Physics 9 Fall 2009 Homework 8  Solutions


 Mitchell Gibson
 2 years ago
 Views:
Transcription
1 1. Chapter 34  Exercise 9. Physics 9 Fall 2009 Homework 8  s The current in the solenoid in the figure is increasing. The solenoid is surrounded by a conducting loop. Is there a current in the loop? If so, is the loop current cw or ccw? The magnetic field in the solenoid points to the right, by the righthand rule for currents. The flux is increasing, making the magnetic field bigger. There is a current induced in the loop in such a way that it resists the change in flux. This means that the the magnetic field created by the loop has to point to the left. This requires a current moving in the counterclockwise direction. 1
2 2. Chapter 34  Exercise 13. A 1000turn coil of wire 2.0 cm in diameter is in a magnetic field that drops from 0.10 T to 0 T in 10 ms. The axis of the coil is parallel to the field. What is the emf of the coil? We know that the induced emf in a coil of N turns is E = N dφ m dt, where Φ m = B A = BA cos θ is magnetic flux. Since the area is constant, then E = NA Ḃ, where a dot over a quantity denotes the time derivative. For the coil, A = πr 2, and Thus, E = πr 2 N B t = π (0.01)2 (1000) = 3.14 V. Ḃ = B t. 2
3 3. Chapter 34  Exercise 21. How much energy is stored in a 3.0 cmdiameter, 12 cmlong solenoid that has 200 turns of wire and carries a current of 0.80 A? The energy stored in an inductor is E = 1 2 LI2, where L is the inductor. Now, for a solenoid, L = µ 0N 2 A, where A = πr 2 is the area of the solenoid, and l is the length. l So, E = 1 2 LI2 = µ 0N 2 A I 2. 2l So, this solenoid has an energy E = µ 0N 2 A I 2 = (4π 10 7 ) π (0.015) 2 (0.8) 2 = J. 2l
4 4. Chapter 34  Problem 34. A circular loop made from a flexible, conducting wire is shrinking. Its radius as a function of time is r = r 0 e βt. The loop is perpendicular to a steady, uniform magnetic field B. Find an expression for the induced emf in the loop at time t. For a given flux, Φ m = B A = BA (t), in this case, then the emf is E = d Φ dt m = BA, where the dot denotes the time derivative, as we have seen before, A da. The area dt of the loop is A (t) = πr 2 (t) = πr0e 2 2βt, and so A = 2βπr0e 2 2βt. Thus, E = 2βπr 2 0 Be 2βt = 2βπr 2 0 Be 2βt. 4
5 5. Chapter 34  Problem 43. A loop antenna, such as is used on a television to pick up UHF broadcasts, is 25 cm in diameter. The plane of the loop is perpendicular to the oscillating magnetic field of a 150 MHz electromagnetic wave. The magnetic field through the loop is B = (20nT) sin ωt. (a) What is the maximum emf induced in the antenna? (b) What is the maximum emf if the loop is turned 90 to be perpendicular to the oscillating electric field? (a) The area of the loop is fixed, and perpendicular to the magnetic field, so Φ m = B A = BA, and so the emf is E = dφ m dt = A Ḃ, where B = B 0 sin (ωt). Thus, E = πr 2 ωb 0 cos (ωt). The cosine varies between ±1, and has a maximum at 1. So, E max = πr 2 ωb 0 = 2π 2 r 2 fb 0, since ω = 2πf. Thus, E max = 2π 2 ( ) 2 ( ) ( ) = 0.93 V. (b) Since the electric and magnetic fields are perpendicular to each other, and mutually perpendicular to the direction of propagation of the wave, when the plane of the loop is perpendicular to the oscillating electric field, then it is parallel to the magnetic field. So, the net flux through the antenna is zero, which gives a net induced emf of zero. 5
6 6. Chapter 34  Problem 52. You ve decided to make a magnetic projectile launcher for your science project. An aluminum bar of length l slides along metal rails through a magnetic field B. The switch closes at t = 0 s, while the bar is at rest, and a battery of emf E bat starts a current flowing around the loop. The battery has internal resistance r. The resistance of the rails and the bar are effectively zero. (a) Show that the bar reaches a terminal speed v term, and find an expression for v term. (b) Evaluate v term for E bat = 1.0 V, r = 0.10Ω, l = 6.0 cm, and B = 0.50 T. (a) When the switch closes, the battery causes a current to flow. This causes the bar to move since the current is moving in a magnetic field. The moving bar changes the flux in the loop which induces a new emf that fights the battery s emf. This builds up as the velocity gets faster until the induced emf is equal to that of the battery. Then, the net emf is zero and the bar coasts along at the terminal velocity, v term. So, E = lbv term. This gives (b) For the given numbers, This is about 70 miles per hour! v term = E lb. v term = E lb = = 33 m/s. 6
