Chabot College Physics Lab RC Circuits Scott Hildreth


 Joy Malone
 1 years ago
 Views:
Transcription
1 Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard connecions of elecrical componens, racing connecion errors, diagnosing problems, and resolving hem logically. Verify relaionships beween volage, curren, capaciance, and ime for charging and discharging circuis in series and parallel configuraions. Background: By now you should be comforable making connecions on a circui board, and measuring curren and volage digially using he Vernier equipmen and sandalone mulimeers. This lab aciviy will challenge you o verify he equaions for charging and discharging capaciors in simple DC circui arrangemens. As wih he previous lab, you will: a) Theoreically calculae he rae of charging and discharging simple single, series, and parallel capaciors in an circui, using 10 resisors, a 9V baery, and 0.1 Farad capaciors. b) Consruc models of hese circuis using he PhET Circui Consrucion Ki online, and es your hypoheses abou he currens and volages using his model. c) Experimenally use he Vernier and Pasco circui boards o acually build an circui, and measure he acual values wih he mulimeer, compuer, and oscilloscope. Wrie up: This experimenal wrie up should follow he formal physics laboraory repor forma (available online a hp://www.chabocollege.edu/faculy/shildreh/physics/updaed_lab_repor_forma.hm ). Make sure ha you include he roles ha each member of your eam played in he aciviy, clearly labeled picures, daa ables in your appendix, and answers o he QUESTIONS you ll find wihin. The lab repor is due Thursday or Friday, 7/8 April 2016 MATERIALS Compuer running Logger Pro sofware LabPro inerface Vernier Curren & Volage Probe Sysem Addiional Vernier Volage Probes Oscilloscope (opional) 68 ses of alligaor clip wires Baeries adjusable lowvolage DC power supply Vernier Circui Board Digial Mulimeer w/ (2) volage probes
2 BACKGROUND The charge q on a capacior s plae is proporional o he poenial difference V across he capacior: q V, C where C is he capaciance, measured in he uni of he farad, F, (1 farad = 1 coulomb/vol). If a capacior of capaciance C (in farads), iniially uncharged, is conneced across a resisor R (in ohms) o a poenial V 0 (vols), a imedependen curren will flow according o Ohm s law. This siuaion is shown by he (resisorcapacior) circui below when he swich o he baery is closed: R Red C Black Figure 1 As he curren flows, he charge q on he capacior builds up over ime, increasing he poenial across he capacior, which in urn reduces he curren. This process creaes an exponenially decreasing curren flowing hrough he resisor. If you measure he volage drop across he resisor, ha volage will decrease in ime, modeled by: Charging Circui Volage across Resisor R = The rae of he decrease is deermined by he produc, known as he ime consan of he circui. A large ime consan means ha he capacior will discharge slowly. Similarly, he Volage across he capacior C builds up exponenially in ime a a rae deermined by he same ime consan, modeled by: V r ( ) 0 Charging Circui Volage across Capacior C = V c ( ) V0 1 e The same ime consan describes he rae of discharging as well as he rae of charging. The relaionships for discharging circuis are similar o hose above, alhough boh he volage drops across he resisor and capacior decreases, and direcion of he curren and he sign of he volage drop will be reversed: Discharging Circui Volage across Resisor R = V r ( ) V e 0 V e Discharging Circui Volage across Capacior C = V c ( ) 0 V e
3 Resisor Volage Capacior Volage Imporan Noe! Record your eam s skeches, equaions, and answers o he quesions below, clearly and nealy, as par of your overall daa for he experimen. If his is done effecively from he sar, you should NOT have o copy hem over for he repor. PART A: THEORETICAL CALCULATIONS OF CIUITS 1. For an circui wih a single capacior of 0.10 Farads, in series wih a single resisor of 10, and a volage source of 9 V, calculae he ime consan for he circui, and develop he charging and discharging equaions for he volage readings across he resisor and capacior. 2. Skech he graphs of Volage vs. Time for he resisor and he capacior, for boh cases of charging and discharging (four skeches in all!) ime ime 3. If you add a second capacior of equivalen value in series wih he firs, how will his affec he raes of charging and discharging? Develop he new charging and discharging equaions for his siuaion. 4. If you add a second capacior of equivalen value in parallel wih he firs, how will his affec he raes of charging and discharging? PART B: BUILD A MODEL OF YOUR CIUIT NETWORK ONLINE 5. Locae, click on, and SAVE he premade PhET files Circuis 1/2/3 ono he deskop of your compuer, from my websie (hp://www.chabocollege.edu/faculy/shildreh/physics/emapps/ ) Now locae and run he PhET simulaor Circui Consrucion Ki AC/DC available online a hp://phe.colorado.edu/en/simulaion/circuiconsrucionkiac. We ll use his simulaor o model your circuis. In he upper righ corner, click LOAD, and browse your compuer s files o locae he Circui 1 simulaion file. I should look like he image o he righ; you migh have o add he volage chars from he menu, or adjus he locaions of he volage probes across he componens o correcly read he values.
