Measuring Temperature

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Measuring Temperature The standard metric unit of temperature is the degree Celsius ( C). Water freezes at 0 C. Water boils at 100 C. The Fahrenheit scale is used only in the United States.

2 Why Do We Need Temperature Scales? Our sense of how hot or cold something feels cannot be trusted. Try this! Put one hand in hot water and the other in cold. Then put them both into the same container of warm water. Conflicting messages will be sent to your brain.

3 Absolute Zero When a gas is held at constant pressure and is cooled, its volume decreases by 1/273 for each 1 C the temperature goes down. By the time you'd get down to a temperature of -273 C, the volume would decrease to zero. Therefore, -273 C must be the coldest possible temperature. We call it absolute zero.

4 The Kelvin Scale The zero point on the Kelvin temperature scale is absolute zero. In this way, there are no negative numbers on the Kelvin scale. Scale divisions on the Kelvin scale are identical in size to those on the Celsius scale.

5 Heat and Temperature Heat and temperature are not the same thing. Temperature is related to the average kinetic energy of moving molecules. The faster the molecules move, the higher the temperature.

6 Heat and Temperature Heat depends on temperature, but also on the mass of the object, and its heat capacity. Even though Lake Ontario is at a colder temperature than your cup of coffee, it contains a lot more heat. The reason is that Lake Ontario is so much bigger (more massive) than your morning beverage.

7 Thermodynamics The first law of thermodynamics states that the heat added to a system will show up as an increase in the system's internal energy plus any external work done by the system. A good example of this would be an automobile engine.

8 2 nd Law of Thermodynamics Heat always flows spontaneously from an area of higher temperature to an an area of lower temperature. (Never the other way around.) In picture (a) the cup holds hot coffee; in picture (b) the cup holds ice water.

9 Thermodynamics The Second Law of Thermodynamics Stated as the Law of Heat Engines: Any cyclic process that uses thermal energy to do work must also have a thermal energy exhaust. In other words, heat engines are always less than 100% efficient at using thermal energy to do work.

10 Thermodynamics All heat engines depend on the spontaneous flow of thermal energy from high temperature to low temperature. There is a limit to how efficient heat engines can be. Their efficiency is theoretically restricted to 60% or less.

11 Thermodynamics Sometimes, the waste heat can be (partially) made use of. An example: A steam-electric power generation plant can make use of its waste thermal energy to heat buildings. It can even be sold to nearby property owners for heating. This is called cogeneration. Waste heat from your car's engine is used to heat the interior of your car on a cold winter day!

12 Things Run Down The 2 nd law of Thermodynamics applies to more than just heat engines. When a pendulum swings, each swing is a little lower and slower than the last. Friction keeps shaving off some of its PE and KE and turning it into waste thermal energy which dissipates.

13 The Laws of Thermodynamics & Us When we use the earth's energy resources, we do not decrease the earth's total energy. This is just another way of stating the Law of Conservation of Energy. Instead, we are changing highly useful forms of energy into less useful forms. And this restates the 2 nd Law of Thermodynamics.

14 Entropy Suppose a box full of hot gas is touched to a box full of cold gas. cold hot Thermal energy will flow from the high temperature box to the low temperature box. What will it look like after this has happened?

15 Entropy After some time has passed, the temperatures will equalize. The boxes will now look like this: The fast and slow moving molecules are no longer segregated. They are mixed. Did the molecules actually move from one box to the other?

16 Entropy This was the more organized state. This is the more disorganized state. The amount of disorganization is called entropy.

17 Entropy The 2 nd Law of Thermodynamics stated as the Law of Entropy: The total entropy (or microscopic disorganization) of the participants in any physical process cannot decrease during that process, but it can increase. That's not to say that you can't create a little more order in some part of your world, but the price you pay is to create more disorder somewhere else.

18 Entropy In other words, disorganization or randomness must increase.

19 Specific Heat Capacity Different substances have different thermal capacities for storing energy. A substance with a low specific heat, (like the pie crust) heats up quickly and cools down quickly because it required little energy to change its temperature. On the other hand, the filling has a high specific heat and is still too hot to eat!