7 7. Chapter 34  Problem 53. A slide wire of length l, mass m, and resistance R slides down a Ushaped metal track that is tilted upward at angle θ. The track has zero resistance and no friction. A vertical magnetic field B fills the loop formed by the track and the slide wire. (a) Find an expression for the induced current I when the slide wire moves at speed v. (b) Show that the slide wire reaches a terminal speed v term, and find an expression for v term. The setup is as seen in the diagram below. (a) Here, all we are doing is tilting our usual current loop. This changes the flux to Φ m = B A = BA cos θ. The induced current is I = E/R, where R is the resistance of the wire. So, I = E R = 1 R Φ m = B R cos θȧ = B R cos θlẋ = Blv R cos θ, where we set v = ẋ. Thus, I = Blv cos θ. R (b) The induced force on the bar is back to the left, pushing the bar up along the loop (along x as we ve drawn things), while gravity pulls the bar down (along the +x direction). The bar coasts along at a constant speed when the two forces are equal to each other. Looking at the forces along the x direction gives Fx = F m cos θ + F g sin θ = 0. Now, F m = IlB = B2 l 2 v term cos θ, while F R g = mg. Setting the two equal and solving for the terminal velocity gives v term = mgr l 2 B 2 tan θ cos θ. 7
8 8. Chapter 34  Problem 65. MRI (magnetic resonance imaging) is a medical technique that produces detailed pictures of the interior of the body. The patient is placed into a solenoid that is 40 cm in diameter and 1.0 m long. A 100 A current creates a 5.0 T magnetic field inside the solenoid. To carry such a large current, the solenoid wires are cooled with liquid helium until they become superconducting (no electric resistance). (a) How much magnetic energy is stored in the solenoid? Assume that the magnetic field is uniform within the solenoid and quickly drops to zero outside the solenoid. (b) How many turns of wire does the solenoid have? (a) The energy density stored in the magnetic field is given by u B = 1 2µ 0 B 2. The total energy is the energy density times the volume of the solenoid, U B = u B (Vol) = u B Al = B2 Al 2µ 0. So, U B = Al 2µ 0 B 2 = (b) The magnetic field of a solenoid is B = µ 0NI l 100 A, we have or about 40,000 turns! π (0.2 2 ) 2 4π 10 7 (5.0)2 = J. N = Bl µ 0 I = 5 1 4π ,, and so N = Bl µ 0. For a current of I 8
9 9. Chapter 34  Problem 66. One possible concern with MRI (see problem 65) is turning the magnetic field on or off too quickly. Bodily fluids are conductors, and a changing magnetic field could cause electric currents to flow through the patient. Suppose a typical patient has a maximum crosssection area of m 2. What is the smallest time interval in which a 5.0 T magnetic field can be turned on or off if the induced emf around the patient s body must be kept to less than 0.10 V? The emf is E = Φ. m For a constant area, oriented along the direction of the magnetic field, then Φ m = AB. So, Φm = AḂ A B A B. So, the amount of time, t. t E Plugging in the numbers give t = A B E = = 3 sec. So, we should turn the magnetic field on or off over a time interval longer than 3 seconds. 9
10 10. Chapter 34  Problem 80. The switch in the figure has been open for a long time. it is closed at t = 0 s. (a) After the switch has been closed for a long time, what is the current in the circuit. Call this current I 0. (b) Find an expression for the current I as a function of time. Write your expression in terms of I 0, R, and L. (c) Sketch a currentversustime graph from t = 0 s until the current is no longer changing. (a) From Kirchhoff s loop law, V = V batt IR L di = 0. When the current dt has been flowing for a long time, it no longer changes, and so I = 0. Thus, I 0 = V batt. R (b) Now, going back to the loop law, we have, upon solving for di, dt di dt = R L (I 0 I), after plugging in V batt = I 0 R. Separating this differential equation becomes = R dt. Now, integrating gives L di I I 0 I I 0 di I I 0 = R L t 0 ( ) I I0 dt ln = R I 0 L t. Solving for I (t) gives where τ L/R. I(t) = I 0 ( 1 e t/τ ), (c) The graph is seen to the right. The current starts out at zero at time t = 0, and asymptotically approaches the final current I 0 as t. 10
Direction of Induced Current
Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as
More informationPhysics 2220 Module 09 Homework
Physics 2220 Module 09 Homework 01. A potential difference of 0.050 V is developed across the 10cmlong wire of the figure as it moves though a magnetic field perpendicular to the page. What are the strength
More information45. The peak value of an alternating current in a 1500W device is 5.4 A. What is the rms voltage across?