4 6. Charge he capacior by closing he swich on he lef. Run he simulaion, noing he resuling graphs of he volages across he resisor and capacior. Pause a any ime using he pause buon below. Do he graphs mach he expeced heoreical resuls? Esimae he volage value a a specific ime from he graphs (like 1/, he ime consan!), and verify your equaions prediced ha value. Record your resuls. Do his for boh graphs. 7. Discharge he capacior by opening he swich on he lef, and closing he swich on he righ. Run he simulaion, noing he resuling graphs of he volages across he resisor and capacior. Pause a any ime using he pause buon below. Do he graphs mach he expeced heoreical resuls? Esimae he volage value a some specific ime from he graphs, and verify your equaions prediced ha value. Record your resuls. Do his for boh graphs. 8. Now model he siuaion wih wo capaciors in series conneced o he same volage and resisor combinaion. LOAD he Circui 2 simulaion. I should look like he screen picure shown. You may have o reconnec he volmeer char leads. 9. Close he lef hand swich o charge he capaciors. Examine he resuling volage graphs. Do hey mach your heoreical predicions? How does he volage drop across each capacior compare o he volage across he baery? You can add anoher char o monior he volage across he resisor. 10. Discharge he capaciors by opening he lef swich and closing he righ swich. Examine he resuling graphs once more, and verify ha hey mach your heoreical predicions. 11. Does i appear ha placing wo capaciors in a circui wih one pahway for charge increases or decreases he amoun of charge sored? You may need o reurn o he original circui from par I o decide. 12. Now model he siuaion wih wo capaciors in parallel conneced o he same volage and resisor combinaion. LOAD he Circui 3 simulaion. I should look like he screen picure shown. You may have o reconnec he volmeer char leads. Repea seps 9 11 above wih his configuraion, and again verify ha he graphs mach your predicions. Does i appear ha placing wo capaciors in a circui wih muliple pahways for charge increases or decreases he amoun of charge sored?
5 PART C: TEST YOUR MODEL EXPERIMENTALLY 13. Connec he circui as shown in Figure 1 a he sar of he lab wih he 10F capacior and he 100k resisor. Record he values of your resisor and capacior in your daa able, as well as any olerance values marked on hem. 14. Connec a Differenial Volage Probe o Channel 1 of he LabPro, as well as across he capacior, wih he red (posiive lead) o he side of he capacior conneced o he resisor. Connec he black lead o he oher side of he capacior. 15. Open he Capacior file in he Physics wih Vernier folder. A graph will be displayed. The verical axis of he graph has poenial scaled from 0 o 4 V. The horizonal axis has ime from 0 o 10 s. 16. Charge he capacior for 30 s or so wih he swich in he posiion as illusraed in Figure 1. You can wach he volage reading a he boom of he screen o see if he poenial is sill increasing. Wai unil he poenial is consan. 17. Click o begin daa collecion. As soon as graphing sars, hrow he swich o is oher posiion o discharge he capacior. Your daa should show a consan value iniially, hen decreasing funcion. 18. To compare your daa o he model, selec only he daa afer he poenial has sared o decrease by dragging across he graph; ha is, omi he consan porion. Click he curve fi ool, and from he funcion selecion box, choose he Naural Exponenial funcion, A*exp( C*x ) + B. Click, and inspec he fi. Click o reurn o he main graph window. 19. Record he value of he fi parameers in your daa able. Noice ha he C used in he curve fi is no he same as he C used o sand for capaciance. Compare he fi equaion o he mahemaical model for a capacior discharge proposed in he inroducion, V ( ) V 0 e 20. How is fi consan C relaed o he ime consan of he circui? 21. Make a skech he graph of poenial vs. ime. Choose Sore Laes Run from he Daa menu o sore your daa. You will need his daa for laer analysis. 22. The capacior is now discharged. To monior he charging process, click. As soon as daa collecion begins, hrow he swich he oher way. Allow he daa collecion o run o compleion. This ime you will compare your daa o he mahemaical model for a capacior charging,
