Gibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Gibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)"

Transcription

1 Gbbs Free Energy and Chemcal Equlbrum (or how to predct chemcal reactons wthout dong experments) OCN 623 Chemcal Oceanography Readng: Frst half of Chapter 3, Snoeynk and Jenkns (1980)

2 Introducton We want to answer these questons: Wll ths reacton go? If so, how far can t proceed? We wll do ths by usng thermodynamcs. Ths lecture wll be restrcted to a small subset of thermodynamcs the soluton of chemcal equlbrum problems

3 Chemcal Equlbrum Consder a reversble reacton takng place at constant temperature: aa + bb cc + dd The reactants A and B combne to form products C and D. The concentratons of A and B decrease untl they reach values that do not change wth tme:

4 The tme-nvarant concentratons of reactants and products are called equlbrum concentratons The rato of these concentratons (or actvtes actve concentratons) s characterstc for each reacton, and s called the equlbrum constant, K: K { C} { A} c a { D} { B} d b Note that at equlbrum, the forward and reverse reactons proceed at the same, stable rate.

5 Free Energy A crteron for equlbrum s that the total free energy (Gbbs free energy, G r ) of the reacton s at a mnmum: If we add more reactant or more product, the reacton wll proceed spontaneously (wthout external help) as long as the value for G r decreases Thus, a reacton n the drecton of decreasng G r s spontaneous. A reacton n the drecton of ncreasng G r s not spontaneous, and wll not occur n a closed system.

6 As any reacton proceeds an ncremental amount, the change n G r can be calculated as: G r = υg f products υg f reactants where ν s the stochometrc coeffcent (a,b,c,d) for speces, and G f s the free energy of formaton per mole of speces 1. If G r < 0, (.e., G r s negatve and thus G r decreases as the reacton proceeds), then the reacton proceeds spontaneously as wrtten 2. If G r > 0, (.e., G r s postve and thus G r ncreases as the reacton proceeds), then the reacton proceeds spontaneously n the opposte drecton as wrtten 3. If G r = 0, (.e., G r s at a mnmum), then the reacton s at equlbrum and wll not proceeds spontaneously n ether drecton

7 Values for G for a reacton gve us a powerful tool to predct f a reacton s possble. We calculate n-stu G r usng ths equaton: where In-stu G r = G r + Std. state RT { C} ln { A} c a { D} { B} d b G r = υg f products υg f reactants The the superscrpt zero ( ) ndcates standard state: 25 C (298 K),1 atm pressure, and actvty = 1 G f s the standard-state free energy of formaton per mole of speces { } = actvty (actve concentraton) R = the deal gas constant = cal K -1 mol -1 = 8.31 J K -1 mol -1 T = K

8 Standard free energy of formaton ( G f ): G f = 0 at standard state for all pure elements (sold reference) G f = 0 for H + at a concentraton of 1 mole/lter at standard state (soluton reference) Allows the measure of the energy change nvolved n formng compounds at standard state from ther component elements at standard state Measured values are lsted n tables. Unts are: kj/mol (SI unts) kcal/mol

9 Table n readng (handout)

10 See complete table n handout

11 Sample Calculaton #1 Consder the dssoluton of CaCO 3 (calcte) n aqueous soluton: CaCO 3 Ca 2+ + CO 3 2- Does the reacton proceed spontaneously as wrtten? Calculate the free energy of reacton at standard state (products and reactants at actvty = 1, P = 1 atm, T = 25 C): G r = υg f products υg f reactants G r = (1(-132) + 1(-126) (1(-270)) kcal/mol = ( ) kcal/mol = +12 kcal/mol Therefore, at standard state, the reacton spontaneously proceeds n the opposte drecton to what s wrtten (.e., calcte precptates)

12

13 Actvtes How to Calculate Actvty of water = 1

14 Equlbrum at In-Stu Condtons We have already seem that: In-stu G = G + Std. state RT ln { C } { A} c a { D} { B} d b We can defne a reacton quotent, Q, usng n-stu condtons: Q { C} { A} Thus: G = G + RT ln Q c a { D} { B} d b In the case of equlbrum, Q = K and G = 0: Thus: 0 = G + RT ln K G = -RT ln K Substtutng (for the general case): G = -RT ln K + RT ln Q = RT ln Q/K

