Chapter 10 - Practice Problems 1

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the explanatory variable is A) the researcher. B) the amount of time spent studying for the exam. C) the score on the exam. D) the fact that this is a statistics exam. 2. When creating a scatterplot, one should A) use the horizontal axis for the response variable. B) use the horizontal axis for the explanatory variable. C) use a different plotting symbol if the explanatory variable rather than the response variable is categorical. D) use a plotting scale that makes the overall trend roughly linear. 3. The height (in feet) and volume of usable lumber (in cubic feet) of 32 cherry trees are measured by a researcher. The goal is to determine if the volume of usable lumber can be estimated from the height of a tree. The results are plotted below Height In this study, the response variable is A) height. B) volume. C) height or volume. It doesn't matter which is considered the response. D) neither height nor volume. The instrument used to measure height is the response variable. 4. Referring to the previous question, the scatterplot suggests A) there is a positive association between height and volume. B) there is an outlier in the plot. C) both a and b. D) neither a nor b. Page 1

2 5. At a large university, the office responsible for scheduling classes notices that demand is low for classes that meet before 10:00 AM or after 3:00 PM and is high for classes that meet between 10:00 AM and 3:00 PM. Which of the following can we conclude? A) There is an association between demand for classes and the time the classes meet. B) There is a positive association between demand for classes and the time the classes meet. C) There is a negative association between demand for classes and the time the classes meet. D) There is no association between demand for classes and the time the classes meet. 6. The graph below plots the gas mileage (miles per gallon, or MPG) of various 1978 model cars versus the weight of these cars in thousands of pounds. The points denoted by the plotting symbol x correspond to cars made in Japan. From this plot, we can conclude A) there is little difference between Japanese cars and cars made in other countries. B) Japanese cars tend to be lighter in weight than other cars. C) Japanese cars tend to get poorer gas mileage than other cars. D) the plot is invalid. A scatterplot is used to represent quantitative variables, and the country that makes a car is a qualitative variable. 7. Volunteers for a research study were divided into three groups. Group 1 listened to Western religious music, group 2 listened to Western rock music, and group 3 listened to Chinese religious music. The blood pressure of each volunteer was measured before and after listening to the music, and the change in blood pressure (blood pressure before listening minus blood pressure after listening) was recorded. To explore the relationship between type of music and change in blood, we could A) see if blood pressure decreases as type of music increases by examining a scatterplot. B) make a histogram of the change in blood pressure for all of the volunteers. C) make side-by-side boxplots of the change in blood pressure, with a separate boxplot for each group. D) do all of the above. Page 2

3 8. A student wonders if people of similar heights tend to date each other. She measures herself, her dormitory roommate, and the women in the adjoining rooms; then she measures the next man each woman dates. Here are the data (heights in inches) Women Men Which of the following statements is true? A) The variables measured are all categorical. B) There is a strong negative association between the heights of men and women because the women are always smaller than the men they date. C) There is a positive association between the heights of men and women. D) Any height above 70 inches must be considered an outlier. 9. Consider the following scatterplot Weight Which of the following is a plausible value for the correlation coefficient between weight and MPG? A) +0.2 B) 0.9 C) +0.7 D) 1.0 Page 3

4 10. I wish to determine the correlation between the height (in inches) and weight (in pounds) of 21-year-old males. To do this I measure the height and weight of two 21-year-old men. The measured values are Male #1 Male #2 Height Weight The correlation r computed from the measurements on these males is A) 1.0. B) positive and between 0.25 and C) near 0, but could be either positive or negative. D) exactly Referring to the previous question, the correlation r would have units A) units in inches. B) units in pounds. C) units in inches-pounds. D) no units. Correlation is a unitless quantity. 12. The scatterplot below is from a small data set. The data were classified as either of type 1 or type 2. Those of type 1 are indicated by o's and those of type 2 by x's. The overall correlation of the data in this scatterplot is A) positive. B) negative, because the o's display a negative trend and the x's display a negative trend. C) near 0, because the o's display a negative trend and the x's display a negative trend, but the trend from the o's to the x's is positive. The different trends cancel. D) impossible to compute for such a data set. Page 4