PHYS Practice Problems hapters 8 hapter 8. 45. The peak value of an alternating current in a 5W device is 5.4 A. What is the rms voltage across? The power and current can be used to find the peak voltage,
More informationHomework #11 20311721 Physics 2 for Students of Mechanical Engineering
Homework #11 20311721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of
More informationSCS 139 II.3 Induction and Inductance
SCS 139 II.3 Induction and Inductance Dr. Prapun Suksompong prapun@siit.tu.ac.th L d dt di L dt B 1 Office Hours: Library (Rangsit) Mon 16:2016:50 BKD 36017 Wed 9:2011:20 Review + New Fact Review Force
More informationMASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics. Problem Set 9 Solution
MASSACHUSETTS INSTINUTE OF TECHNOLOGY ESG Physics 8. with Kai Spring 3 Problem 1: 37 and 8 Problem Set 9 Solution A conductor consists of a circular loop of radius R =.1 m and two straight, long sections,
More information!"#$%&&''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''& ()*+,&./0.& 1*2&3+,,&!"#$%&% 456(&07/&
!"#$%'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ()*+,./0. 1*23+,,!"#$%% 456(07/ Directions: Complete each problem to the best of your ability. Be sure to show all
More informationDavid J. Starling Penn State Hazleton PHYS 212
and and The term inductance was coined by Oliver Heaviside in February 1886. David J. Starling Penn State Hazleton PHYS 212 and and Objectives (a) Determine the EMF and electric field induced by a changing
More informationSolution Derivations for Capa #10
Solution Derivations for Capa #10 1) A 1000turn loop (radius = 0.038 m) of wire is connected to a (25 Ω) resistor as shown in the figure. A magnetic field is directed perpendicular to the plane of the
More informationPhysics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6. Instructions: 1. In the formula F = qvxb:
Physics 121 Sample Common Exam 3 NOTE: ANSWERS ARE ON PAGE 6 Signature Name (Print): 4 Digit ID: Section: Instructions: Answer all questions 24 multiple choice questions. You may need to do some calculation.
More informationPhysics 126 Practice Exam #3 Professor Siegel
Physics 126 Practice Exam #3 Professor Siegel Name: Lab Day: 1. Which one of the following statements concerning the magnetic force on a charged particle in a magnetic field is true? A) The magnetic force
More informationElectroMagnetic Induction. AP Physics B
ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday
More informationFaraday s Law; Inductance
This test covers Faraday s Law of induction, motional emf, Lenz s law, induced emf and electric fields, eddy currents, selfinductance, inductance, RL circuits, and energy in a magnetic field, with some
More informationAP Physics C Chapter 23 Notes Yockers Faraday s Law, Inductance, and Maxwell s Equations
AP Physics C Chapter 3 Notes Yockers Faraday s aw, Inductance, and Maxwell s Equations Faraday s aw of Induction  induced current a metal wire moved in a uniform magnetic field  the charges (electrons)
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Pri Eðlisfræði 2, vor 2007 29a. Electromagnetic Induction Assignment is due at 2:00am on Wednesday, March 7, 2007 Credit for problems submitted late will decrease to 0% after the
More information104 Practice Exam 23/21/02
104 Practice Exam 23/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A nonzero
More informationChapter 27 Magnetic Induction. Copyright 2008 Pearson Education Inc., publishing as Pearson AddisonWesley
Chapter 27 Magnetic Induction Motional EMF Consider a conductor in a Bfield moving to the right. In which direction will an electron in the bar experience a magnetic force? V e  V The electrons in the
More informationFall 12 PHY 122 Homework Solutions #10
Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the
More informationUniversity of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 10 Solutions by P. Pebler
University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 10 Solutions by P Pebler 1 Purcell 66 A round wire of radius r o carries a current I distributed uniformly
More informationPhysics 1653 Exam 3  Review Questions
Physics 1653 Exam 3  Review Questions 3.0 Two uncharged conducting spheres, A and B, are suspended from insulating threads so that they touch each other. While a negatively charged rod is held near, but
More informationChapter 31: Induction and Inductance
Chapter 31: Induction and Inductance In Ch 30 we learned the following about magnetic fields: a) A magnetic field can exert a force on a current carrying wire b) If the wire is a closed loop then the magnetic
More informationFaraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...1010.1.1 Magnetic Flux...103 10.1. Lenz s Law...105 10. Motional EMF...107 10.3 Induced Electric Field...1010 10.4 Generators...101
More informationInduced voltages and Inductance Faraday s Law
Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic
More information) 0.7 =1.58 10 2 N m.
