# Take-Points in Money Games

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Take-Points in Money Games by Rick Janowski Guidance on doubling strategy in backgammon is provided by the following two theoretical models:. Dead-Cube Model the classical model which makes no allowance for cube ownership.. Live-Cube Model the continuous model which assumes maximum possible cube ownership value. The former generally overestimates take-points and underestimates doubling-points (5% and 50% respectively, assuming no gammons. Conversely, the latter model underestimates takepoints and overestimates doubling-points (0% and 80% respectively assuming no gammons. When considered together, however, they provide an envelope in which correct cube action decisions are to be found. Dead-Cube Model The owner of the cube is not afforded any additional benefits by it he can neither double out his opponent nor raise the stakes at an opportune time. Effectively, the game is played out to its conclusion cubeless (but at the stake raised by the previous double. Consequently, takepoints can be readily established from the risk-reward ratio. Assume a double occurs in a game where, if played to conclusion, both players will win a mixture of single-games, gammons and backgammons. The effects of gammons and backgammons can be dealt with by introducing the following two variables for the player making the cube action decision (in this case, the player doubled: W Average cubeless value of games ultimately won L Average cubeless value of games ultimately lost Consequently, a take would risk L points to gain W + points. The minimum cubeless probability for a correct take (TP is therefore: TP ( L ( W + L ( L 0 5 ( W + L equation ( This formula is also applicable when the data considered represents effective game winning chances. Live-Cube Model The owner of the cube is guaranteed to use the cube with optimal efficiency if he redoubles, at which point his opponent will have an optional pass/take. All subsequent redoubles by either of the two players are similarly optimal. There are, in fact, an infinite number of different possible live cube models identifiable by the following two variable factors:

3 estimated, or just plain guessed at. The general form of these equations, given below again for clarity, allows a more elegant solution: TP dead ( L 0 5 ( W + L TP L 0 5 live ( W + L equation ( equation ( Notice that the only difference is in the equations denominators, with the live value having the additional bonus from cube-ownership, explained before. As this bonus represents the expected equity jump, it is proportional to the degree of cube-life of the position (and inversely proportional to its long-term volatility. Intermediate models can, therefore, be represented by a cube-life index, x, which varies between 0 0 (dead cube, maximum volatility and 0 (live-cube, zero volatility. The general form of equations ( and ( above is, therefore: TP general ( L 0 5 ( W + L + 0 5x equation (3 Clearly the value of x varies from position to position, and will commonly be different for both sides. Some of the important factors that determine its value include:. The distance from the target the further away from the optimal doubling point you are, the less likely you are to hit the bull s-eye.. The size of the target the size of the doubling window governs the size of the bull s-eye. 3. The relative movement between the shooter and the target the volatility of the position governs the likelihood of hitting the bull s-eye, or even finding it, for that matter. Finding accurate values for x is a difficult, almost impossible, task. However, we can make estimates of typical values for typical situations. In my opinion, for the majority of typical positions, x will commonly be between about and 3 4, with 3 being a normal value. Cube Action Tables To provide guidance on cube action, and to enable the reader to inspect the general results, the following tables are included: Tables a, b, c Cubeless take-points (for varying values of W and L for x values of 0 0 (dead, 0 (live, and 3 (normal. Tables a, b, c Cubeless take-equities (for varying values of W and L for x values of 0 0 (dead, 0 (live, and 3 (normal. Cubeless take-equities (E take are calculated from the following general formula: E TP W L L take + equation (4 3

4 Cubeless Take-Point Tables Table a Dead ( x Average % % 0 0% 8 % 6 7% cubeless % 30 0% 7 3% 5 0% 3 % loss % 36 4% 33 3% 30 8% 8 6% value % 4 7% 38 5% 35 7% 33 3% L % 46 % 4 9% 40 0% 37 5% Table b Live ( x Average % 8 % 6 7% 5 4% 4 3% cubeless 5 7 3% 5 0% 3 % 4% 0 0% loss % 30 8% 8 6% 6 7% 5 0% value % 35 7% 33 3% 3 3% 9 4% L % 40 0% 37 5% 35 3% 33 3% Table c Normal ( x Average 00 4% 9 4% 7 6% 6 % 5 0% cubeless 5 9 0% 6 5% 4 3% 5% 0 9% loss % 3 4% 30 0% 7 9% 6 % value % 37 5% 34 9% 3 6% 30 6% L % 4 9% 39 % 36 7% 34 6% 4

5 Cubeless Take-Equity Tables Table a Dead ( x Average cubeless loss value L Table b Live ( x Average cubeless loss value L Table c Normal ( x Average cubeless loss value L

6 Example Consider the following position, from the th game of the semi-finals match between Nack Ballard and Mike Senkiewicz at the Reno Masters in 986. Senkiewicz, trailing 9-0 in this 3-point match, gave an initial double, which Ballard passed. Bill Robertie, analysing this match in his book Reno Quiz, evaluates the pass as correct at this match score. What would the correct cube action be in a money game? Should White Take? Using Robertie s cubeless rollout figures: Black wins single-game: 47% Black wins gammon: 7% Black wins backgammon: % Black s total wins: 65% White wins single-game 3% White wins gammon: 4% White s total wins: 35% Black s cubeless equity: ppg Considering White s cube action, L ( ( ( and W 4 ( Dead-Cube (x 0 0 From equations ( and (4: ( TP E dead 0 39 and take clearly (