20 Calculating Heat ΔQ Q = c m ΔT Heat gained or lost mass Specific Heat Capacity temperature change Heat energy is measured in Joules.

21 Thermal Expansion As the temperature of most substances increases, its molecules move faster and farther apart. Most substances expand when heated and contract when cooled. Extreme heat on a July day caused the buckling of these railroad tracks.

22 Thermal Expansion Brass expands more when heated than iron does, and it contracts more when cooled. Because of this behavior, the strip bends. Bi-metallic strips like these are used in thermostats.

23 Water as an Exception Most liquids contract when they turn solid. Water actually expands when it turns to ice. As a result, ice floats on liquid water. background image from photosharingforum.com

Temperature. Temperature

Chapter 8 Temperature Temperature a number that corresponds to the warmth or coldness of an object measured by a thermometer is a per-particle property no upper limit definite limit on lower end Temperature

2. Room temperature: C. Kelvin. 2. Room temperature:

Temperature I. Temperature is the quantity that tells how hot or cold something is compared with a standard A. Temperature is directly proportional to the average kinetic energy of molecular translational

Preview of Period 5: Thermal Energy, the Microscopic Picture

Preview of Period 5: Thermal Energy, the Microscopic Picture 5.1 Temperature and Molecular Motion What is evaporative cooling? 5.2 Temperature and Phase Changes How much energy is required for a phase

Temperature Scales. temperature scales Celsius Fahrenheit Kelvin

Ch. 10-11 Concept Ch. 10 #1, 3, 7, 8, 9, 11 Ch11, # 3, 6, 11 Problems Ch10 # 3, 5, 11, 17, 21, 24, 25, 29, 33, 37, 39, 43, 47, 59 Problems: CH 11 # 1, 2, 3a, 4, 5, 6, 9, 13, 15, 22, 25, 27, 28, 35 Temperature

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

Section 7. Laws of Thermodynamics: Too Hot, Too Cold, Just Right. What Do You See? What Do You Think? Investigate.

Chapter 6 Electricity for Everyone Section 7 Laws of Thermodynamics: Too Hot, Too Cold, Just Right What Do You See? Learning Outcomes In this section, you will Assess experimentally the final temperature

Thermodynamics is the study of heat. It s what comes into play when you drop an ice cube

Chapter 12 You re Getting Warm: Thermodynamics In This Chapter Converting between temperature scales Working with linear expansion Calculating volume expansion Using heat capacities Understanding latent

Chapter 10 Study Questions

Chapter 10 Study Questions Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following temperatures is the lowest? a. 100ºC c.

Chapter 10: Temperature and Heat

Chapter 10: Temperature and Heat 1. The temperature of a substance is A. proportional to the average kinetic energy of the molecules in a substance. B. equal to the kinetic energy of the fastest moving

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY. Calorimetry

PARADISE VALLEY COMMUNITY COLLEGE PHYSICS 101 - INTRODUCTION TO PHYSICS LABORATORY Calorimetry Equipment Needed: Large styrofoam cup, thermometer, hot water, cold water, ice, beaker, graduated cylinder,

LESSON CLUSTER 6 Heating and Cooling, Expansion and Contraction

LESSON CLUSTER 6 Heating and Cooling, Expansion and Contraction Lesson 6.1: Another Way to Make Something Dissolve Faster In the last lesson you learned one way to make things dissolve faster: you can

Exam 4 -- PHYS 101. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Exam 4 -- PHYS 101 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A steel tape measure is marked such that it gives accurate measurements

Lecture 36 (Walker 18.8,18.5-6,)

Lecture 36 (Walker 18.8,18.5-6,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:10-4:00, TH230 Review Session: Monday, 3:10-4:00, TH230 Solutions to practice Lecture 36 final on

Does the temperature of water effect how fast the water freezes and does a lid make the freezing process faster?