15 G = RT ln Q/K Ths allows us to develop a set of crtera to determne n whch drecton a reacton wll proceed under non-standard condtons. Ths s because Q/K wll determne the sgn of G: 1. If Q/K < 1, then G s negatve, and the reacton s spontaneous as wrtten 2. If Q/K = 1, then G = 0 and the system s at equlbrum 3. If Q/K > 1, then G s postve, and the reacton s spontaneous n the opposte drecton as wrtten

16 Sample Calculaton #2 Agan consder the dssoluton of CaCO 3 (calcte): CaCO 3 Ca 2+ + CO 3 2- In the surface ocean, does the reacton proceed spontaneously as wrtten? Use G = -RT ln K From Sample Calculaton #1, we know: G = +12 kcal/mole Thus: kcal mol ( ) cal 1 kcal ( 298 K) lnk 12 = 1000 K mol cal (all unts cancel out) ln K = K = 1.58 x 10-9 ( equlbrum constant )

17 Surface seawater: {CaCO 3 } 1 [Ca 2+ ] = 0.01 mol/l; γ = 0.28; {Ca 2+ } = [CO 3 2- ] = 45 µmol/l; γ = 0.21; {CO 3 2- } = 9.45 x 10-6 Q Q K = { Ca }{ CO } 2+ 2 { CaCO } 2.65x10 = 1.58x = = ( 2.8x10 )( 9.45x10 ) 1 = 2.65x10 8 Therefore: The reacton goes n the opposte drecton as wrtten (Q/K > 1) CaCO 3 precptates n the surface ocean Surface seawater s supersaturated wth respect to calcte Note: No nformaton s gven on the knetcs of the reacton!

18 Temperature and Pressure Effects The amount of heat that s released or taken up by a reacton s called the enthalpy change ( H ). Smlarly to G, we can calculate H usng tabulated data: H r = υh f products υh f reactants where ν s the stochometrc coeffcent (a,b,c,d), and H f s the enthalpy of formaton of speces (kcal/mol or kj/mol) at standard state. The van t Hoff equaton gves the temperature dependence of K: lnk T For a small change n T, H does not change much, so we can ntegrate drectly: K T* Hr 1 1 ln = K298 R 298 T * where T* s the temperature of nterest. P H = RT r 2

19 The change n the partal molar volume ( V ) durng a reacton at standard state s also calculated usng tabulated data: V r = υv f products υv f reactants where ν s the stochometrc coeffcent (a,b,c,d), and V f s the partal molar volume of formaton of speces (cm 3 /mol) at standard state. The pressure dependence of K s also known: ln K P T Vr = RT Agan ntegratng drectly: ln K K 1atm V RT ( P* 1atm) P* r = where P* s the pressure of nterest (n atm).

20 See the followng example n the handout for an example of temperature-correctng the equlbrum constant:

21 Homework Due Tues 1/22/13 Problems 4, 5, 9 and 11 on pages of the handout (Chapter 3 of Snoeynk and Jenkns, 1980). Reference Snoeynk, V.L., and D. Jenkns (1980) Water Chemstry. John Wley & Sons, New York.

Solutions to First Midterm

Solutions to First Midterm rofessor Chrstano Economcs 3, Wnter 2004 Solutons to Frst Mdterm. Multple Choce. 2. (a) v. (b). (c) v. (d) v. (e). (f). (g) v. (a) The goods market s n equlbrum when total demand equals total producton,.e.