7 . Live-Cube (x 0 From equations ( and (4: TP live ( ( and E 0 75 ( take 3. Normal-Cube (x 3 From equations (3 and (4: ( TP 3 ( and 0 89 ( E take In the actual position, White, with 35% winning chances, can take for money, regardless of the cube model considered. Other Cube Action Decisions So far, only take-points have been considered. There are many other doubling decisions to consider when to redouble, when to beaver, etc. Correct cube-action can be established by comparing the resultant equities from the alternative cube positions owned (E O, unavailable (E U, and centred (E C : E [ O CV p W + L + 0 5x L] E [ U CV p W + L + 0 5x L 0 5x] equation (5 equation (6 E C 4CV ( 4 x [ p( W + L + 0 5x L 0 5x] equation (7 where C V cube-value (i.e., the stake-level p cubeless winning probability Note that equation (7 is not applicable if the Jacoby Rule is in operation. From manipulation of the above equations, the following table of formulae, covering the full range of cube-actions in money games, has been derived. Notice two particularly interesting features from this table:. In the live-cube model, when gammons and backgammons are active, it is never correct to double, as positions strong enough to double are also too good to double! This is understandable because the complete lack of volatility protects the double-out.. Assuming the Jacoby Rule is not in operation, then initial double-points are always lower than redouble-points. When the cube is dead or live, they coincide, but diverge 7

8 for intermediate values of cube-life. Maximum divergence occurs when x is about 0 57, and typically ranges between.00% (W, L and 3.75% (W, L. 8

9 Cube Action Formulae Cube Parameter Dead Cube Live Cube General Case ( x 0 0 ( x 0 x varies Take-point, TP ( L 0 5 ( W + L ( L 0 5 ( W + L ( L 0 5 ( W + L + 0 5x Beaver-point, BP L ( W + L L ( W + L L ( W + L + 0 5x Racoon-point, RP L ( W + L ( L ( W + L ( L + 0 5x ( W + L + 0 5x Initial double-point, ID (no Jacoby L ( W + L ( L + ( W + L x x ( L + ( x ( W + L + 0 5x Initial double-point, ID (Jacoby no beavers ( L 0 5 ( W + L ( L + ( W + L x x ( L + ( x k ( W + L + 0 5x where k ( W + L L 0 5( x L W + L ( x Initial double-point, ID (Jacoby with beavers ( L 0 5 ( W + L 0 5 ( L 0 5 ( W + L ( L + ( W + L k where 3 x x ( L + ( x k ( W + L + 0 5x ( W + L L 0 5( x L W + L 0 5( x k Redouble-point, RD L ( W + L ( L + ( W + L ( L + x ( W + L + 0 5x Cash-point, CP ( L ( W + L ( L + ( W + L ( L x ( W + L + 0 5x Too good point, TG ( L + ( W + L ( L + ( W + L ( L + ( W + L + 0 5x where W Average cubeless value of games ultimately won L Average cubeless value of games ultimately lost x Cube life index (0 0 for dead cube, 0 for live cube k Jacoby factor (no beavers k Jacoby factor (with beavers 9

10 Appendix : Miscellaneous Equity Relationships The various equities for the different cube positions may be expressed in terms of the cubelife index (x, cubeless probability of winning (p, and cubeless equity (E as follows: Cubeless Equity E p( W + L L Cube-owned Equity E C E + 0 5x p O Cube-unavailable Equity E C E 0 5x( p Cube-centred Equity E U C V V [ ] [ ] 4CV ( x E x p The cube-centred equity may also be expressed in terms of the cube-owned and cubeunavailable equities (with their respective C V values set at unity as follows: E 4 4 x 4 4 x 4 x ( E 0 5x ( E + 0 5x ( E + E C O U O U Note that the cube-centred equity formulae given above are not applicable if the Jacoby Rule is in operation. The cube-owned and cube-unavailable equities corresponding to the various cube-action points are shown by the following table: Cube Parameter Cube-owned Equity E O Cube-unavailable Equity E U Take-point 0 5C V 0 5( + x C V Beaver-point 0 0 5xC V Racoon-point xC V 0 Initial double-point (no Jacoby x ( 3 x + ( x C x + V ( 4 x C V Initial double-point [ ] x 3 x x 3 x CV k ( x + L( k V (Jacoby no beavers x Initial double-point [ ] [ ( + ( ] C k L k x 3 x x 3 x CV k ( x + L( k V (Jacoby with beavers x [ ( + ( ] C k L k Redouble-point +xc V +0 5xC V Cash-point + 0 5( + x C V +0 5C V Too good point +C V + ( 0 5x C V 0