Does the temperature of water effect how fast the water freezes and does a lid make the freezing process faster? Aim: To find out if what temperature water will freeze the fastest. Secondly whether a lid

Thermodynamics AP Physics B. Multiple Choice Questions

Thermodynamics AP Physics B Name Multiple Choice Questions 1. What is the name of the following statement: When two systems are in thermal equilibrium with a third system, then they are in thermal equilibrium

Second Law of Thermodynamics

Thermodynamics T8 Second Law of Thermodynamics Learning Goal: To understand the implications of the second law of thermodynamics. The second law of thermodynamics explains the direction in which the thermodynamic

Thermodynamics. Thermodynamics 1

Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

Laws of Thermodynamics

Laws of Thermodynamics Thermodynamics Thermodynamics is the study of the effects of work, heat, and energy on a system Thermodynamics is only concerned with macroscopic (large-scale) changes and observations

HNRS 227 Fall 2008 Chapter 4. Do You Remember These? iclicker Question. iclicker Question. iclicker Question. iclicker Question

HNRS 227 Fall 2008 Chapter 4 Heat and Temperature presented by Prof. Geller Do You Remember These? Units of length, mass and time, and metric Prefixes Density and its units The Scientific Method Speed,

Esystem = 0 = Ein Eout

AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

ES 106 Laboratory # 2 HEAT AND TEMPERATURE

ES 106 Laboratory # 2 HEAT AND TEMPERATURE Introduction Heat transfer is the movement of heat energy from one place to another. Heat energy can be transferred by three different mechanisms: convection,

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

Chapter 6: Entropy and the Laws of Thermodynamics

Chapter 6: Entropy and the Laws of Thermodynamics Goals of Period 6 Section 6.1: To examine order, disorder and entropy Section 6.2: To discuss conservation of energy and the first law of thermodynamics

Thermal Energy OBJECTIVES

10 Thermal Energy You are aware that energy is required for all types of activities. In the previous lesson you have learnt about mechanical form of energy. Heat is also a form of energy, called thermal

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

Temperature, Expansion, Ideal Gas Law

Temperature, Expansion, Ideal Gas Law Physics 1425 Lecture 30 Michael Fowler, UVa Everything s Made of Atoms This idea was only fully accepted about 100 years ago in part because of Einstein s analysis

Esystem = 0 = Ein Eout

AGENDA: I. Introduction to Thermodynamics II. First Law Efficiency III. Second Law Efficiency IV. Property Diagrams and Power Cycles V. Additional Material, Terms, and Variables VI. Practice Problems I.

The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used.

TEKS 5.5B The student knows that matter has measurable physical properties and those properties determine how matter is classified, changed, and used. The student is expected to: (B) identify the boiling

KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

Chemistry 51 Chapter 2 ENERGY & HEAT

ENERGY & HEAT Energy is defined as the capacity of matter to do work. There are two types of energy: 1. Potential (stored) 2. Kinetic (moving) Energy possesses many forms (chemical, electrical, thermal,

LESSON CLUSTER 7 Explaining Melting and Solidifying

LESSON CLUSTER 7 Explaining Melting and Solidifying Lesson 7.1: Melting Ice and Freezing Water Do you remember the first experiment you did in this unit? It was an ice melting race. You learned then about

Thermodynamics and Equilibrium

Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).

Reversible & Irreversible Processes

Reversible & Irreversible Processes Example of a Reversible Process: Cylinder must be pulled or pushed slowly enough (quasistatically) that the system remains in thermal equilibrium (isothermal). Change

Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

Chapter 18 The Micro/Macro Connection

Chapter 18 The Micro/Macro Connection Chapter Goal: To understand a macroscopic system in terms of the microscopic behavior of its molecules. Slide 18-2 Announcements Chapter 18 Preview Slide 18-3 Chapter

3.3 Phase Changes Charactaristics of Phase Changes phase change

When at least two states of the same substance are present, scientists describe each different state as a phase. A phase change is the reversible physical change that occurs when a substance changes from

Heat and Temperature. Temperature Scales. Thermometers and Temperature Scales

Heat and Temperature Thermometers and Temperature Scales The mercury-based one you see here relies on the fact that mercury expands at a predictable rate with temperature. The scale of the thermometer

A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

Energy. Work. Potential Energy. Kinetic Energy. Learning Check 2.1. Energy. Energy. makes objects move. makes things stop. is needed to do work.