More information

Mean Molecular Weight

Mean Molecular Weight Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of

More information

CHEMICAL THERMODYNAMICS

CHEMICAL THERMODYNAMICS CHEMICAL THERMODYNAMICS Spontaneous reactions Nonspontaneous reactions Enthalpy change (ΔH) Exothermic and endothermic reactions Entropy change (ΔS) Gibbs free energy change, (ΔG) Free energy of formation

More information

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as Mxtures and Solutons Partal Molar Quanttes Partal molar volume he total volume of a mxture of substances s a functon of the amounts of both V V n,n substances (among other varables as well). hus the change

More information

DETERMINATION OF MOLAR MASS FROM FREEZING POINT DEPRESSION

DETERMINATION OF MOLAR MASS FROM FREEZING POINT DEPRESSION Exercse 1 DETERINTION OF OLR SS FRO FREEZING POINT DEPRESSION Collgatve propertes The propertes we now consder are the lowerng of vapour pressure, the elevaton of bolng pont, the depresson of freezng pont,

More information

Homework 11. Problems: 20.37, 22.33, 22.41, 22.67

Homework 11. Problems: 20.37, 22.33, 22.41, 22.67 Homework 11 roblems: 0.7,.,.41,.67 roblem 0.7 1.00-kg block o alumnum s heated at atmospherc pressure such that ts temperature ncreases rom.0 to 40.0. Fnd (a) the work done by the alumnum, (b) the energy

More information

Consider: N 2 (g) + 3H 2 (g) 2NH 3 (g) G = -32.90 kj/mol. conc. time

Consider: N 2 (g) + 3H 2 (g) 2NH 3 (g) G = -32.90 kj/mol. conc. time 5.111 Lecture Summary #19 CHEMICAL EQUILIBRIUM (Chapter 9 Section 9.0-9.9) Topics Nature of Chemical Equilibrium Meaning of K Relationship between Equilibrium Expressions External Effects on K 19.1 Chemical

More information

Introduction to Chemical Engineering: Chemical Reaction Engineering

Introduction to Chemical Engineering: Chemical Reaction Engineering ========================================================== Introducton to Chemcal Engneerng: Chemcal Reacton Engneerng Prof. Dr. Marco Mazzott ETH Swss Federal Insttute of Technology Zurch Separaton Processes

More information

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras VLI Technology Dr. Nandta Dasgupta Department of Electrcal Engneerng Indan Insttute of Technology, Madras Lecture - 11 Oxdaton I netcs of Oxdaton o, the unt process step that we are gong to dscuss today

More information

Multicomponent Distillation

Multicomponent Distillation Multcomponent Dstllaton need more than one dstllaton tower, for n components, n-1 fractonators are requred Specfcaton Lmtatons The followng are establshed at the begnnng 1. Temperature, pressure, composton,

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

ESCI 341 Atmospheric Thermodynamics Lesson 9 Entropy

ESCI 341 Atmospheric Thermodynamics Lesson 9 Entropy ESCI 341 Atmosherc hermodynamcs Lesson 9 Entroy References: An Introducton to Atmosherc hermodynamcs, sons Physcal Chemstry (4 th edton), Levne hermodynamcs and an Introducton to hermostatstcs, Callen

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Finite Math Chapter 10: Study Guide and Solution to Problems

Finite Math Chapter 10: Study Guide and Solution to Problems Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.

Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative. Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Formula of Total Probability, Bayes Rule, and Applications

Formula of Total Probability, Bayes Rule, and Applications 1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.

More information

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6) Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

SECOND LAW ANALYSIS OF SOLID OXIDE FUEL CELLS

SECOND LAW ANALYSIS OF SOLID OXIDE FUEL CELLS SECOND LAW ANALYSIS OF SOLID OXIDE FUEL CELLS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF THE MIDDLE EAST TECHNICAL UNIVERSITY BY BAŞAR BULUT IN PARTIAL FULFILLMENT OF

More information

Colligative Properties

Colligative Properties Chapter 5 Collgatve Propertes 5.1 Introducton Propertes of solutons that depend on the number of molecules present and not on the knd of molecules are called collgatve propertes. These propertes nclude

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chapter 14 1 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions

More information

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry 1 Battery Technology and Markets, Sprng 2010 Lecture 1: Introducton to Electrochemstry 1. Defnton of battery 2. Energy storage devce: voltage and capacty 3. Descrpton of electrochemcal cell and standard

More information

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102.

Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Thermodynamics 2: Gibbs Free Energy and Equilibrium Reading: Moore chapter 18, sections 18.6-18.11 Questions for Review and Thought: 62, 69, 71, 73, 78, 83, 99, 102. Key Concepts and skills: definitions

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

More information

Lecture 2 The First Law of Thermodynamics (Ch.1)

Lecture 2 The First Law of Thermodynamics (Ch.1) Lecture he Frst Law o hermodynamcs (Ch.) Outlne:. Internal Energy, Work, Heatng. Energy Conservaton the Frst Law 3. Quas-statc processes 4. Enthalpy 5. Heat Capacty Internal Energy he nternal energy o

More information

Module 9 Non conventional Machining. Version 2 ME, IIT Kharagpur

Module 9 Non conventional Machining. Version 2 ME, IIT Kharagpur Module 9 Non conventonal Machnng Lesson 38 Electro Chemcal Machnng Instructonal bjectves () () () (v) (v) (v) (v) (v) (x) (x) (x) Identfy electro-chemcal machnng (ECM) as a partcular type of non-tradton

More information

MOLECULAR PARTITION FUNCTIONS

MOLECULAR PARTITION FUNCTIONS MOLECULR PRTITIO FUCTIOS Introducton In the last chapter, we have been ntroduced to the three man ensembles used n statstcal mechancs and some examples of calculatons of partton functons were also gven.

More information

Questions that we may have about the variables

Questions that we may have about the variables Antono Olmos, 01 Multple Regresson Problem: we want to determne the effect of Desre for control, Famly support, Number of frends, and Score on the BDI test on Perceved Support of Latno women. Dependent

More information

Introduction: Analysis of Electronic Circuits

Introduction: Analysis of Electronic Circuits /30/008 ntroducton / ntroducton: Analyss of Electronc Crcuts Readng Assgnment: KVL and KCL text from EECS Just lke EECS, the majorty of problems (hw and exam) n EECS 3 wll be crcut analyss problems. Thus,

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Viscosity of Solutions of Macromolecules

Viscosity of Solutions of Macromolecules Vscosty of Solutons of Macromolecules When a lqud flows, whether through a tube or as the result of pourng from a vessel, layers of lqud slde over each other. The force f requred s drectly proportonal

More information

Interlude: Interphase Mass Transfer

Interlude: Interphase Mass Transfer Interlude: Interphase Mass Transfer The transport of mass wthn a sngle phase depends drectly on the concentraton gradent of the transportng speces n that phase. Mass may also transport from one phase to

More information

Physics 41 HW Set 11 Chapters 20 and 21

Physics 41 HW Set 11 Chapters 20 and 21 Physcs 41 HW Set 11 Chapters 0 and 1 Chapter 0 1 An deal gas ntally at P,, and T s taken through a cycle as shown Fnd the net work done on the gas per cycle What s the net energy added by heat to the system

More information

Nasdaq Iceland Bond Indices 01 April 2015

Nasdaq Iceland Bond Indices 01 April 2015 Nasdaq Iceland Bond Indces 01 Aprl 2015 -Fxed duraton Indces Introducton Nasdaq Iceland (the Exchange) began calculatng ts current bond ndces n the begnnng of 2005. They were a response to recent changes

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

Chapter 2 Thermodynamics of Combustion

Chapter 2 Thermodynamics of Combustion Chapter 2 Thermodynamcs of Combuston 2.1 Propertes of Mxtures The thermal propertes of a pure substance are descrbed by quanttes ncludng nternal energy, u, enthalpy, h, specfc heat, c p, etc. Combuston

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Examples of Multiple Linear Regression Models

Examples of Multiple Linear Regression Models ECON *: Examples of Multple Regresson Models Examples of Multple Lnear Regresson Models Data: Stata tutoral data set n text fle autoraw or autotxt Sample data: A cross-sectonal sample of 7 cars sold n

More information

Topical Workshop for PhD students Adsorption and Diffusion in MOFs Institut für Nichtklassische Chemie, Germany, www.uni-leipzig.