11 Note that the above equities are independent of W and L apart for the initial double equities with the Jacoby Rule in operation. Also note that the cube-unavailable equity required for a redouble is the cube-life index (x multiplied by the stake of the redoubled cube (C V. Using 3 as a normal value for x, the required equities after doubling to are and 0 500, for redoubles and initial doubles (no Jacoby respectively. These values are fairly consistent with typical limiting values obtained from hand rollouts (generally minimum redoubles are between 0 6 and 0 7 ppg, and between 0 4 and 0 6 ppg for initial doubles. Consequently, 3 would appear to be a good estimate of the cube-life index. Appendix : Refined General Model A more rigorous analysis may be performed by considering different cube-life indices for both sides, which is what normally happens in practice. Let x and x be the cube-life indices for the player making the cube-action decision, and his opponent, respectively. Following a similar analysis as before, the equities from the alternative cube positions, owned (E O, unavailable (E U, and centred (E C, were derived: [ ( 0 5 ] E C p W + L + x L equation O (8 V [ ( ] E C p W + L + x L x equation (9 E U C V [ ( x + ( ] Q ( L + ( L + 0 5x CV p W L x Q L L x [ x ] equation (0 where ( W L 0 5x ( W + L + 0 5x Q + + x C V cube-value (i.e., the stake-level p cubeless winning chances The cube-centred-equity (E C, can also be estimated from the simpler, but more approximate, expression: E C 4C V ( xeo + xeu ( + [ 4 x x xx] equation ( where E O and E U are calculated from equations (8 and (9 above, with C V equal to 0 in both cases. Note that equations (0 and ( are not applicable if the Jacoby Rule is in operation. From manipulation of the above equations, the following table of cube-action formulae, allowing for different cube-life indices for both sides, has been derived:

12 Cube Action Formulae (Refined General Model Cube Parameter Take-point Beaver-point Racoon-point Initial-double point (no Jacoby where G x Refined General Model Formula ( x and x vary ( L 0 5 TP ( W + L + 0 5x L BP ( W + L + 0 5x ( L + 0 5x RP ( W + L + 0 5x ( L + 0 5x 0 5+ Gx ID ( W + L + 0 5x 0 5( W + L + 0 5x ( L + ( W + L + 0 5x ( L + 0 5x ( W + L + 0 5x alternatively, ID ( L + Hxx ( W + L + x 0 5x where H x ( 3 x ( 4 x Initial double-point (Jacoby no beavers Initial double-point (Jacoby with Beavers Redouble-point Cash-point Too Good point where where k k and ID k ID ( C ( W + L L 0 5( xc L W + L ( x x x W + x L C ( W + L ID k ID ( C ( W + L L 0 5( xc L W + L 0 5( x k ( L + x RD ( W + L + x 0 5x ( L + 0 5x CP ( W + L + 0 5x ( L + TG ( W + L + 0 5x

13 Appendix 3: Jacoby Rule Considerations The Jacoby Rule suppresses gammons and backgammons until the cube is first turned. Consequently, initial double points can be markedly different from the corresponding points where gammons and backgammons are active with a centred-cube. To help us to understand this general relationship, consider how the number of market-losing sequences required for an initial double varies: n N E + E P N equation ( where n is the minimum number of market-losing sequences required for a double, N is the (population size, commonly 96, occasionally 36, E P is the average favourable equity swing from the market-losing sequences, and E N is the average adverse equity swing from the non-market-losing sequences (always of positive value in this equation. With regard to the market losing sequences, the average equity with the cube turned is the same value regardless of Jacoby considerations as gammons are activated in either case. If the cube is not turned, however, the average equities can be different dependent on whether gammons are active or not (i.e., the position might become too good rather than just a cash. Accordingly, the positive equity swings can often be greater (never less when the Jacoby Rule is in operation than would be the case otherwise. Inspection of equation (3 shows that this has the net effect of reducing the number of market-losing sequences (and thus winning chances required for an initial double. With regard to the non-market-losing sequences, again there is no difference in the average equities with the cube turned. If the cube remained centred, you cannot become too good (otherwise you would have lost your market, but your opponent might! Consequently, the negative equity swings can often be greater (never less when the Jacoby Rule is operation, with the net effect of increasing the number of market-losers required for an initial double. What is the overall effect of the Jacoby Rule on initial doubling strategy? In general terms, you should be more aggressive with the cube than normal, when you are likely to win a greater proportion of gammons than your opponent (i.e., W exceeds L, and more conservative otherwise. Interestingly and significantly, where an aggressive policy is indicated, the prospect of the double being beavered (correctly has the effect of curbing that aggression. The degree of modification to initial cube action policy from normal is directly related to the tendency of a position to suddenly become too good, for either side. This tendency is roughly proportional to the volatility of the position. In the live cube model (zero volatility, the initial double point is unaffected by Jacoby considerations: it still coincides with the cash point, as the margin of market-loss is non-existent. In the dead-cube model (maximum volatility however, this effect is at its most extreme: complete market loss occurs for the winning side, and if he has any gammons his position will become too good. How, then can these effects and tendencies be incorporated into a general cube model? We can make a start by introducing the following general relationship: IDJ k ID equation (3 3

14 where ID J is the initial double-point with the Jacoby Rule in operation, k is a relational parameter, as yet undefined, which we ll call the Jacoby factor, and ID is the normal initial double-point. To define k, the following factors must be taken into account:. The limiting values of k at the extremities of the volatility spectrum (deadcube and live-cube models. These can be determined fairly readily.. Whether beavers are allowed or not. 3. The method by which intermediate volatility, and thus cube-life, is modelled, i.e., the basic general model (x, or the refined general model (x and x. Initially, the simpler basic general model will be considered, for the two beaver-cases, before the more complicated refined general model is tackled. Jacoby no Beavers The general relationship given in equation (3 above can be redefined for this specific case as follows: ID k ID equation (4 where ID is the initial double-point with the Jacoby Rule in operation and no beavers allowed, k is the Jacoby factor (no beavers, and ID is the normal initial double-point. When the cube is live (x 0, k is of unit value, as both initial double-points coincide with the cash-point. When the cube is dead, however, k has the following non-trivial value: k dead ( W + L( L 0 5 L( W + L equation (5 The following table shows how k dead varies with W and L. Jacoby Factor k ( x Average cubeless loss value L Notice some important features from this table:. For all positions where W is equal to L, there is no difference in initial doubling strategy from normal. 4