Chapter 2 Energy and Matter Energy 2.1 Energy Energy makes objects move. makes things stop. is needed to do work. 1 2 Work Potential Energy Work is done when you climb. you lift a bag of groceries. you

Physics 2326 - Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics

Serway/Jewett: PSE 8e Problems Set Ch. 22-1 Physics 2326 - Assignment No: 3 Chapter 22 Heat Engines, Entropy and Second Law of Thermodynamics Objective Questions 1. A steam turbine operates at a boiler

2.0 Heat affects matter in different ways

2.0 Heat affects matter in different ways 2.1 States of Matter and The Particle Model of Matter Matter is made up of tiny particles and exists in three states: solid, liquid and gas. The Particle Model

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Sample Mid-Term 3 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If you double the frequency of a vibrating object, its period A) is quartered.

Chemical system. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C.

Chemical system a group of molecules that can react with one another. Chemical reaction A rearrangement of bonds one or more molecules becomes one or more different molecules A + B C Reactant(s) Product(s)

Final Exam Review Questions PHY Final Chapters

Final Exam Review Questions PHY 2425 - Final Chapters Section: 17 1 Topic: Thermal Equilibrium and Temperature Type: Numerical 12 A temperature of 14ºF is equivalent to A) 10ºC B) 7.77ºC C) 25.5ºC D) 26.7ºC

Chapter 2 Student Reading Atoms and molecules are in motion We warm things up and cool things down all the time, but we usually don t think much about what s really happening. If you put a room-temperature

Chapter 4: Transfer of Thermal Energy

Chapter 4: Transfer of Thermal Energy Goals of Period 4 Section 4.1: To define temperature and thermal energy Section 4.2: To discuss three methods of thermal energy transfer. Section 4.3: To describe

Chapter 17 States of Matter

Chapter 17 States of Matter Section 17.1 Solids, Liquids, and Gases Terms: States of matter Kinetic Theory of Matter Crystal Plasma Thermal Expansion After swimming on a hot day, Eli was having a refreshing

February 3, 2012 1. Pick up your calculations and your lab sheet. 2. Have your temperature calculations out. 1. The average daytime temperature on Venus is 453 C. What is this temperature in degrees Fahrenheit

Test Bank - Chapter 6 Multiple Choice

Test Bank - Chapter 6 The questions in the test bank cover the concepts from the lessons in Chapter 6. Select questions from any of the categories that match the content you covered with students. The

same number of particles as every cubic centimeter of air outside the bottle.

Particles A ir is matter. It has mass and occupies space. Air is a mixture of many gases. Air is approximately four-fifths nitrogen and one-fifth oxygen. All the other gases, including carbon dioxide and

Practice Test. 4) The planet Earth loses heat mainly by A) conduction. B) convection. C) radiation. D) all of these Answer: C

Practice Test 1) Increase the pressure in a container of oxygen gas while keeping the temperature constant and you increase the A) molecular speed. B) molecular kinetic energy. C) Choice A and choice B

Chapter 15: Thermodynamics

Chapter 15: Thermodynamics The First Law of Thermodynamics Thermodynamic Processes (isobaric, isochoric, isothermal, adiabatic) Reversible and Irreversible Processes Heat Engines Refrigerators and Heat

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

Chapter 3 Temperature and Heat

Chapter 3 Temperature and Heat In Chapter, temperature was described as an intensive property of a system. In common parlance, we understand temperature as a property which is related to the degree of

Calorimetry - Specific Heat and Latent Heat

Chapter 3 Calorimetry - Specific Heat and Latent Heat Name: Lab Partner: Section: 3.1 Purpose The purpose of this experiment is to study the relationship between heat and temperature. Calorimetry will

Chapter 11 Heat Engines and the. Thermodynamics

Chapter 11 Heat Engines and the Second Law of Thermodynamics The laws of thermodynamics...are critical to making intelligent choices about energy in today s global economy. What Is a Heat Engine? How do