Topical Workshop for PhD students Adsorption and Diffusion in MOFs Institut für Nichtklassische Chemie, Germany, www.uni-leipzig. Gas Separaton and Purfcaton Measurement of Breakthrough Curves Topcal Workshop for PhD students Adsorpton and Dffuson n MOFs Adsorpton on Surfaces / Separaton effects Useful features Thermodynamc effect

More information

9.1 The Cumulative Sum Control Chart

9.1 The Cumulative Sum Control Chart Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

More information

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL

More information

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60 BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

More information

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling Analyss of Reactvty Induced Accdent for Control Rods Ejecton wth Loss of Coolng Hend Mohammed El Sayed Saad 1, Hesham Mohammed Mohammed Mansour 2 Wahab 1 1. Nuclear and Radologcal Regulatory Authorty,

More information

Review of Chemical Thermodynamics 7.51 September 1999

Review of Chemical Thermodynamics 7.51 September 1999 Review of Chemical Thermodynamics 7.51 September 1999 If you haven t had thermodynamics before, you ll probably need to do some background reading. Possibilities include: Moore, W.J. (1972) Physical Chemistry,

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

Communication Networks II Contents

Communication Networks II Contents 8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

More information

Online Learning from Experts: Minimax Regret

Online Learning from Experts: Minimax Regret E0 370 tatstcal Learnng Theory Lecture 2 Nov 24, 20) Onlne Learnng from Experts: Mn Regret Lecturer: hvan garwal crbe: Nkhl Vdhan Introducton In the last three lectures we have been dscussng the onlne

More information

Principles of Reactivity: Chemical Equilibria

Principles of Reactivity: Chemical Equilibria Principles of Reactivity: Chemical Equilibria This chapter addresses the principle of equilibrium equilibrium What can you do to reestablish equilibrium? non-equilibrium Whose principle supports this?

More information

JCM_VN_AM003_ver01.0 Sectoral scope: 03

JCM_VN_AM003_ver01.0 Sectoral scope: 03 Sectoral scoe: 03 Jont Credtng Mechansm Aroved Methodology VN_AM003 Imrovng the energy effcency of commercal buldngs by utlzaton of hgh effcency equment A. Ttle of the methodology Imrovng the energy effcency

More information

University Physics AI No. 11 Kinetic Theory

University Physics AI No. 11 Kinetic Theory Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

More information

Numerical Analysis of the Natural Gas Combustion Products

Numerical Analysis of the Natural Gas Combustion Products Energy and Power Engneerng, 2012, 4, 353-357 http://dxdoorg/104236/epe201245046 Publshed Onlne September 2012 (http://wwwscrporg/journal/epe) Numercal Analyss of the Natural Gas Combuston Products Fernando

More information

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

More information

Experiment 8 Two Types of Pendulum

Experiment 8 Two Types of Pendulum Experment 8 Two Types of Pendulum Preparaton For ths week's quz revew past experments and read about pendulums and harmonc moton Prncples Any object that swngs back and forth can be consdered a pendulum

More information

FORCED CONVECTION HEAT TRANSFER IN A DOUBLE PIPE HEAT EXCHANGER

FORCED CONVECTION HEAT TRANSFER IN A DOUBLE PIPE HEAT EXCHANGER FORCED CONVECION HEA RANSFER IN A DOUBLE PIPE HEA EXCHANGER Dr. J. Mchael Doster Department of Nuclear Engneerng Box 7909 North Carolna State Unversty Ralegh, NC 27695-7909 Introducton he convectve heat

More information

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

More information

I. SCOPE, APPLICABILITY AND PARAMETERS Scope

I. SCOPE, APPLICABILITY AND PARAMETERS Scope D Executve Board Annex 9 Page A/R ethodologcal Tool alculaton of the number of sample plots for measurements wthn A/R D project actvtes (Verson 0) I. SOPE, PIABIITY AD PARAETERS Scope. Ths tool s applcable