6 V ( ) V0 1 e Selec he daa beginning afer he poenial has sared o increase by dragging across he graph. Click he curve fi ool,, and from he funcion selecion box, choose he Inverse Exponenial funcion, A*(1 exp( C*x)) + B. Click and inspec he fi. Click o reurn o he main graph window. 23. Record he value of he fi parameers in your daa able. Compare he fi equaion o he mahemaical model for a charging capacior. 24. Hide your firs runs by choosing Hide Run Run 1 from he Daa menu. Remove any remaining fi informaion by clicking he gray close box in he floaing boxes. Repea he experimen wih a resisor of lower value. How do you hink his change will affec he way he capacior discharges? Rebuild your circui using he 47k resisor and repea he seps above. SAMPLE DATA TABLE Fi parameers Resisor Capacior Time consan Trial A B C 1/C R () Discharge 1 Charge 1 Discharge 2 Charge 2 C (F) (s) ANALYSIS 1. In he daa able, calculae he ime consan of he circui used; ha is, he produc of resisance in ohms and capaciance in farads. (Noe ha 1F = 1 s). 2. Calculae and ener in he daa able he inverse of he fi consan C for each rial. Now compare each of hese values o he ime consan of your circui. 3. Noe ha resisors and capaciors are no marked wih heir exac values, bu only approximae values wih a olerance. If here is a discrepancy beween he wo quaniies compared in Quesion 2, can he olerance values explain he difference? 4. Wha was he effec of reducing he resisance of he resisor on he way he capacior discharged? OPTIONAL EXTENSIONS Try differen value resisors and capaciors and see how he capacior discharge curves change. Try wo capaciors in parallel. Predic wha will happen o he ime consan. Repea he discharge measuremen and deermine he ime consan of he new circui using a curve fi. Try wo capaciors in series. Predic wha will happen o he ime consan. Repea he discharge measuremen and deermine he ime consan for he new circui using a curve fi.
RC, RL and RLC circuits
Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationRC Circuit and Time Constant
ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisorcapacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More information4kq 2. D) south A) F B) 2F C) 4F D) 8F E) 16F
efore you begin: Use black pencil. Wrie and bubble your SU ID Number a boom lef. Fill bubbles fully and erase cleanly if you wish o change! 20 Quesions, each quesion is 10 poins. Each quesion has a mos
More informationTEACHER NOTES HIGH SCHOOL SCIENCE NSPIRED
Radioacive Daing Science Objecives Sudens will discover ha radioacive isoopes decay exponenially. Sudens will discover ha each radioacive isoope has a specific halflife. Sudens will develop mahemaical
More informationRotational Inertia of a Point Mass
Roaional Ineria of a Poin Mass Saddleback College Physics Deparmen, adaped from PASCO Scienific PURPOSE The purpose of his experimen is o find he roaional ineria of a poin experimenally and o verify ha
More informationGraphing the Von Bertalanffy Growth Equation
file: d:\b1732013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationPHYS245 Lab: RC circuits
PHYS245 Lab: C circuis Purpose: Undersand he charging and discharging ransien processes of a capacior Display he charging and discharging process using an oscilloscope Undersand he physical meaning of
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationState Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University
Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationUsing RCtime to Measure Resistance
Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a builin ADC (Analog o Digial Converer)
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67  FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1  TRANSIENTS
EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67  FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1  RANIEN Uni conen 2 Undersand he ransien behaviour of resisorcapacior (R) and resisorinducor (RL) D circuis
More informationPhysics 111 Fall 2007 Electric Currents and DC Circuits
Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationLaboratory #3 Diode Basics and Applications (I)
Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens
More information11. Properties of alternating currents of LCRelectric circuits
WS. Properies of alernaing currens of Lelecric circuis. Inroducion Socalled passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationA Mathematical Description of MOSFET Behavior
10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical
More informationAP1 Kinematics (A) (C) (B) (D) Answer: C
1. A ball is hrown verically upward from he ground. Which pair of graphs bes describes he moion of he ball as a funcion of ime while i is in he air? Neglec air resisance. y a v a (A) (C) y a v a (B) (D)
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More informationLAB 6: SIMPLE HARMONIC MOTION
1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationDCDC Boost Converter with Constant Output Voltage for Grid Connected Photovoltaic Application System
DCDC Boos Converer wih Consan Oupu Volage for Grid Conneced Phoovolaic Applicaion Sysem PuiWeng Chan, Syafrudin Masri Universii Sains Malaysia Email: edmond_chan85@homail.com, syaf@eng.usm.my Absrac
More information1. The graph shows the variation with time t of the velocity v of an object.