15 . For all positions where W exceeds L, initial doubling strategy with the Jacoby Rule in operation is more aggressive than normal, as it is beneficial to activate gammons. Note that in these positions it is correct to double even when your equity is negative! 3. For all positions where L exceeds W, initial doubling strategy with the Jacoby Rule in operation is more conservative than normal, as it is disadvantageous to activate gammons. Note that in these positions, greater equity is required for an initial double than a redouble (Latto s Paradox. Having defined k at the extremities of the volatility spectrum, it remains to formulate an algorithm for all intermediate values. The simplest expression which satisfies our limited criteria is given below: k ( W + L L 0 5( x L W + L ( x equation (6 This formula assumes a roughly linear relationship between the Jacoby factor and the cubelife index, which certainly seems reasonable. Besides, if the relationship is not linear, in which direction should it curve, and what should its curvature be? In the absence of any greater understanding, a more elaborate algorithm would serve no useful purpose. Even if a more accurate algorithm was available, it is unlikely that the greater precision afforded would be significant. The following table shows how k varies with W and L, for a typical position (x 3. Jacoby Factor k ( x Average cubeless loss value L Note that the maximum difference between the Jacoby and non-jacoby values is about 6%, and the greater differences occur when W exceeds L. Jacoby with Beavers The general relationship given in equation (3 above can be redefined for this specific case as follows: ID kid equation (7 where ID is the initial double-point with the Jacoby Rule in operation with beavers allowed, k is the Jacoby factor (with beavers, and ID is the normal initial double-point. When the 5

16 cube is live (x 0, k is of unit value, as both initial double-points coincide with the cashpoint. When the cube is dead, however, k must be the greater of either k dead (when beavering is wrong or the following expression: k ( W + L( L 0 5 L( W + L 0 5 dead dead k equation (8 The following table shows how k dead varies with W and L. Jacoby Factor k ( x Average cubeless loss value L Notice some important features from this table:. For all positions where W is equal to L, there is no difference in initial doubling strategy from normal.. For all positions where W exceeds L, initial doubling strategy with the Jacoby Rule in operation is more aggressive than normal, as it is beneficial to activate gammons. Note that in these positions it is correct to double even when your equity is negative, and it is correct for your opponent to beaver! These are pure Kauder paradox positions. 3. For all positions where L exceeds W, initial doubling strategy with the Jacoby Rule in operation is more conservative than normal, as it is disadvantageous to activate gammons. Note that in these positions, greater equity is required for an initial double than a redouble (Latto s Paradox. Also note that as beavering is incorrect in these positions, there is no difference from the no-beavers case. Having defined k at the extremities of the volatility spectrum, it remains to formulate an algorithm for all intermediate values. The simplest expression which satisfies our limited criteria is given below: k ( W + L L 0 5( x L W + L 0 5( x k equation (9 This formula assumes a roughly linear relationship between the Jacoby factor and the cubelife index, as does equation (6 for the no beavers case. As discussed previously, this assumption is certainly reasonable, and it is unlikely that the greater precision afforded by a more accurate algorithm would be significant, even were it available. 6

17 The following table shows how k varies with W and L, for a normal position (x 3. Jacoby Factor k ( x Average cubeless loss value L Note that the maximum difference between the Jacoby and non-jacoby values is about 3% (compared to 6% with the no-beavers case, and the differences are roughly proportional to the difference between W and L (i.e., W L. Jacoby and the Refined General Model When separate cube-life indices are considered for the player making the cube-action decision and his opponent (x and x respectively, the algorithms we require for k and k are slightly more difficult to formulate, as they must depend on both x and x. The simplest approach is to utilise the previously derived expressions for k and k by considering a composite value of x and x (x C which satisfies the following limiting criteria:. When x x then x x x C. Clearly when the refined general model simplifies to the basic general model, the basic model s expressions for k and k must still hold good.. When W then x x C. When you cannot win any gammons or backgammons, only your opponent can become too good. Consequently the initial double-point cannot be dependent on your volatility, and must, by elimination, be dependent on his. 3. When L then x x C. When your opponent cannot win any gammons or backgammons, only you can become too good. Consequently the initial double-point cannot be dependent on his volatility, and must, by elimination, be dependent on yours. The simplest expression which satisfies the above criteria is given below: x x W + x L C ( W + L equation (0 For the Jacoby no Beavers case, initial double points can be calculated from equation (4 and the suitably revised version of equation (6, both given below for clarity: ID k ID equation (4 7

