spring 1999. be the minimum number of moves required.
S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,
More information3. Greatest Common Divisor  Least Common Multiple
3 Greatest Commo Divisor  Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd
More informationEquation of a line. Line in coordinate geometry. Slopeintercept form ( 斜 截 式 ) Intercept form ( 截 距 式 ) Pointslope form ( 點 斜 式 )
Chapter : Liear Equatios Chapter Liear Equatios Lie i coordiate geometr I Cartesia coordiate sstems ( 卡 笛 兒 坐 標 系 統 ), a lie ca be represeted b a liear equatio, i.e., a polomial with degree. But before
More informationSequences II. Chapter 3. 3.1 Convergent Sequences
Chapter 3 Sequeces II 3. Coverget Sequeces Plot a graph of the sequece a ) = 2, 3 2, 4 3, 5 + 4,...,,... To what limit do you thik this sequece teds? What ca you say about the sequece a )? For ǫ = 0.,
More informationMeasures of Central Tendency
Measures of Cetral Tedecy A studet s grade will be determied by exam grades ( each exam couts twice ad there are three exams, HW average (couts oce, fial exam ( couts three times. Fid the average if the
More informationMannWhitney U 2 Sample Test (a.k.a. Wilcoxon Rank Sum Test)
NoParametric ivariate Statistics: WilcoxoMaWhitey 2 Sample Test 1 MaWhitey 2 Sample Test (a.k.a. Wilcoxo Rak Sum Test) The (Wilcoxo) MaWhitey (WMW) test is the oparametric equivalet of a pooled
More informationMeasures of Spread and Boxplots Discrete Math, Section 9.4
Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,
More information7. Sample Covariance and Correlation
1 of 8 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 7. Sample Covariace ad Correlatio The Bivariate Model Suppose agai that we have a basic radom experimet, ad that X ad Y
More informationHere are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.
This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio
More informationPractice Problems for Test 3
Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all
More informationNATIONAL SENIOR CERTIFICATE GRADE 12
NTIONL SENIOR ERTIFITE GRDE MTHEMTIS P EXEMPLR 04 MRKS: 50 TIME: 3 hours This questio paper cosists of pages, 3 diagram sheets ad iformatio sheet. Please tur over Mathematics/P DE/04 NS Grade Eemplar INSTRUTIONS
More informationBINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients
652 (1226) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you
More informationARITHMETIC AND GEOMETRIC PROGRESSIONS
Arithmetic Ad Geometric Progressios Sequeces Ad ARITHMETIC AND GEOMETRIC PROGRESSIONS Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives
More informationIncremental calculation of weighted mean and variance
Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically
More information4 n. n 1. You shold think of the Ratio Test as a generalization of the Geometric Series Test. For example, if a n ar n is a geometric sequence then
SECTION 2.6 THE RATIO TEST 79 2.6. THE RATIO TEST We ow kow how to hadle series which we ca itegrate (the Itegral Test), ad series which are similar to geometric or pseries (the Compariso Test), but of
More informationBasic Elements of Arithmetic Sequences and Series
MA40S PRECALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic
More informationwhere: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return
EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The
More informationSection 8.3 : De Moivre s Theorem and Applications
The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =
More informationWHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?
WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This
More informationConvex Bodies of Minimal Volume, Surface Area and Mean Width with Respect to Thin Shells
Caad. J. Math. Vol. 60 (1), 2008 pp. 3 32 Covex Bodies of Miimal Volume, Surface Area ad Mea Width with Respect to Thi Shells Károly Böröczky, Károly J. Böröczky, Carste Schütt, ad Gergely Witsche Abstract.
More informationCounting II 3, 7 3, 2 3, 9 7, 2 7, 9 2, 9
Coutig II Sometimes we will wat to choose objects from a set of objects, ad we wo t be iterested i orderig them. For example, if you are leavig for vacatio ad you wat to pac your suitcase with three of
More information2.7 Sequences, Sequences of Sets
2.7. SEQUENCES, SEQUENCES OF SETS 67 2.7 Sequeces, Sequeces of Sets 2.7.1 Sequeces Defiitio 190 (sequece Let S be some set. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For
More informationSENIOR CERTIFICATE EXAMINATIONS
SENIOR CERTIFICATE EXAMINATIONS MATHEMATICS P1 016 MARKS: 150 TIME: 3 hours This questio paper cosists of 9 pages ad 1 iformatio sheet. Please tur over Mathematics/P1 DBE/016 INSTRUCTIONS AND INFORMATION
More informationLecture 4: Cauchy sequences, BolzanoWeierstrass, and the Squeeze theorem
Lecture 4: Cauchy sequeces, BolzaoWeierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits
More information1. MATHEMATICAL INDUCTION
1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1
More informationElementary Theory of Russian Roulette
Elemetary Theory of Russia Roulette iterestig patters of fractios Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some
More information