Exam 2 Solutions Prof. Paul Avery Prof. Andrey Korytov Oct. 29, 2014 1. A loop of wire carrying a current of 2.0 A is in the shape of a right triangle with two equal sides, each with length L = 15 cm as
More informationLecture 10 Induction and Inductance Ch. 30
Lecture 10 Induction and Inductance Ch. 30 Cartoon  Faraday Induction Opening Demo  Thrust bar magnet through coil and measure the current Warmup problem Topics Faraday s Law Lenz s Law Motional Emf
More informationPhysics 2212 GH Quiz #4 Solutions Spring 2015
Physics 1 GH Quiz #4 Solutions Spring 15 Fundamental Charge e = 1.6 1 19 C Mass of an Electron m e = 9.19 1 31 kg Coulomb constant K = 8.988 1 9 N m /C Vacuum Permittivity ϵ = 8.854 1 1 C /N m Earth s
More informationTuesday, 9 August 2016
Tuesday, 9 August 2016 Conceptual Problem 34.10 a When the switch on the left is closed, which direction does current flow in the meter on the right: 1. Right to left 2. Left to right 3. There is no induced
More informationInduction. d. is biggest when the motor turns fastest.
Induction 1. A uniform 4.5T magnetic field passes perpendicularly through the plane of a wire loop 0.10 m 2 in area. What flux passes through the loop? a. 5.0 T m 2 c. 0.25 T m 2 b. 0.45 T m 2 d. 0.135
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the
More information1 of 7 10/1/2012 3:17 PM
Assignment Previewer http://www.webassign.net/v4cgijfederici@njit/control.pl 1 of 7 10/1/2012 3:17 PM HW11Faraday (2861550) Question 1 2 3 4 5 6 7 8 9 10 1. Question Details SerPSE8 31.P.011.WI. [1742725]
More information12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance?
12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its selfinductance? From Equation 325, L = E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard
More information1 of 7 4/13/2010 8:05 PM
Chapter 33 Homework Due: 8:00am on Wednesday, April 7, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View] Canceling a Magnetic Field
More informationChapter 27 Magnetic Field and Magnetic Forces
Chapter 27 Magnetic Field and Magnetic Forces  Magnetism  Magnetic Field  Magnetic Field Lines and Magnetic Flux  Motion of Charged Particles in a Magnetic Field  Applications of Motion of Charged
More informationPhysics 6C, Summer 2006 Homework 1 Solutions F 4
Physics 6C, Summer 006 Homework 1 Solutions All problems are from the nd edition of Walker. Numerical values are different for each student. Chapter Conceptual Questions 18. Consider the four wires shown
More informationCh.20 Induced voltages and Inductance Faraday s Law
Ch.20 Induced voltages and Inductance Faraday s Law Last chapter we saw that a current produces a magnetic field. In 1831 experiments by Michael Faraday and Joseph Henry showed that a changing magnetic
More informationPhys222 Winter 2012 Quiz 4 Chapters 2931. Name
Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region
More informationPHYS 155: Final Tutorial
Final Tutorial Saskatoon Engineering Students Society eric.peach@usask.ca April 13, 2015 Overview 1 2 3 4 5 6 7 Tutorial Slides These slides have been posted: sess.usask.ca homepage.usask.ca/esp991/ Section
More informationMagnetic Field of a Circular Coil Lab 12
HB 112607 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
More informationPhysics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
More informationProfs. A. Petkova, A. Rinzler, S. Hershfield. Exam 2 Solution
PHY2049 Fall 2009 Profs. A. Petkova, A. Rinzler, S. Hershfield Exam 2 Solution 1. Three capacitor networks labeled A, B & C are shown in the figure with the individual capacitor values labeled (all units
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 23.1 Induced EMF 23.2 Magnetic Flux 23.3 Faraday s Law of Induction 23.4 Lenz s Law 23.5 Mechanical Work and Electrical Energy 23.6 Generators and
More informationFaraday's Law da B B r r Φ B B A d dφ ε B = dt
Faraday's Law da Φ ε = r da r dφ dt Applications of Magnetic Induction AC Generator Water turns wheel rotates magnet changes flux induces emf drives current Dynamic Microphones (E.g., some telephones)
More informationChapter 29 Electromagnetic Induction
Chapter 29 Electromagnetic Induction  Induction Experiments  Faraday s Law  Lenz s Law  Motional Electromotive Force  Induced Electric Fields  Eddy Currents  Displacement Current and Maxwell s Equations
More informationEðlisfræði 2, vor 2007
[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has
More informationObjectives for the standardized exam
III. ELECTRICITY AND MAGNETISM A. Electrostatics 1. Charge and Coulomb s Law a) Students should understand the concept of electric charge, so they can: (1) Describe the types of charge and the attraction
More informationThe purposes of this experiment are to test Faraday's Law qualitatively and to test Lenz's Law.