18 k ( C ( W + L L 0 5( xc L W + L ( x equation ( where ID is calculated from the relevant equation in Appendix. For the Jacoby with Beavers case, initial double points can be calculated from equation (7 and the suitably revised version of equation (9, both given below for clarity: ID kid equation (7 k ( C ( W + L L 0 5( xc L W + L 0 5( x k equation ( As before, this analysis assumes roughly linear relationships between the Jacoby factors and the cube-life indices. This assumption is certainly reasonable, and it is unlikely that the greater precision afforded by a more accurate algorithm would be significant, even were it available. Cube-centred Equities No simple formula is available to calculate cube-centred equities, but we do know four points where the cubeless winning chances and corresponding equities are known. These are given below, in order of increasing probability (and equity: Point : The opponent s cash-point, where p ( L + 0 5x ( W + L + 0 5x and E C ppg If using the basic general model, substitute x for x. Point : The opponent s initial double-point, where [ ] p ID or ID and E p W + L + 0 5x L C If using the basic general model, substitute x Point 3: Your initial double-point, where for x. [ ] p ID or ID and E p W + L + 0 5x L 0 5x 3 C 3 3 If using the basic general model, substitute x Point 4: Your cash-point, where for x. 8

19 p ( L + ( W + L + 0 5x 4 and E C 4 + ppg If using the basic general model, substitute x for x. The cube-centred equity can then be estimated from a known cubeless probability by interpolation between the two known probabilities directly above and below it by using the following general formula: ( p n+ p EC En + En+ En p p Similarly, the cubeless probability can be estimated from a known cube-centred equity by interpolation between the two known cube-centred equities directly above and below it by using the following modified version of the same general formula: n+ ( E n+ EC + ( E E p p + p p n n n A more elaborate analysis could be carried out by fitting a polynomial curve through the four points, but the greater sophistication is unlikely to improve accuracy significantly. n+ n n Kauder Paradox Positions Kauder paradox positions occur when it is correct to give an initial double, yet the opponent should beaver. They arise because the Jacoby Rule occasionally allows the doubler to minimise his losses. The mathematical condition for a Kauder paradox is given below: RP p ID where RP is the racoon-point, p is the cubeless winning probability, and ID is the initial double-point. Similarly, the Kauder paradox window (KPW, can be expressed as: KPW RP ID If KPW is negative, then a Kauder paradox cannot occur. From the basic general cube-model, the following more detailed expression for the Kauder paradox window was readily established. KPW 3 x x [ L + 0 5x k( L + ( ] x ( W + L + 0 5x equation (3 Clearly, Kauder paradoxes are more likely to occur when the position is volatile (and thus x is small. The following table shows the limiting x values, calculated from equation (3, above which a Kauder paradox cannot occur, against values of W and L: Kauder Paradox Limiting x values Average cubeless 5 none loss 50 none none value 75 none none none

### 6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

1 Optimal Betting Spreads The tables of Optimal Betting Spreads, in Chapters 6-10 of The Brh Systems Book, contain all the information which a player requires to design Betting Schemes which fit their

### Introduction to the Rebate on Loss Analyzer Contact: JimKilby@usa.net 702-436-7954

Introduction to the Rebate on Loss Analyzer Contact: JimKilby@usa.net 702-436-7954 One of the hottest marketing tools used to attract the premium table game customer is the "Rebate on Loss." The rebate

### 6.042/18.062J Mathematics for Computer Science. Expected Value I

6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you

### Double Deck Blackjack

Double Deck Blackjack Double Deck Blackjack is far more volatile than Multi Deck for the following reasons; The Running & True Card Counts can swing drastically from one Round to the next So few cards

### Probability and Expected Value

Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are

### Probability, statistics and football Franka Miriam Bru ckler Paris, 2015.

Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups

### Pascal is here expressing a kind of skepticism about the ability of human reason to deliver an answer to this question.

Pascal s wager So far we have discussed a number of arguments for or against the existence of God. In the reading for today, Pascal asks not Does God exist? but Should we believe in God? What is distinctive

### REWARD System For Even Money Bet in Roulette By Izak Matatya

REWARD System For Even Money Bet in Roulette By Izak Matatya By even money betting we mean betting on Red or Black, High or Low, Even or Odd, because they pay 1 to 1. With the exception of the green zeros,

### Leverage and margin. Module 3 Introduction Programme. Leverage and margin

Module 3 Introduction Programme Leverage and margin This module explains leverage and gearing and compares spread bets with non-geared investments. Additionally, there are a number of worked examples of

### Chapter 21: The Discounted Utility Model

Chapter 21: The Discounted Utility Model 21.1: Introduction This is an important chapter in that it introduces, and explores the implications of, an empirically relevant utility function representing intertemporal

### MONEY MANAGEMENT. Guy Bower delves into a topic every trader should endeavour to master - money management.

MONEY MANAGEMENT Guy Bower delves into a topic every trader should endeavour to master - money management. Many of us have read Jack Schwager s Market Wizards books at least once. As you may recall it

### The power of money management

The power of money management One trader lost (\$3000) during the course of a year trading one contract of system A. Another trader makes \$25,000 trading the same system that year. One trader makes \$24,000

### TD-Gammon, A Self-Teaching Backgammon Program, Achieves Master-Level Play

TD-Gammon, A Self-Teaching Backgammon Program, Achieves Master-Level Play Gerald Tesauro IBM Thomas J. Watson Research Center P. O. Box 704 Yorktown Heights, NY 10598 (tesauro@watson.ibm.com) Abstract.