1. he graph shows he variaion wih ime of he velociy v of an objec. v Which one of he following graphs bes represens he variaion wih ime of he acceleraion a of he objec? A. a B. a C. a D. a 2. A ball, iniially
More information2 Electric Circuits Concepts Durham
Chaper 3  Mehods Chaper 3  Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More information11. Tire pressure. Here we always work with relative pressure. That s what everybody always does.
11. Tire pressure. The graph You have a hole in your ire. You pump i up o P=400 kilopascals (kpa) and over he nex few hours i goes down ill he ire is quie fla. Draw wha you hink he graph of ire pressure
More informationINVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS
INVESTIGATION OF THE INFLUENCE OF UNEMPLOYMENT ON ECONOMIC INDICATORS Ilona Tregub, Olga Filina, Irina Kondakova Financial Universiy under he Governmen of he Russian Federaion 1. Phillips curve In economics,
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationUnderstanding Sequential Circuit Timing
ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor
More informationHANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.
Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can
More informationMaking Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationChapter 2 Problems. s = d t up. = 40km / hr d t down. 60km / hr. d t total. + t down. = t up. = 40km / hr + d. 60km / hr + 40km / hr
Chaper 2 Problems 2.2 A car ravels up a hill a a consan speed of 40km/h and reurns down he hill a a consan speed of 60 km/h. Calculae he average speed for he rip. This problem is a bi more suble han i
More informationBrown University PHYS 0060 INDUCTANCE
Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile sparkplug wire a he wrong place, wih he engine running, has an appreciaion
More informationNOTES ON OSCILLOSCOPES
NOTES ON OSCILLOSCOPES NOTES ON... OSCILLOSCOPES... Oscilloscope... Analog and Digial... Analog Oscilloscopes... Cahode Ray Oscilloscope Principles... 5 Elecron Gun... 5 The Deflecion Sysem... 6 Displaying
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More informationFourier series. Learning outcomes
Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Halfrange series 6. The complex form 7. Applicaion of Fourier series
More informationDIFFERENTIAL EQUATIONS with TI89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations
DIFFERENTIAL EQUATIONS wih TI89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows
More informationEconomics 140A Hypothesis Testing in Regression Models
Economics 140A Hypohesis Tesing in Regression Models While i is algebraically simple o work wih a populaion model wih a single varying regressor, mos populaion models have muliple varying regressors 1
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationName: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling
Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: Solving Exponenial Equaions (The Mehod of Common Bases) Solving Exponenial Equaions (Using Logarihms)
More informationand Decay Functions f (t) = C(1± r) t / K, for t 0, where
MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More informationPermutations and Combinations
Permuaions and Combinaions Combinaorics Copyrigh Sandards 006, Tes  ANSWERS Barry Mabillard. 0 www.mah0s.com 1. Deermine he middle erm in he expansion of ( a b) To ge he kvalue for he middle erm, divide
More informationLenz's Law. Definition from the book:
Lenz's Law Definiion from he book: The induced emf resuling from a changing magneic flux has a polariy ha leads o an induced curren whose direcion is such ha he induced magneic field opposes he original
More informationOPERATION MANUAL. Indoor unit for air to water heat pump system and options EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1
OPERAION MANUAL Indoor uni for air o waer hea pump sysem and opions EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1
More informationµ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ
Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More informationSection A: Forces and Motion
I is very useful o be able o make predicions abou he way moving objecs behave. In his chaper you will learn abou some equaions of moion ha can be used o calculae he speed and acceleraion of objecs, and