260 171 I. THEORY EXPERIMENT 17 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this
More information2. B The magnetic properties of a material depend on its. A) shape B) atomic structure C) position D) magnetic poles
ame: Magnetic Properties 1. B What happens if you break a magnet in half? A) One half will have a north pole only and one half will have a south pole only. B) Each half will be a new magnet, with both
More information1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole.
Exam Name 1) Magnetic field lines come out of the south pole of a magnet and enter at the north pole. 2) Which of the following statements is correct? A) Earth's north pole is magnetic north. B) The north
More informationChapter 27 Electromagnetic Induction
For us, who took in Faraday s ideas so to speak with our mother s milk, it is hard to appreciate their greatness and audacity. Albert Einstein 27.1 ntroduction Since a current in a wire produces a magnetic
More informationChapter 31. Faraday s Law
Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer
More informationPhysics 1214 Chapter 21: Electromagnetic Induction 02/15
Physics 1214 Chapter 21: Electromagnetic Induction 02/15 1 Induction Experiments emf or electromotive force: (from Chapter 19) the influence that moves charge from lower to higher potential. induced current:
More informationChapter 21 Faraday s Law of Electromagnetic Induction
Chapter 21 Faraday s Law of Electromagnetic Induction Magnetic Flux Φ B = ÚB da Φ B : Magnetic Flux B: Magnetic Field A: Area vector of enclosed current (perpendicular to area) SI Units: Weber, Wb = T
More informationFaraday s Law and Inductance
Historical Overview Faraday s Law and Inductance So far studied electric fields due to stationary charges and magentic fields due to moving charges. Now study electric field due to a changing magnetic
More informationPhysics 202: Lecture 10, Pg 1
Physics 132: Lecture e 21 Elements of Physics II Forces on currents Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create Bfields Adding magnetic fields
More informationElectromagnetism Laws and Equations
Electromagnetism Laws and Equations Andrew McHutchon Michaelmas 203 Contents Electrostatics. Electric E and Dfields............................................. Electrostatic Force............................................2
More informationExam 2 Solutions. PHY2054 Spring Prof. P. Kumar Prof. P. Avery March 5, 2008
Prof. P. Kumar Prof. P. Avery March 5, 008 Exam Solutions 1. Two cylindrical resistors are made of the same material and have the same resistance. The resistors, R 1 and R, have different radii, r 1 and
More information1. The diagram below represents magnetic lines of force within a region of space.
1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest
More informationphysics 112N electromagnetic induction
physics 112N electromagnetic induction experimental basis of induction! seems we can induce a current in a loop with a changing magnetic field physics 112N 2 magnetic flux! useful to define a quantity
More informationChapter 14 Magnets and Electromagnetism
Chapter 14 Magnets and Electromagnetism Magnets and Electromagnetism In the 19 th century experiments were done that showed that magnetic and electric effects were just different aspect of one fundamental
More informationInduction and Inductance
Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic flux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and
More information1. A wire carries 15 A. You form the wire into a singleturn circular loop with magnetic field 80 µ T at the loop center. What is the loop radius?