5 13. The profits (in multiples of \$100,000) versus the sales (in multiples of \$100,000) for a number of companies are plotted below. The correlation between profits and sales is Suppose we removed the point that is circled from the data represented in the plot. The correlation between profits and sales would then be A) B) larger than C) smaller than D) either larger or smaller than It is impossible to say which. Page 5

6 14. The British government conducts regular surveys of household spending. The average weekly household spending on tobacco products and alcoholic beverages for each of 11 regions in Great Britain were recorded. A scatterplot of spending on tobacco versus spending on alcohol is given below Tobacco Which of the following statements holds? A) The observation in the lower right corner of the plot is influential. B) There is clear evidence of negative association between spending on alcohol and tobacco. C) The equation of the least-squares line for this plot would be approximately y = 10 2x. D) The correlation coefficient for this data is In a statistics course, a linear regression equation was computed to predict the final exam score from the score on the first test. The equation of the least-squares regression line was y = x where y represents the final exam score and x is the score on the first exam. Suppose Joe scores a 90 on the first exam. What would be the predicted value of his score on the final exam? A) 91. B) 89. C) 81. D) Cannot be determined from the information given. We also need to know the correlation. Page 6

7 16. A researcher wishes to determine whether the rate of water flow (in liters per second) over an experimental soil bed can be used to predict the amount of soil washed away (in kilograms). The researcher measures the amount of soil washed away for various flow rates, and from these data calculates the least-squares regression line to be amount of eroded soil = (flow rate) The correlation between amount of eroded soil and flow rate would be A) 1/1.3 B) 0.4 C) positive, but we cannot determine the exact value. D) either positive or negative. It is impossible to say anything about the correlation from the information given. 17. The least-squares regression line is A) the line that makes the square of the correlation in the data as large as possible. B) the line that makes the sum of the squares of the vertical distances of the data points from the line as small as possible. C) the line that best splits the data in half, with half of the points above the line and half below the line. D) all of the above. 18. Below is a scatterplot of the world-record time for women in the 10,000 meter run versus the year in which the record was set. Note that time is in seconds and the data are for the period 1965 to Year Based on this plot, we can expect A) that by 2005 the world-record time for women will be well below 1500 seconds. B) that about every decade, the world-record time will decrease by at least 100 seconds. C) that about every decade, the world-record time will decrease by about 50 seconds. D) none of the above. Page 7

8 19. In a study of 1991 model cars, a researcher computed the least-squares regression line of price (in dollars) on horsepower. He obtained the following equation for this line. price = horsepower. Based on the least-squares regression line, we would predict that a 1991 model car with horsepower equal to 200 would cost A) \$41,677. B) \$35,000. C) \$28,323. D) \$13, A researcher wishes to determine whether the rate of water flow (in liters per second) over an experimental soil bed can be used to predict the amount of soil washed away (in kilograms). The researcher measures the amount of soil washed away for various flow rates, and from these data calculates the least-squares regression line to be amount of eroded soil = x(flow rate) One of the flow rates used by the researcher was 0.3 liters per second and for this flow rate the amount of eroded soil was 0.8 kilograms. These values were used in the calculation of the least-squares regression line. The residual corresponding to these values is A) 0.01 B) 0.01 C) 0.5 D) Which of the following statements concerning residuals is true? A) The sum of the residuals is always 0. B) A plot of the residuals is useful for assessing the fit of the least-squares regression line. C) The value of a residual is the observed value of the response minus the value of the response that one would predict from the least-squares regression line. D) All of the above. 22. The owner of a chain of supermarkets notices that there is a positive correlation between the sales of beer and the sales of ice cream over the course of the previous year. Seasons when sales of beer were above average, sales of ice cream also tended to be above average. Likewise, during seasons when sales of beer were below average, sales of ice cream also tended to be below average. Which of the following would be a valid conclusion from these facts? A) Sales records must be in error. There should be no association between beer and ice cream sales. B) Evidently, for a significant proportion of customers of these supermarkets, drinking beer causes a desire for ice cream or eating ice cream causes a thirst for beer. C) A scatterplot of monthly ice cream sales versus monthly beer sales would show that a straight line describes the pattern in the plot, but it would have to be a horizontal line. D) None of the above. Page 8