More informationBasic Circuit Elements  Prof J R Lucas
Basic Circui Elemens  Prof J ucas An elecrical circui is an inerconnecion of elecrical circui elemens. These circui elemens can be caegorized ino wo ypes, namely acive elemens and passive elemens. Some
More informationWeek #9  The Integral Section 5.1
Week #9  The Inegral Secion 5.1 From Calculus, Single Variable by HughesHalle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,
More informationModule 3. RL & RC Transients. Version 2 EE IIT, Kharagpur
Module 3  & C Transiens esson 0 Sudy of DC ransiens in  and C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More informationRelative velocity in one dimension
Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies
More informationECEN4618: Experiment #1 Timing circuits with the 555 timer
ECEN4618: Experimen #1 Timing circuis wih he 555 imer cæ 1998 Dragan Maksimović Deparmen of Elecrical and Compuer Engineering Universiy of Colorado, Boulder The purpose of his lab assignmen is o examine
More informationRepresenting Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1
Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals
More information6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes
Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.
More informationAstable multivibrator using the 555 IC.(10)
Visi hp://elecronicsclub.cjb.ne for more resources THE 555 IC TIMER The 555 IC TIMER.(2) Monosable mulivibraor using he 555 IC imer...() Design Example 1 wih Mulisim 2001 ools and graphs..(8) Lile descripion
More informationFourier Series Solution of the Heat Equation
Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationYTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.
. Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure
More informationChapter 2: Principles of steadystate converter analysis
Chaper 2 Principles of SeadySae Converer Analysis 2.1. Inroducion 2.2. Inducor volsecond balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer
More informationFullwave rectification, bulk capacitor calculations Chris Basso January 2009
ullwave recificaion, bulk capacior calculaions Chris Basso January 9 This shor paper shows how o calculae he bulk capacior value based on ripple specificaions and evaluae he rms curren ha crosses i. oal
More informationChapter 4. Properties of the Least Squares Estimators. Assumptions of the Simple Linear Regression Model. SR3. var(e t ) = σ 2 = var(y t )
Chaper 4 Properies of he Leas Squares Esimaors Assumpions of he Simple Linear Regression Model SR1. SR. y = β 1 + β x + e E(e ) = 0 E[y ] = β 1 + β x SR3. var(e ) = σ = var(y ) SR4. cov(e i, e j ) = cov(y
More informationUMR EMC Laboratory UMR EMC Laboratory Technical Report: TR
UMR EMC Laboraory UMR EMC Laboraory Dep. of Elecrical & Compuer Engineering 870 Miner Circle Universiy of Missouri Rolla Rolla, MO 654090040 UMR EMC Laboraory Technical Repor: TR0800 Effec of Delay
More informationName: Teacher: DO NOT OPEN THE EXAMINATION PAPER UNTIL YOU ARE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINAL EXAMINATION. June 2009.
Name: Teacher: DO NOT OPEN THE EXMINTION PPER UNTIL YOU RE TOLD BY THE SUPERVISOR TO BEGIN PHYSICS 2204 FINL EXMINTION June 2009 Value: 100% General Insrucions This examinaion consiss of wo pars. Boh pars
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More informationAP Calculus AB 2013 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a missiondriven noforprofi organizaion ha connecs sudens o college success and opporuniy. Founded in 19, he College Board was
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationMOTION ALONG A STRAIGHT LINE
Chaper 2: MOTION ALONG A STRAIGHT LINE 1 A paricle moes along he ais from i o f Of he following alues of he iniial and final coordinaes, which resuls in he displacemen wih he larges magniude? A i =4m,
More informationCHAPTER 21: Electromagnetic Induction and Faraday s Law
HAT : lecromagneic nducion and Faraday s aw Answers o Quesions. The advanage of using many urns (N = large number) in Faraday s experimens is ha he emf and induced curren are proporional o N, which makes
More informationWhy Do Real and Nominal. InventorySales Ratios Have Different Trends?