CHAPTER 3 SOURCES O THE MAGNETC ELD 1. A wire carries 15 A. You form the wire into a singleturn circular loop with magnetic field 8 µ T at the loop center. What is the loop radius? Equation 33, with
More informationChapter 30 Inductance
Chapter 30 Inductance In this chapter we investigate the properties of an inductor in a circuit. There are two kinds of inductance mutual inductance and selfinductance. An inductor is formed by taken
More information! = "d# B. ! = "d. Chapter 31: Faraday s Law! One example of Faraday s Law of Induction. Faraday s Law of Induction. Example. ! " E da = q in.
Chapter 31: Faraday s Law So far, we e looked at: Electric Fields for stationary charges E = k dq " E da = q in r 2 Magnetic fields of moing charges d = µ o I # o One example of Faraday s Law of Induction
More informationOutline. Tom Browder (University of Hawaii) Faraday s Law and Magnetic Induction. AC electric generator is based on Faraday s Law
Outline Tom Browder (University of Hawaii) Faraday s Law and Magnetic Induction AC electric generator is based on Faraday s Law Headline Solar flare: Biggest in six years hits the Earth Solar flare: The
More informationFaraday s Law of Induction
Faraday s Law of Induction Potential drop along the closed contour is minus the rate of change of magnetic flu. We can change the magnetic flu in several ways including changing the magnitude of the magnetic
More informationElectromagnetic Induction. Physics 231 Lecture 91
Electromagnetic Induction Physics 231 Lecture 91 Induced Current Past experiments with magnetism have shown the following When a magnet is moved towards or away from a circuit, there is an induced current
More informationScott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance.
Scott Hughes 7 April 2005 151 Using induction Massachusetts nstitute of Technology Department of Physics 8022 Spring 2005 Lecture 15: Mutual and Self nductance nduction is a fantastic way to create EMF;
More informationElectromagnetic Induction  A
Electromagnetic Induction  A APPARATUS 1. Two 225turn coils 2. Table Galvanometer 3. Rheostat 4. Iron and aluminum rods 5. Large circular loop mounted on board 6. AC ammeter 7. Variac 8. Search coil
More informationLab 9 Magnetic Interactions
Lab 9 Magnetic nteractions Physics 6 Lab What You Need To Know: The Physics Electricity and magnetism are intrinsically linked and not separate phenomena. Most of the electrical devices you will encounter
More informationMagnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.
Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.
More information5. Measurement of a magnetic field
H 5. Measurement of a magnetic field 5.1 Introduction Magnetic fields play an important role in physics and engineering. In this experiment, three different methods are examined for the measurement of
More informationPhysics 12 Study Guide: Electromagnetism Magnetic Forces & Induction. Text References. 5 th Ed. Giancolli Pg
Objectives: Text References 5 th Ed. Giancolli Pg. 58896 ELECTROMAGNETISM MAGNETIC FORCE AND FIELDS state the rules of magnetic interaction determine the direction of magnetic field lines use the right
More informationTest  A2 Physics. Primary focus Magnetic Fields  Secondary focus electric fields (including circular motion and SHM elements)
Test  A2 Physics Primary focus Magnetic Fields  Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010
More informationPhysics 9 Fall 2009 Homework 6  Solutions
. Chapter 32  Exercise 8. Physics 9 Fall 29 Homework 6  s How much power is dissipated by each resistor in the figure? First, let s figure out the current in the circuit. Since the two resistors are
More informationFinal Exam (40% of grade) on Monday December 7 th 1130a230pm in York 2622 You can bring two 8.5x11 pages, front and back, of notes Calculators may
Final Exam (40% of grade) on Monday December 7 th 1130a230pm in York 2622 You can bring two 8.5x11 pages, front and back, of notes Calculators may be used multiple choice like quizzes, only longer by
More informationPhysics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
More informationForce on Moving Charges in a Magnetic Field
[ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after
More informationLecture 22. Inductance. Magnetic Field Energy. Outline:
Lecture 22. Inductance. Magnetic Field Energy. Outline: Selfinduction and selfinductance. Inductance of a solenoid. The energy of a magnetic field. Alternative definition of inductance. Mutual Inductance.
More informationChapter 34 Faraday s Law & Electromagnetic Induction
Chapter 34 Faraday s Law & Electromagnetic Induction Faraday s Discovery (~ 1831) Faraday found that a changing magnetic field creates a current in a wire. This is an informal statement of Faraday s law.