9 23. A researcher studies the relationship between the total SAT score (Math SAT score plus Verbal SAT score) and the grade point average (G.P.A.) of college students at the end of their freshman year. In order to use a relatively homogeneous group of students, the researcher only examines data of high school valedictorians (students who graduated at the top of their high school class) who have completed their first year of college. The researcher finds the correlation between total SAT score and G.P.A. at the end of the freshman year to be very close to 0. Which of the following would be a valid conclusion from these facts? A) Because the group of students studied is a very homogeneous group of students, the results should give a very accurate estimate of the correlation the researcher would find if all college students who have completed their freshman year were studied. B) The correlation we would find if all college students who have completed their freshman year were studied would be even smaller than that found by the researcher. By restricting to valedictorians, the researcher is examining a group that will be more informative than those students who have completed only their freshman year. C) The researcher made a mistake. Correlation cannot be calculated (the formula for correlation is invalid) unless all students who completed their freshman year are included. D) None of the above. 24. When exploring very large sets of data involving many variables, which of the following is true? A) Extrapolation is safe because it is based on a greater quantity of evidence. B) Associations will be stronger than would be seen in a much smaller subset of the data. C) A strong association is good evidence for causation because it is based on a large quantity of information. D) None of the above. 25. Consider the scatterplot below. The point indicated by the plotting symbol x would be A) a residual. B) influential. C) a z-score. D) a least-squares point. Page 9

10 26. Two variables, x and y, are measured on each of several individuals. The correlation between these variables is found to be To interpret this correlation we should do which of the following? A) Compute the least-squares regression line of y on x and consider whether the slope is positive or negative. B) Interchange the roles of x and y (i.e., treat x as the response and y as the predictor variable) and recompute the correlation. C) Plot the data. D) All of the above. 27. A sample of 79 companies was taken and the annual profits (y) were plotted against annual sales (x). The plot is given below. All values in the plots are in units of \$100,000. The correlation between sales and profits is found to be Based on this information, we can conclude which of the following? A) Not surprisingly, increasing sales causes an increase in profits. This is confirmed by the large positive correlation. B) There are clearly influential observations present. C) If we group the companies in the plot into those which are small in size, those which are medium in size, and those which are large in size and compute the correlation between sales and profits for each group of companies separately, the correlation in each group will be about 0.8. D) All of the above. 28. Which of the following would be necessary to establish a cause-and-effect relation between two variables? A) Strong association between the variables. B) An association between the variables is observed in many different settings. C) The alleged cause is plausible. D) All of the above. Page 10

11 29. A researcher computed the average Math SAT score of all high school seniors who took the SAT exam for each of the 50 states. The researcher also computed the average salary of high school teachers in each of these states and plotted these average salaries against the average Math SAT scores for each state. The plot showed a distinct negative association between average Math SAT scores and teacher salaries. The researcher can legitimately conclude which of the following? A) Increasing the average salary of teachers will cause the average of Math SAT scores to decrease, but it is not correct to conclude that increasing the salaries of individual teachers causes the Math SAT scores of individual students to increase. B) States that pay teachers highly tend to do a poor job of teaching mathematics, on average. C) States whose students tend to perform poorly in mathematics probably have a higher proportion of problem students and thus need to pay teachers higher salaries in order to attract them to teach in those states. D) The data used by the researcher do not provide evidence that increasing the salary of teachers will cause the performance of students on the Math SAT to get worse. Page 11

12 Answer Key 1. B 2. B 3. B 4. C 5. A 6. B 7. C 8. C 9. B 10. A 11. D 12. A 13. C 14. A 15. A 16. C 17. B 18. D 19. C 20. A 21. D 22. D 23. D 24. D 25. B 26. C 27. B 28. D 29. D Page 12

Statistics 151 Practice Midterm 1 Mike Kowalski

Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and

Name: Date: Use the following to answer questions 2-3:

Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student

a) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?