More information

Chapter 14. CHEMICAL EQUILIBRIUM

Chapter 14. CHEMICAL EQUILIBRIUM Chapter 14. CHEMICAL EQUILIBRIUM 14.1 THE CONCEPT OF EQUILIBRIUM AND THE EQUILIBRIUM CONSTANT Many chemical reactions do not go to completion but instead attain a state of chemical equilibrium. Chemical

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

QUANTUM MECHANICS, BRAS AND KETS

QUANTUM MECHANICS, BRAS AND KETS PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

More information

FLASH POINT DETERMINATION OF BINARY MIXTURES OF ALCOHOLS, KETONES AND WATER. P.J. Martínez, E. Rus and J.M. Compaña

FLASH POINT DETERMINATION OF BINARY MIXTURES OF ALCOHOLS, KETONES AND WATER. P.J. Martínez, E. Rus and J.M. Compaña FLASH POINT DETERMINATION OF BINARY MIXTURES OF ALCOHOLS, KETONES AND WATER Abstract P.J. Martínez, E. Rus and J.M. Compaña Departamento de Ingenería Químca. Facultad de Cencas. Unversdad de Málaga. 29071

More information

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course?

Chapter 20. Thermodynamics p. 811 842. Spontaneity. What have we learned about spontaneity during this course? Chapter 20 p. 811 842 Spontaneous process: Ex. Nonspontaneous process: Ex. Spontaneity What have we learned about spontaneity during this course? 1) Q vs. K? 2) So.. Spontaneous process occurs when a system

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

greatest common divisor

greatest common divisor 4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

More information

Chapter 14 Chemical Equilibrium

Chapter 14 Chemical Equilibrium Chapter 14 Chemical Equilibrium Forward reaction H 2 (g) + I 2 (g) 2HI(g) Reverse reaction 2HI(g) H 2 (g) + I 2 (g) At equilibrium H 2 (g) + I 2 (g) 2HI(g) Chemical equilibrium is reached when reactants

More information

ELE427 - Testing Linear Sensors. Linear Regression, Accuracy, and Resolution.

ELE427 - Testing Linear Sensors. Linear Regression, Accuracy, and Resolution. ELE47 - Testng Lnear Sensors Lnear Regresson, Accurac, and Resoluton. Introducton: In the frst three la eperents we wll e concerned wth the characterstcs of lnear sensors. The asc functon of these sensors

More information

Liquid-Vapor Equilibria in Binary Systems 1

Liquid-Vapor Equilibria in Binary Systems 1 Lqud-Vapor Equlbra n Bnary Systems 1 Purpose The purpose of ths experment s to study a bnary lqud-vapor equlbrum of chloroform and acetone. Measurements of lqud and vapor compostons wll be made by refractometry.

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

THE TITANIC SHIPWRECK: WHO WAS

THE TITANIC SHIPWRECK: WHO WAS THE TITANIC SHIPWRECK: WHO WAS MOST LIKELY TO SURVIVE? A STATISTICAL ANALYSIS Ths paper examnes the probablty of survvng the Ttanc shpwreck usng lmted dependent varable regresson analyss. Ths appled analyss

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value 8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information

Week 6 Market Failure due to Externalities

Week 6 Market Failure due to Externalities Week 6 Market Falure due to Externaltes 1. Externaltes n externalty exsts when the acton of one agent unavodably affects the welfare of another agent. The affected agent may be a consumer, gvng rse to

More information

How Much to Bet on Video Poker

How Much to Bet on Video Poker How Much to Bet on Vdeo Poker Trstan Barnett A queston that arses whenever a gae s favorable to the player s how uch to wager on each event? Whle conservatve play (or nu bet nzes large fluctuatons, t lacks

More information

Hedging Interest-Rate Risk with Duration

Hedging Interest-Rate Risk with Duration FIXED-INCOME SECURITIES Chapter 5 Hedgng Interest-Rate Rsk wth Duraton Outlne Prcng and Hedgng Prcng certan cash-flows Interest rate rsk Hedgng prncples Duraton-Based Hedgng Technques Defnton of duraton