### FINANCIAL ECONOMICS OPTION PRICING

OPTION PRICING Options are contingency contracts that specify payoffs if stock prices reach specified levels. A call option is the right to buy a stock at a specified price, X, called the strike price.

### Arbs2U Is it right for me? 17 October 2014

17 October 2014 Contents Section 1 Preface... 3 Document Feedback... 3 Section 2 Introducing Arbitrage... 4 A brief discussion on Betting... 4 What is Arbitrage?... 5 What are the risks involved?... 7

### The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

### Week 7 - Game Theory and Industrial Organisation

Week 7 - Game Theory and Industrial Organisation The Cournot and Bertrand models are the two basic templates for models of oligopoly; industry structures with a small number of firms. There are a number

### Gaming the Law of Large Numbers

Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.

### Chapter 6: The Information Function 129. CHAPTER 7 Test Calibration

Chapter 6: The Information Function 129 CHAPTER 7 Test Calibration 130 Chapter 7: Test Calibration CHAPTER 7 Test Calibration For didactic purposes, all of the preceding chapters have assumed that the

### Students in their first advanced mathematics classes are often surprised

CHAPTER 8 Proofs Involving Sets Students in their first advanced mathematics classes are often surprised by the extensive role that sets play and by the fact that most of the proofs they encounter are

### International Statistical Institute, 56th Session, 2007: Phil Everson

Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: peverso1@swarthmore.edu 1. Introduction

### 11.3 BREAK-EVEN ANALYSIS. Fixed and Variable Costs

385 356 PART FOUR Capital Budgeting a large number of NPV estimates that we summarize by calculating the average value and some measure of how spread out the different possibilities are. For example, it

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### Investment Decision Analysis

Lecture: IV 1 Investment Decision Analysis The investment decision process: Generate cash flow forecasts for the projects, Determine the appropriate opportunity cost of capital, Use the cash flows and

### Factoring Polynomials

Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations

INTRODUCTION PROGRAMME MODULE 6 TRADING DISCIPLINE The final module in our introduction programme discusses the importance of discipline as a trading tool and covers a number of ways to maintain trading

### Rating Systems for Fixed Odds Football Match Prediction

Football-Data 2003 1 Rating Systems for Fixed Odds Football Match Prediction What is a Rating System? A rating system provides a quantitative measure of the superiority of one football team over their

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013)

Why is Insurance Good? An Example Jon Bakija, Williams College (Revised October 2013) Introduction The United States government is, to a rough approximation, an insurance company with an army. 1 That is

### How to Perform a Break-Even Analysis in a Retail Store A Step by Step Guide

How to Perform a Break-Even Analysis in a Retail Store A Step by Step Guide By BizMove Management Training Institute Other free books by BizMove that may interest you: Free starting a business books Free

### PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be

Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our

### 90/30 Degree Rule Follow-up Part I

David Alciatore, PhD ( Dr. Dave ) ILLUSTRATED PRINCIPLES 90/30 Degree Rule Follow-up Part I Note: Supporting narrated video (NV) demonstrations, high-speed video (HSV) clips, and technical proofs (TP)

### Number Patterns, Cautionary Tales and Finite Differences

Learning and Teaching Mathematics, No. Page Number Patterns, Cautionary Tales and Finite Differences Duncan Samson St Andrew s College Number Patterns I recently included the following question in a scholarship

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

### Bonus Maths 2: Variable Bet Sizing in the Simplest Possible Game of Poker (JB)

Bonus Maths 2: Variable Bet Sizing in the Simplest Possible Game of Poker (JB) I recently decided to read Part Three of The Mathematics of Poker (TMOP) more carefully than I did the first time around.

### Sampling Distributions and the Central Limit Theorem

135 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 10 Sampling Distributions and the Central Limit Theorem In the previous chapter we explained

### SCRATCHING THE SURFACE OF PROBABILITY. Robert J. Russell, University of Paisley, UK

SCRATCHING THE SURFACE OF PROBABILITY Robert J. Russell, University of Paisley, UK Scratch cards are widely used to promote the interests of charities and commercial concerns. They provide a useful mechanism

### (Refer Slide Time: 00:00:56 min)

Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology, Delhi Lecture No # 3 Solution of Nonlinear Algebraic Equations (Continued) (Refer Slide

### The Reinvestment Assumption Dallas Brozik, Marshall University

The Reinvestment Assumption Dallas Brozik, Marshall University Every field of study has its little odd bits, and one of the odd bits in finance is the reinvestment assumption. It is an artifact of the

### ATTITUDE TO RISK. In this module we take a look at risk management and its importance. MODULE 5 INTRODUCTION PROGRAMME NOVEMBER 2012, EDITION 18

INTRODUCTION PROGRAMME MODULE 5 ATTITUDE TO RISK In this module we take a look at risk management and its importance. NOVEMBER 2012, EDITION 18 CONTENTS 3 6 RISK MANAGEMENT 2 In the previous module we

### Introduction to Diophantine Equations

Introduction to Diophantine Equations Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles September, 2006 Abstract In this article we will only touch on a few tiny parts of the field

INTRODUCTION PROGRAMME MODULE 6 SPREAD BETTING DISCIPLINE The final module in our programme discusses the importance of discipline as a spread betting tool and covers a number of ways to maintain that