1. Phone surveys are sometimes used to rate TV shows. Such a survey records several variables listed below. Which ones of them are categorical and which are quantitative? - the number of people watching

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014 STAB22H3 Statistics I Duration: 1 hour and 45 minutes Last Name: First Name: Student number: Aids

Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

Chapter 1: Exploring Data

Chapter 1: Exploring Data Chapter 1 Review 1. As part of survey of college students a researcher is interested in the variable class standing. She records a 1 if the student is a freshman, a 2 if the student

Second Midterm Exam (MATH1070 Spring 2012)

Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems

DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability

DesCartes (Combined) Subject: Mathematics Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 171-180 Data Analysis and Statistics Data Analysis and Statistics Solves

Classify the data as either discrete or continuous. 2) An athlete runs 100 meters in 10.5 seconds. 2) A) Discrete B) Continuous

Chapter 2 Overview Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Classify as categorical or qualitative data. 1) A survey of autos parked in

Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015

Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field

Interpreting Data in Normal Distributions

Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,

Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

AP Statistics. Chapter 4 Review

Name AP Statistics Chapter 4 Review 1. In a study of the link between high blood pressure and cardiovascular disease, a group of white males aged 35 to 64 was followed for 5 years. At the beginning of

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4

STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability

DesCartes (Combined) Subject: Mathematics 2-5 Goal: Data Analysis, Statistics, and Probability RIT Score Range: Below 171 Below 171 Data Analysis and Statistics Solves simple problems based on data from

List of Examples. Examples 319

Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.

Results from the 2014 AP Statistics Exam. Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu

Results from the 2014 AP Statistics Exam Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu The six free-response questions Question #1: Extracurricular activities

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

Draft 1, Attempted 2014 FR Solutions, AP Statistics Exam

Free response questions, 2014, first draft! Note: Some notes: Please make critiques, suggest improvements, and ask questions. This is just one AP stats teacher s initial attempts at solving these. I, as

Teaching Multivariate Analysis to Business-Major Students

Teaching Multivariate Analysis to Business-Major Students Wing-Keung Wong and Teck-Wong Soon - Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY

RUTHERFORD HIGH SCHOOL Rutherford, New Jersey COURSE OUTLINE STATISTICS AND PROBABILITY I. INTRODUCTION According to the Common Core Standards (2010), Decisions or predictions are often based on data numbers

Exploratory data analysis (Chapter 2) Fall 2011

Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,

UNIT 1: COLLECTING DATA

Core Probability and Statistics Probability and Statistics provides a curriculum focused on understanding key data analysis and probabilistic concepts, calculations, and relevance to real-world applications.

Section 1.5 Linear Models

Section 1.5 Linear Models Some real-life problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

parent ROADMAP MATHEMATICS SUPPORTING YOUR CHILD IN HIGH SCHOOL HS America s schools are working to provide higher quality instruction than ever before. The way we taught students in the past simply does

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions

Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

COMMON CORE STATE STANDARDS FOR

COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in

Elements of statistics (MATH0487-1)

Elements of statistics (MATH0487-1) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis -

2-2 Linear Relations and Functions. So the function is linear. State whether each function is a linear function. Write yes or no. Explain.

1. 2. 3. 4. State whether each function is a linear function. Write yes or no. Explain. The function written as. is linear as it can be + b. cannot be written in the form f (x) = mx So the function is

(More Practice With Trend Forecasts)

Stats for Strategy HOMEWORK 11 (Topic 11 Part 2) (revised Jan. 2016) DIRECTIONS/SUGGESTIONS You may conveniently write answers to Problems A and B within these directions. Some exercises include special

For example, estimate the population of the United States as 3 times 10⁸ and the

CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number

Name: University of Chicago Graduate School of Business Business 41000: Business Statistics Special Notes: 1. This is a closed-book exam. You may use an 8 11 piece of paper for the formulas. 2. Throughout

Physics Kinematics Model

Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

STATS8: Introduction to Biostatistics. Data Exploration. Babak Shahbaba Department of Statistics, UCI

STATS8: Introduction to Biostatistics Data Exploration Babak Shahbaba Department of Statistics, UCI Introduction After clearly defining the scientific problem, selecting a set of representative members

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School

Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education

AP Statistics 2010 Scoring Guidelines

AP Statistics 2010 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS

USING A TI-83 OR TI-84 SERIES GRAPHING CALCULATOR IN AN INTRODUCTORY STATISTICS CLASS W. SCOTT STREET, IV DEPARTMENT OF STATISTICAL SCIENCES & OPERATIONS RESEARCH VIRGINIA COMMONWEALTH UNIVERSITY Table

Scatter Plot, Correlation, and Regression on the TI-83/84

Scatter Plot, Correlation, and Regression on the TI-83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page

A Short Tour of the Predictive Modeling Process

Chapter 2 A Short Tour of the Predictive Modeling Process Before diving in to the formal components of model building, we present a simple example that illustrates the broad concepts of model building.