More information

Academic Chemistry Unit 2 Test Review TEST on Thursday 9/25

Academic Chemistry Unit 2 Test Review TEST on Thursday 9/25 Academc Chemstry Unt 2 Test Revew TEST on Thursday 925 1. Descrbe the followng: b. Chemcal Energy: C>,2. As thetemperatureof asamp!e of matter decreases, what happens to the average knetc energy of the

More information

Understanding the Genetics of Blood Groups

Understanding the Genetics of Blood Groups Name: Key Class: Date: Understandng the Genetcs of Blood Groups Objectves: understand the genetcs of blood types determne the ABO blood type of unknown smulated blood samples predct, usng punnett squares,

More information

2 The TTL Inverter. (i) An input transistor, T 1, which performs a current steering function, can be thought of as a back-to-back diode arrangement.

2 The TTL Inverter. (i) An input transistor, T 1, which performs a current steering function, can be thought of as a back-to-back diode arrangement. The TTL Inverter.1 Crcut Structure The crcut dagram of the Transstor Transstor Logc nverter s shown n Fg..1. Ths crcut overcomes the lmtatons of the sngle transstor nverter crcut. Some of the notable features

More information

Chapter 13. Chemical Equilibrium

Chapter 13. Chemical Equilibrium Chapter 13 Chemical Equilibrium Chapter 13 Preview Chemical Equilibrium The Equilibrium condition and constant Chemical equilibrium, reactions, constant expression Equilibrium involving Pressure Chemical

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2 EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

More information

Heuristic Static Load-Balancing Algorithm Applied to CESM

Heuristic Static Load-Balancing Algorithm Applied to CESM Heurstc Statc Load-Balancng Algorthm Appled to CESM 1 Yur Alexeev, 1 Sher Mckelson, 1 Sven Leyffer, 1 Robert Jacob, 2 Anthony Crag 1 Argonne Natonal Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439,

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

Influence of Regenerative Feed Water Heaters on the Operational Costs of Steam Power Plants and HP Plants

Influence of Regenerative Feed Water Heaters on the Operational Costs of Steam Power Plants and HP Plants Int. J. of Thermodynamcs ISSN 1301-9724 Vol. 8 (No. 3), pp. 137-141, September 2005 Influence of Regeneratve Feed Water Heaters on the Operatonal Costs of Steam Power Plants and HP Plants Jan Szargut Insttute

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Financial Mathemetics

Financial Mathemetics Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

More information

Enthalpy, Entropy, and Free Energy Calculations

Enthalpy, Entropy, and Free Energy Calculations Adapted from PLTL The energies of our system will decay, the glory of the sun will be dimmed, and the earth, tideless and inert, will no longer tolerate the race which has for a moment disturbed its solitude.

More information

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence 1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

More information

Thinking about Newton's Laws

Thinking about Newton's Laws Newtonan modellng In ths actvty you wll see how Newton s Laws of Moton are used to connect the moton of an object wth the forces actng on t. You wll practse applyng Newton s three laws n some real contexts.

More information

Binary Dependent Variables. In some cases the outcome of interest rather than one of the right hand side variables is discrete rather than continuous

Binary Dependent Variables. In some cases the outcome of interest rather than one of the right hand side variables is discrete rather than continuous Bnary Dependent Varables In some cases the outcome of nterest rather than one of the rght hand sde varables s dscrete rather than contnuous The smplest example of ths s when the Y varable s bnary so that

More information

Periodic Trends and the Properties of Elements. Equipment

Periodic Trends and the Properties of Elements. Equipment Perodc Trends and the Propertes of Elements The Alkalne Earth Metals Purpose The gurpose of ths experment s to dentf,z perodc trends n the actvtv and solublqv of the alkalne earth metals. Chemcals Equpment

More information

Equilibrium Notes Ch 14:

Equilibrium Notes Ch 14: Equilibrium Notes Ch 14: Homework: E q u i l i b r i u m P a g e 1 Read Chapter 14 Work out sample/practice exercises in the sections, Bonus Chapter 14: 23, 27, 29, 31, 39, 41, 45, 51, 57, 63, 77, 83,

More information