Why Do Real and Nominal InvenorySales Raios Have Differen Trends? By Valerie A. Ramey Professor of Economics Deparmen of Economics Universiy of California, San Diego and Research Associae Naional Bureau
More information4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay
324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find
More informationTheoretical Analysis of Inverse Weibull Distribution
Theoreical Analysis of Inverse Weibull Disribuion M. SUAIB KAN Deparmen of saisics The Islamia universiy of Bahawalpur. email: skn_8@yahoo.com G.R PASA Deparmen of saisics Bahauddin Zakariya Universiy
More information( ) in the following way. ( ) < 2
Sraigh Line Moion  Classwork Consider an obbec moving along a sraigh line eiher horizonally or verically. There are many such obbecs naural and manmade. Wrie down several of hem. Horizonal cars waer
More informationTransient Analysis of First Order RC and RL circuits
Transien Analysis of Firs Order and iruis The irui shown on Figure 1 wih he swih open is haraerized by a pariular operaing ondiion. Sine he swih is open, no urren flows in he irui (i=0) and v=0. The volage
More informationWATER MIST FIRE PROTECTION RELIABILITY ANALYSIS
WATER MIST FIRE PROTECTION RELIABILITY ANALYSIS Shuzhen Xu Research Risk and Reliabiliy Area FM Global Norwood, Massachuses 262, USA David Fuller Engineering Sandards FM Global Norwood, Massachuses 262,
More informationCAPACITANCE AND INDUCTANCE
CHAPTER 6 CAPACITANCE AND INDUCTANCE THE LEARNING GOALS FOR THIS CHAPTER ARE: Know how o use circui models for inducors and capaciors o calculae volage, curren, and power Be able o calculae sored energy
More informationTrends in TCP/IP Retransmissions and Resets
Trends in TCP/IP Reransmissions and Reses Absrac Concordia Chen, Mrunal Mangrulkar, Naomi Ramos, and Mahaswea Sarkar {cychen, mkulkarn, msarkar,naramos}@cs.ucsd.edu As he Inerne grows larger, measuring
More informationPulseWidth Modulation Inverters
SECTION 3.6 INVERTERS 189 PulseWidh Modulaion Inverers Pulsewidh modulaion is he process of modifying he widh of he pulses in a pulse rain in direc proporion o a small conrol signal; he greaer he conrol
More informationIssues Using OLS with Time Series Data. Time series data NOT randomly sampled in same way as cross sectional each obs not i.i.d
These noes largely concern auocorrelaion Issues Using OLS wih Time Series Daa Recall main poins from Chaper 10: Time series daa NOT randomly sampled in same way as cross secional each obs no i.i.d Why?
More informationStatistical Analysis with Little s Law. Supplementary Material: More on the Call Center Data. by SongHee Kim and Ward Whitt
Saisical Analysis wih Lile s Law Supplemenary Maerial: More on he Call Cener Daa by SongHee Kim and Ward Whi Deparmen of Indusrial Engineering and Operaions Research Columbia Universiy, New York, NY 1799
More informationA Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)
A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke
More informationNewton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
More informationFE Review Basic Circuits. William Hageman
FE eview Basic Circuis William Hageman 804 FE opics General FE 4. Elecriciy, Power, and Magneism 7 A. Elecrical fundamenals (e.g., charge, curren, volage, resisance, power, energy) B. Curren and volage
More informationBD FACSuite Software Quick Reference Guide for the Experiment Workflow
BD FACSuie Sofware Quick Reference Guide for he Experimen Workflow This guide conains insrucions for using BD FACSuie sofware wih he BD FACSVerse flow cyomeer using he experimen workflow. Daa can be acquired
More information2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity
.6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More information1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z 1 A B C D E F G H I J K L M N O P Q R S { U V W X Y Z
o ffix uden abel ere uden ame chool ame isric ame/ ender emale ale onh ay ear ae of irh an eb ar pr ay un ul ug ep c ov ec as ame irs ame lace he uden abel ere ae uden denifier chool se nly rined in he
More information1 HALFLIFE EQUATIONS
R.L. Hanna Page HALFLIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of halflives, and / log / o calculae he age (# ears): age (halflife)
More information