Answers Teacher Copy. Systems of Linear Equations Monetary Systems Overload. Activity 3. Solving Systems of Two Equations in Two Variables

of 26 8/20/2014 2:00 PM Answers Teacher Copy Activity 3 Lesson 3-1 Systems of Linear Equations Monetary Systems Overload Solving Systems of Two Equations in Two Variables Plan Pacing: 1 class period Chunking

DRAFT. New York State Testing Program Grade 8 Common Core Mathematics Test. Released Questions with Annotations

DRAFT New York State Testing Program Grade 8 Common Core Mathematics Test Released Questions with Annotations August 2014 Developed and published under contract with the New York State Education Department

3. There are three senior citizens in a room, ages 68, 70, and 72. If a seventy-year-old person enters the room, the

TMTA Statistics Exam 2011 1. Last month, the mean and standard deviation of the paychecks of 10 employees of a small company were \$1250 and \$150, respectively. This month, each one of the 10 employees

2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

https://satonlinecourse.collegeboard.com/sr/previewassessment.do?ass...

1 of 8 12/16/2011 12:14 PM Help Profile My Bookmarks Logout Algebra and Functions Practice Quiz #3 20 Questions Directions: This quiz contains two types of questions. For questions 1-15, solve each problem

Problem of the Month Through the Grapevine

The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems

The Comparisons. Grade Levels Comparisons. Focal PSSM K-8. Points PSSM CCSS 9-12 PSSM CCSS. Color Coding Legend. Not Identified in the Grade Band

Comparison of NCTM to Dr. Jim Bohan, Ed.D Intelligent Education, LLC Intel.educ@gmail.com The Comparisons Grade Levels Comparisons Focal K-8 Points 9-12 pre-k through 12 Instructional programs from prekindergarten

5. Multiple regression

5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

MATH 140 HYBRID INTRODUCTORY STATISTICS COURSE SYLLABUS

MATH 140 HYBRID INTRODUCTORY STATISTICS COURSE SYLLABUS Instructor: Mark Schilling Email: mark.schilling@csun.edu (Note: If your CSUN email address is not one you use regularly, be sure to set up automatic

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

Outline: Demand Forecasting

Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. 1. Factor x 2-5x + 6. 2. Factor x 2-4x - 5.

TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. Factor x 2-5x + 6. 2. Factor x 2-4x - 5. 3. Solve: (x + 2)(x - 3) = 0 x(x - 3)(x + 4) = 0 4. Solve by factoring: x 2 + x + 2 = 0. 5. Solve by

Calibration and Linear Regression Analysis: A Self-Guided Tutorial

Calibration and Linear Regression Analysis: A Self-Guided Tutorial Part 1 Instrumental Analysis with Excel: The Basics CHM314 Instrumental Analysis Department of Chemistry, University of Toronto Dr. D.

MATH THAT MAKES ENTS

The Bureau of Labor statistics share this data to describe the difference in earnings and unemployment rates by the amount of education attained. (1) Take a look at this table, describe what you notice

Simple Linear Regression

STAT 101 Dr. Kari Lock Morgan Simple Linear Regression SECTIONS 9.3 Confidence and prediction intervals (9.3) Conditions for inference (9.1) Want More Stats??? If you have enjoyed learning how to analyze

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data Chapter Focus Questions What are the benefits of graphic display and visual analysis of behavioral data? What are the fundamental

THE COST OF COLLEGE EDUCATION PROJECT PACKET

THE COST OF COLLEGE EDUCATION PROJECT PACKET Introduction We live in a society where a college education is considered the norm and not the exception. While everyone is expected to attend a college or

Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1

Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally

REVIEW SECTION I: CHAPTERS 1-3 SOLUTIONS

REVIEW SECTION I: CHAPTERS 1-3 SOLUTIONS 1. Driver-side and passenger-side air bags are installed in all new cars to prevent serious or fatal injury in an automobile crash. However, air bags have been