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

Chapter 3, Lesson 6: Temperature Affects Density

Chapter 3, Lesson 6: Temperature Affects Density Key Concepts Heating a substance causes molecules to speed up and spread slightly further apart, occupying a larger volume that results in a decrease in

1.1 Thermodynamics and Energy

1.1 Thermodynamics and Energy What is Thermodynamics? Essentially, thermodynamics can be defined as the study of energy. Granted, this is a pretty broad definition, which suits it well, because thermodynamics

The Heat-Retaining Properties of Water and Soil

The Heat-Retaining Properties of Water and Soil Topic Water has the ability to retain heat longer than soil. Introduction Have you ever stepped outside on a cold morning to find the ground beneath you

Water to Vapor; Water to Ice The Process Is Amazing

Science Project Idea 8 th -Grade Energy Water to Vapor; Water to Ice The Process Is Amazing Setting the Scene: Holding On To Heat If you leave a cup of cold water on a counter, it will warm up very quickly.

Final Exam. Wednesday, December 10. 1:30 4:30 pm. University Centre Rooms

16.102 Final Exam Wednesday, December 10 1:30 4:30 pm University Centre Rooms 210 224 30 questions, multiple choice The whole course, equal weighting Formula sheet provided 26 Lab and Tutorial Marks Final

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 10 Second Law and Available Energy - I Good morning, I welcome you to this

SAM Teachers Guide Heat and Temperature

SAM Teachers Guide Heat and Temperature Overview Students learn that temperature measures average kinetic energy, and heat is the transfer of energy from hot systems to cold systems. They consider what

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

Page 1. Set of values that describe the current condition of a system, usually in equilibrium. What is a state?

What is a state? Set of values that describe the current condition of a system, usually in equilibrium Is this physics different than what we have learned? Why do we learn it? How do we make the connection

The Sun and Water Cycle

reflect Have you ever jumped in a puddle or played in the rain? If so, you know you can get very wet. What you may not know is that a dinosaur could have walked through that same water millions of years

ConcepTest 17.1Degrees

ConcepTest 17.1Degrees Which is the largest unit: one Celsius degree, one Kelvin degree, or one Fahrenheit degree? 1) one Celsius degree 2) one Kelvin degree 3) one Fahrenheit degree 4) both one Celsius

HEAT. Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot.

HEAT Heat is measured in Joules, (J). Heat is a form of Energy and can do work. Expansion happens when objects get hot. Contraction happens when objects get cold. Advantages: Thermometers use expanding

Energy in Thermal Processes: The First Law of Thermodynamics

Energy in Thermal Processes: The First Law of Thermodynamics 1. An insulated container half full of room temperature water is shaken vigorously for two minutes. What happens to the temperature of the water?

1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it an

Using role-play to demonstrate ideas of particle theory and address common misconceptions

Using role-play to demonstrate ideas of particle theory and address common misconceptions 15 minutes Task D Slide 2.8 Show slide 2.8 to introduce task D. Task D Using role-play to demonstrate ideas of

Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. )

Phys214 exam#2 (30 problems in total. 5 points each, total 150 points. ) 1. An oil tanker heading due west, straight into a strong wind, reaches a speed of 5 m/s and then shuts down its engines to drift.

KINDERGARTEN WATER 1 WEEK LESSON PLANS AND ACTIVITIES

KINDERGARTEN WATER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF KINDERGARTEN WEEK 1. PRE: Defining the states of matter. LAB: Discovering the properties of water. POST: Analyzing the water

Temperature and Heat. Chapter 17. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Chapter 17 Temperature and Heat PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_17_2012 Topics for Chapter 17

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

Sixth Grade Energy, Heat, and Energy Transfer Assessment

Sixth Grade Energy, Heat, and Energy Transfer Assessment 1a. Which of the following is not one of the six forms of energy? Circle the answer. electrical chemical petroleum wave (light, sound) mechanical

Thermodynamic Systems

Student Academic Learning Services Page 1 of 18 Thermodynamic Systems And Performance Measurement Contents Thermodynamic Systems... 2 Defining the System... 2 The First Law... 2 Thermodynamic Efficiency...