### THE ROULETTE BIAS SYSTEM

1 THE ROULETTE BIAS SYSTEM Please note that all information is provided as is and no guarantees are given whatsoever as to the amount of profit you will make if you use this system. Neither the seller

### TABLE OF CONTENTS. ROULETTE FREE System #1 ------------------------- 2 ROULETTE FREE System #2 ------------------------- 4 ------------------------- 5

IMPORTANT: This document contains 100% FREE gambling systems designed specifically for ROULETTE, and any casino game that involves even money bets such as BLACKJACK, CRAPS & POKER. Please note although

### Inventory Decision-Making

Management Accounting 195 Inventory Decision-Making To be successful, most businesses other than service businesses are required to carry inventory. In these businesses, good management of inventory is

### Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans

Life Cycle Asset Allocation A Suitable Approach for Defined Contribution Pension Plans Challenges for defined contribution plans While Eastern Europe is a prominent example of the importance of defined

### Mathematical Induction with MS

Mathematical Induction 2008-14 with MS 1a. [4 marks] Using the definition of a derivative as, show that the derivative of. 1b. [9 marks] Prove by induction that the derivative of is. 2a. [3 marks] Consider

### Sequences with MS

Sequences 2008-2014 with MS 1. [4 marks] Find the value of k if. 2a. [4 marks] The sum of the first 16 terms of an arithmetic sequence is 212 and the fifth term is 8. Find the first term and the common

### An Unconvered Roulette Secret designed to expose any Casino and make YOU MONEY spin after spin! Even in the LONG Run...

An Unconvered Roulette Secret designed to expose any Casino and make YOU MONEY spin after spin! Even in the LONG Run... The UNFAIR Casino advantage put BACK into the HANDS of every Roulette player! INTRODUCTION...2

### FX Martingale Pilot Manual

C O D I N G T R A D E R. C O M FX Martingale Pilot Manual Version 1.00 Table of Contents FX Martingale Pilot... 2 Martingale System in Trading... 3 Installation... 4 How does FX Martingale Pilot works...

### Using simulation to calculate the NPV of a project

Using simulation to calculate the NPV of a project Marius Holtan Onward Inc. 5/31/2002 Monte Carlo simulation is fast becoming the technology of choice for evaluating and analyzing assets, be it pure financial

### FACT A computer CANNOT pick numbers completely at random!

1 THE ROULETTE BIAS SYSTEM Please note that all information is provided as is and no guarantees are given whatsoever as to the amount of profit you will make if you use this system. Neither the seller

7 Golden Rules to Help You Pick Winning Horses Steve Smith-Eccles INNER CIRCLE By Steve Smith-Eccles www.ssespecialreport.com Steve Smith-Eccles INNER CIRCLE STRAIGHT FROM THE JOCKEY S MOUTH! 7 Golden

### The Two Envelopes Problem

1 The Two Envelopes Problem Rich Turner and Tom Quilter The Two Envelopes Problem, like its better known cousin, the Monty Hall problem, is seemingly paradoxical if you are not careful with your analysis.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### A Review of Indexed Universal Life Considerations

Life insurance due care requires an understanding of the factors that impact policy performance and drive product selection. D U E C A R E B U L L E T I N A Review of Indexed Universal Life Considerations

### Expected Value and the Game of Craps

Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

### Game Theory and Poker

Game Theory and Poker Jason Swanson April, 2005 Abstract An extremely simplified version of poker is completely solved from a game theoretic standpoint. The actual properties of the optimal solution are

### Lay Betting Selection System. Strike Rate!!

Strike Rate!! Introduction Firstly, congratulations of becoming an owner of this fantastic selection system. You ll find it difficult to find a system that can produce so many winners at such low liability.

### P (A) = lim P (A) = N(A)/N,

1.1 Probability, Relative Frequency and Classical Definition. Probability is the study of random or non-deterministic experiments. Suppose an experiment can be repeated any number of times, so that we

### SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION. School of Mathematical Sciences. Monash University, Clayton, Victoria, Australia 3168

SOME ASPECTS OF GAMBLING WITH THE KELLY CRITERION Ravi PHATARFOD School of Mathematical Sciences Monash University, Clayton, Victoria, Australia 3168 In this paper we consider the problem of gambling with

### WORKING DRAFT. Chapter 5 - Transfer Pricing Methods (Transactional Profit Methods) 1. Introduction

This is a working draft of a Chapter of the Practical Manual on Transfer Pricing for Developing Countries and should not at this stage be regarded as necessarily reflecting finalised views of the UN Committee

### LOOKING FOR A GOOD TIME TO BET

LOOKING FOR A GOOD TIME TO BET LAURENT SERLET Abstract. Suppose that the cards of a well shuffled deck of cards are turned up one after another. At any time-but once only- you may bet that the next card

### Combining player statistics to predict outcomes of tennis matches

IMA Journal of Management Mathematics (2005) 16, 113 120 doi:10.1093/imaman/dpi001 Combining player statistics to predict outcomes of tennis matches TRISTAN BARNETT AND STEPHEN R. CLARKE School of Mathematical

### Notes on Factoring. MA 206 Kurt Bryan

The General Approach Notes on Factoring MA 26 Kurt Bryan Suppose I hand you n, a 2 digit integer and tell you that n is composite, with smallest prime factor around 5 digits. Finding a nontrivial factor