11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

Week 1. Exploratory Data Analysis

Week 1 Exploratory Data Analysis Practicalities This course ST903 has students from both the MSc in Financial Mathematics and the MSc in Statistics. Two lectures and one seminar/tutorial per week. Exam

The North Carolina Health Data Explorer

1 The North Carolina Health Data Explorer The Health Data Explorer provides access to health data for North Carolina counties in an interactive, user-friendly atlas of maps, tables, and charts. It allows

SPSS Manual for Introductory Applied Statistics: A Variable Approach

SPSS Manual for Introductory Applied Statistics: A Variable Approach John Gabrosek Department of Statistics Grand Valley State University Allendale, MI USA August 2013 2 Copyright 2013 John Gabrosek. All

Manhattan Center for Science and Math High School Mathematics Department Curriculum

Content/Discipline Algebra 1 Semester 2: Marking Period 1 - Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

Tennessee Department of Education. Task: Sally s Car Loan

Tennessee Department of Education Task: Sally s Car Loan Sally bought a new car. Her total cost including all fees and taxes was \$15,. She made a down payment of \$43. She financed the remaining amount

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these

Variables. Exploratory Data Analysis

Exploratory Data Analysis Exploratory Data Analysis involves both graphical displays of data and numerical summaries of data. A common situation is for a data set to be represented as a matrix. There is

Introduction to Linear Regression

14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations:

Many Word problems result in Quadratic equations that need to be solved. Some typical problems involve the following equations: Quadratic Equations form Parabolas: Typically there are two types of problems:

Gas Money Gas isn t free. In fact, it s one of the largest expenses many people have each month.

Gas Money Gas isn t free. In fact, it s one of the largest expenses many people have each month. For the sake of this project, let s say that you drive an average of 300 miles each week (300 x 4 = 1200

Keystone National Middle School Math Level 8 Placement Exam

Keystone National Middle School Math Level 8 Placement Exam 1) A cookie recipe calls for the following ingredients: 2) In the quadrilateral below, find the measurement in degrees for x? 1 ¼ cups flour

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event

Unit 31: One-Way ANOVA

Unit 31: One-Way ANOVA Summary of Video A vase filled with coins takes center stage as the video begins. Students will be taking part in an experiment organized by psychology professor John Kelly in which

Dr. Katiraie Practice Quiz 2 on Sections 3.1 and 3.2 Name: Date:

Dr. Katiraie Practice Quiz 2 on Sections 3.1 and 3.2 Name: Date: 1. Suppose that a music club charges \$12 per CD but offers a 5% discount on orders larger than 10 CDs. Then the cost per order is a linear

Logs Transformation in a Regression Equation

Fall, 2001 1 Logs as the Predictor Logs Transformation in a Regression Equation The interpretation of the slope and intercept in a regression change when the predictor (X) is put on a log scale. In this

Indiana Academic Standards Mathematics: Probability and Statistics

Indiana Academic Standards Mathematics: Probability and Statistics 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Probability and Statistics are the result of

Mario Guarracino. Regression

Regression Introduction In the last lesson, we saw how to aggregate data from different sources, identify measures and dimensions, to build data marts for business analysis. Some techniques were introduced

Introduction to Environmental Statistics. The Big Picture. Populations and Samples. Sample Data. Examples of sample data

A Few Sources for Data Examples Used Introduction to Environmental Statistics Professor Jessica Utts University of California, Irvine jutts@uci.edu 1. Statistical Methods in Water Resources by D.R. Helsel

Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

Part 1 : 07/27/10 21:30:31

Question 1 - CIA 593 III-64 - Forecasting Techniques What coefficient of correlation results from the following data? X Y 1 10 2 8 3 6 4 4 5 2 A. 0 B. 1 C. Cannot be determined from the data given. D.

The Application of Statistics Education Research in My Classroom

The Application of Statistics Education Research in My Classroom Joy Jordan Lawrence University Key Words: Computer lab, Data analysis, Knowledge survey, Research application Abstract A collaborative,

Student Activity: To investigate an ESB bill

Student Activity: To investigate an ESB bill Use in connection with the interactive file, ESB Bill, on the Student s CD. 1. What are the 2 main costs that contribute to your ESB bill? 2. a. Complete the

AP Statistics 2005 Scoring Guidelines

AP Statistics 2005 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college