Procedure. Day 1 - Calibration of the Calorimeter. (Part I) The Heat Capacity of the Calorimeter.

Thermochemistry Experiment 10 Thermochemistry is the study of the heat energy involved in chemical reactions and changes of physical state. Heat energy is always spontaneously transferred from hotter to

THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER

THE STUDY OF THE EFFECT OF DRY ICE ON THE TEMPERATURE OF WATER Justin Tunley Cary Academy ABSTRACT: The purpose of this study was to find out how much the temperature of water would change over time after

Absorption of Heat. Internal energy is the appropriate energy variable to use at constant volume

6 Absorption of Heat According to the First Law, E = q + w = q - P V, assuming P-V work is the only kind that can occur. Therefore, E = q V. The subscript means that the process occurs at constant volume.

7.2.2 Changing State. 43 minutes. 56 marks. Page 1 of 17

7.2.2 Changing State 43 minutes 56 marks Page 1 of 17 Q1. Air is a gas at room temperature. The chemical formulae below show some of the substances in the air. Ar CO 2 H 2 O N 2 Ne O 2 (a) Put these formulae

Simple Experiments in Thermochemistry

Simple Experiments in Thermochemistry Purpose: To demonstrate the law of conservation of energy and propose a method for making a chemical heat pack using the heats of solution of sodium bicarbonate and

Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold

Every mathematician knows it is impossible to understand an elementary course in thermodynamics. ~V.I. Arnold Radiation Radiation: Heat energy transmitted by electromagnetic waves Q t = εσat 4 emissivity

Federation of Galaxy Explorers Space Science

Federation of Galaxy Explorers Space Science Once Upon A Big Bang Learning Objectives: 1. Explain how the universe was created using the Big Bang theory. 2. Understand how the existence of Cosmic Background

Copper, Zinc and Brass (an alloy of Cu and Zn) have very similar specific heat capacities. Why should this be so?

Thermal Properties 1. Specific Heat Capacity The heat capacity or thermal capacity of a body is a measure of how much thermal energy is required to raise its temperature by 1K (1 C). This will depend on

4.5 Orbits, Tides, and the Acceleration of Gravity

4.5 Orbits, Tides, and the Acceleration of Gravity Our goals for learning: How do gravity and energy together allow us to understand orbits? How does gravity cause tides? Why do all objects fall at the

Purpose: To determine the dew and point and relative humidity in the classroom, and find the current relative humidity outside.

Lab Exercise: Dew Point and Relative Humidity Purpose: To determine the dew and point and relative humidity in the classroom, and find the current relative humidity outside. Relative humidity is a measure

Convection Current and Tectonic Plates

Convection Current and Tectonic Plates 9 th -12 th Grade Standards: This activity meets California science standards for grades 7 through 12. Purpose: Students should understand the actions of fluids and

Chapter 17: Change of Phase

Chapter 17: Change of Phase Conceptual Physics, 10e (Hewitt) 3) Evaporation is a cooling process and condensation is A) a warming process. B) a cooling process also. C) neither a warming nor cooling process.

UNIT 6a TEST REVIEW. 1. A weather instrument is shown below.

UNIT 6a TEST REVIEW 1. A weather instrument is shown below. Which weather variable is measured by this instrument? 1) wind speed 3) cloud cover 2) precipitation 4) air pressure 2. Which weather station

Reading. Spontaneity. Monday, January 30 CHEM 102H T. Hughbanks

Thermo Notes #3 Entropy and 2nd Law of Thermodynamics Monday, January 30 CHEM 102H T. Hughbanks Reading You should reading Chapter 7. Some of this material is quite challenging, be sure to read this material

Type: Single Date: Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12

Type: Single Date: Objective: Latent Heat Homework: READ 12.8, Do CONCEPT Q. # (14) Do PROBLEMS (40, 52, 81) Ch. 12 AP Physics B Date: Mr. Mirro Heat and Phase Change When bodies are heated or cooled their