More informationSirindhorn International Institute of Technology Thammasat University at Rangsit. SCS 139: Problem Set 1
Sirindhorn International Institute of Technology Thammasat University at Rangsit School of Information, Computer and Communication Technology SCS 139: Problem Set 1 Due date: Feb 8, 2013 (Friday) 1. [Halliday,
More informationPhysics 221 Experiment 5: Magnetic Fields
Physics 221 Experiment 5: Magnetic Fields August 25, 2007 ntroduction This experiment will examine the properties of magnetic fields. Magnetic fields can be created in a variety of ways, and are also found
More information( )( 10!12 ( 0.01) 2 2 = 624 ( ) Exam 1 Solutions. Phy 2049 Fall 2011
Phy 49 Fall 11 Solutions 1. Three charges form an equilateral triangle of side length d = 1 cm. The top charge is q =  4 μc, while the bottom two are q1 = q = +1 μc. What is the magnitude of the net force
More informationPHYS 110B  HW #2 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased
PHYS 11B  HW # Fall 5, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased [1.] Problem 7. from Griffiths A capacitor capacitance, C) is charged
More informationReview Questions PHYS 2426 Exam 2
Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationChapter 14: Magnets and Electromagnetism
Chapter 14: Magnets and Electromagnetism 1. Electrons flow around a circular wire loop in a horizontal plane, in a direction that is clockwise when viewed from above. This causes a magnetic field. Inside
More informationMagnetic Fields; Sources of Magnetic Field
This test covers magnetic fields, magnetic forces on charged particles and currentcarrying wires, the Hall effect, the BiotSavart Law, Ampère s Law, and the magnetic fields of currentcarrying loops
More informationPhysics 1502: Lecture 19 Today s Agenda
Physics 1502: Lecture 19 Today s Agenda Announcements: Midterm 1 aailable Homework 06 next Friday Induction Faraday's Law d 1 Induction Effects ar magnet moes through coil Current induced in coil Change
More informationSolution: (a) For a positively charged particle, the direction of the force is that predicted by the right hand rule. These are:
Problem 1. (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields as shown in the figure. (b) Repeat part (a), assuming the moving particle is
More information2015 Pearson Education, Inc. Section 24.5 Magnetic Fields Exert Forces on Moving Charges
Section 24.5 Magnetic Fields Exert Forces on Moving Charges Magnetic Fields Sources of Magnetic Fields You already know that a moving charge is the creator of a magnetic field. Effects of Magnetic Fields
More informationMOVING CHARGES AND MAGNETISM
MOVING CHARGES AND MAGNETISM 1. A circular Coil of 50 turns and radius 0.2m carries of current of 12A Find (a). magnetic field at the centre of the coil and (b) magnetic moment associated with it. 3 scores
More informationSlide 1 / 26. Inductance. 2011 by Bryan Pflueger
Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one
More informationChapter 33. The Magnetic Field
Chapter 33. The Magnetic Field Digital information is stored on a hard disk as microscopic patches of magnetism. Just what is magnetism? How are magnetic fields created? What are their properties? These
More informationChapter 11. Inductors ISU EE. C.Y. Lee
Chapter 11 Inductors Objectives Describe the basic structure and characteristics of an inductor Discuss various types of inductors Analyze series inductors Analyze parallel inductors Analyze inductive
More informationQ28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P
Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P r + v r A. points in the same direction as v. B. points from point
More informationChapter 12 Driven RLC Circuits
hapter Driven ircuits. A Sources... . A ircuits with a Source and One ircuit Element... 3.. Purely esistive oad... 3.. Purely Inductive oad... 6..3 Purely apacitive oad... 8.3 The Series ircuit...
More informationEinstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road, New Delhi , Ph. : ,
1 EMI & AC 1. Derive an expression for the impendance of a coil in AC ciruit. A current of 1.1 A flows through a coil when connected to a 110 V DC. When 110 V AC of 50 Hz is applied to the same coil, only
More informationHome Work 9. i 2 a 2. a 2 4 a 2 2
Home Work 9 91 A square loop of wire of edge length a carries current i. Show that, at the center of the loop, the of the magnetic field produced by the current is 0i B a The center of a square is a distance
More informationAP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.
A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.
More informationPHY2049 Exam #2 Solutions Fall 2012
PHY2049 Exam #2 Solutions Fall 2012 1. The diagrams show three circuits consisting of concentric circular arcs (either half or quarter circles of radii r, 2r, and 3r) and radial segments. The circuits
More information