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Mathematical Induction

Chapter 2 Mathematical Induction 2.1 First Examples Suppose we want to find a simple formula for the sum of the first n odd numbers: 1 + 3 + 5 +... + (2n 1) = n (2k 1). How might we proceed? The most natural

### Evaluating Trading Systems By John Ehlers and Ric Way

Evaluating Trading Systems By John Ehlers and Ric Way INTRODUCTION What is the best way to evaluate the performance of a trading system? Conventional wisdom holds that the best way is to examine the system

### Computational Finance Options

1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to

### Infinitely Repeated Games with Discounting Ù

Infinitely Repeated Games with Discounting Page 1 Infinitely Repeated Games with Discounting Ù Introduction 1 Discounting the future 2 Interpreting the discount factor 3 The average discounted payoff 4

### Lab 11. Simulations. The Concept

Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

### Time Value of Money. Critical Equation #10 for Business Leaders. (1+R) N et al. Overview

Time Value of Money Critical Equation #10 for Business Leaders (1+R) N et al. Overview The time value of money is fundamental to all aspects of business decision-making. Consider the following: Would you

### Time Value of Money Dallas Brozik, Marshall University

Time Value of Money Dallas Brozik, Marshall University There are few times in any discipline when one topic is so important that it is absolutely fundamental in the understanding of the discipline. The

### Unit 19: Probability Models

Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,

### Minesweeper as a Constraint Satisfaction Problem

Minesweeper as a Constraint Satisfaction Problem by Chris Studholme Introduction To Minesweeper Minesweeper is a simple one player computer game commonly found on machines with popular operating systems

BREAK-EVEN ANALYSIS In your business planning, have you asked questions like these? How much do I have to sell to reach my profit goal? How will a change in my fixed costs affect net income? How much do

### Decision Theory. 36.1 Rational prospecting

36 Decision Theory Decision theory is trivial, apart from computational details (just like playing chess!). You have a choice of various actions, a. The world may be in one of many states x; which one

### Copyrighted Material. Chapter 1 DEGREE OF A CURVE

Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two

### How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets!

How To Increase Your Odds Of Winning Scratch-Off Lottery Tickets! Disclaimer: All of the information inside this report reflects my own personal opinion and my own personal experiences. I am in NO way

### ForexIndicator.org. Presents. Written By Kelvin Lee

ForexIndicator.org Presents Written By Kelvin Lee All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,

### arxiv:1112.0829v1 [math.pr] 5 Dec 2011

How Not to Win a Million Dollars: A Counterexample to a Conjecture of L. Breiman Thomas P. Hayes arxiv:1112.0829v1 [math.pr] 5 Dec 2011 Abstract Consider a gambling game in which we are allowed to repeatedly

### Risk vs. Reward: A recipe for success

Risk vs. Reward: Key for trading longevity Trading the financial markets is as much about capital preservation as it is about capital appreciation. Successful traders will tell you that before placing

### Whether you re new to trading or an experienced investor, listed stock

Chapter 1 Options Trading and Investing In This Chapter Developing an appreciation for options Using option analysis with any market approach Focusing on limiting risk Capitalizing on advanced techniques

### A Shortcut to Calculating Return on Required Equity and It s Link to Cost of Capital

A Shortcut to Calculating Return on Required Equity and It s Link to Cost of Capital Nicholas Jacobi An insurance product s return on required equity demonstrates how successfully its results are covering

### Unit 12: Introduction to Factoring. Learning Objectives 12.2

Unit 1 Table of Contents Unit 1: Introduction to Factoring Learning Objectives 1. Instructor Notes The Mathematics of Factoring Teaching Tips: Challenges and Approaches Additional Resources Instructor

### WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?

WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly

### Module 5. Attitude to risk. In this module we take a look at risk management and its importance. TradeSense Australia, June 2011, Edition 10

Attitude to risk Module 5 Attitude to risk In this module we take a look at risk management and its importance. TradeSense Australia, June 2011, Edition 10 Attitude to risk In the previous module we looked

### MODULE 4 MODULE 4 INTRODUCTION PROGRAMME LEVERAGE AND MARGIN

INTRODUCTION PROGRAMME MODULE 4 LEVERAGE AND MARGIN This module explains leverage and gearing and compares CFDs with non-geared investments. Additionally, there are a number of worked examples of how our

### 1. Overconfidence {health care discussion at JD s} 2. Biased Judgments. 3. Herding. 4. Loss Aversion

In conditions of laissez-faire the avoidance of wide fluctuations in employment may, therefore, prove impossible without a far-reaching change in the psychology of investment markets such as there is no

### Phantom bonuses. November 22, 2004

Phantom bonuses November 22, 2004 1 Introduction The game is defined by a list of payouts u 1, u 2,..., u l, and a list of probabilities p 1, p 2,..., p l, p i = 1. We allow u i to be rational numbers,

### Chapter Four: How to Collaborate and Write With Others

Chapter Four: How to Collaborate and Write With Others Why Collaborate on Writing? Considering (and Balancing) the Two Extremes of Collaboration Peer Review as Collaboration * A sample recipe for how peer

### Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola

Further Topics in Actuarial Mathematics: Premium Reserves Matthew Mikola April 26, 2007 Contents 1 Introduction 1 1.1 Expected Loss...................................... 2 1.2 An Overview of the Project...............................