Chapter 8 MOBILE IP AND TCP

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 8 MOBILE IP AND TCP"

Transcription

1 Distributed Computing Group Chapter 8 MOBILE IP AND TCP Mobile Computing Summer 2002 Overview Network Protocols / Mobile IP Motivation Data transfer Encapsulation Problems DHCP Mobile Transport Layer / TCP Motivation Various TCP mechanisms Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/2 Motivation for Mobile IP Requirements to Mobile IP (RFC 2002) Routing based on IP destination address, prefix (e.g ) determines physical subnet change of physical subnet implies change of IP address to have a topological correct address (standard IP) or needs special entries in the routing tables Changing the IP-address? adjust the host IP address depending on the current location almost impossible to find a mobile system, DNS updates are too slow TCP connections break security problems Change/Add routing table entries for mobile hosts? worldwide! does not scale with the number of mobile hosts and frequent changes in their location Compatibility support of the same layer 2 protocols as IP no changes to current end-systems and s required mobile end-systems can communicate with fixed systems Transparency mobile end-systems keep their IP address continuation of communication after interruption of link possible point of connection to the fixed can be changed Efficiency and scalability only little additional messages to the mobile system required (connection typically via a low bandwidth radio link) world-wide support of a large number of mobile systems Security authentication of all messages Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/3 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/4

2 Example Data transfer to the mobile system 2 home (physical home for the ) end-system mobile end-system (current physical for the ) home sender 1 3 receiver 1. Sender sends to the IP address of, intercepts packet (proxy ARP) 2. tunnels packet to COA, here, by encapsulation 3. forwards the packet to the Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/5 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/6 Data transfer from the mobile system Terminology home receiver 1 sender 1. Sender sends to the IP address of the receiver as usual, works as default Mobile Node () system (node) that can change the point of connection to the without changing its IP address Home Agent () system in the home of the, typically a registers the location of the, tunnels IP grams to the COA Foreign Agent () system in the current of the, typically a typically the default for the Care-of Address (COA) address of the current tunnel end-point for the (at or ) actual location of the from an IP point of view can be chosen, e.g., via DHCP Correspondent Node () Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/7 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/8

3 Overview Network integration home home COA Agent Advertisement and periodically send advertisement messages into their physical subnets listens to these messages and detects, if it is in the home or a (standard case for home ) reads a COA from the advertisement messages Registration (always limited lifetime!) signals COA to the via the, acknowledges via to these actions have to be secured by authentication Advertisement advertises the IP address of the (as for fixed systems), i.e. standard routing information s adjust their entries, these are stable for a longer time ( responsible for a over a longer period of time) packets to the are sent to the, independent of changes in COA/ Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/9 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/10 Agent advertisement Registration type #addresses code addr. size checksum lifetime address 1 preference level 1 address 2 preference level 2... type length sequence number lifetime R B H F M G V reserved COA 1 COA 2... : : t request request reply reply t request reply Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/11 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/12

4 Mobile IP request Tunneling and Encapsulation type S B DMG V rsv home address lifetime home agent COA identification new IP header original IP header new original extensions... outer header inner header original Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/13 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/14 IP-in-IP Encapsulation Minimal Encapsulation Mandatory in RFC 2003 tunnel between and COA optional avoids repetition of identical fields such as TTL, IHL, version, TOS only applicable for unfragmented packets, no space left for fragment identification ver. IHL TOS length IP identification flags fragment offset TTL IP-in-IP IP checksum IP address of Care-of address COA ver. IHL TOS length IP identification flags fragment offset TTL lay. 4 prot. IP checksum IP address of IP address of TCP/UDP/... payload ver. IHL TOS length IP identification flags fragment offset TTL min. encap. IP checksum IP address of care-of address COA lay. 4 protoc. S reserved IP checksum IP address of IP address of (only if S=1) TCP/UDP/... payload Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/15 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/16

5 Generic Routing Encapsulation Optimization of packet forwarding ver. IHL TOS length IP identification flags fragment offset TTL GRE IP checksum IP address of Care-of address COA CR K S s rec. rsv. ver. protocol checksum (optional) offset (optional) key (optional) sequence number (optional) routing (optional) ver. IHL TOS length IP identification flags fragment offset TTL lay. 4 prot. IP checksum IP address of IP address of outer header new header GRE header original header original header new original original Triangular Routing sender sends all packets via to higher latency and load Solutions sender learns the current location of direct tunneling to this location informs a sender about the location of big security problems Change of packets on-the-fly during the change can be lost new informs old to avoid packet loss, old now forwards remaining packets to new this information also enables the old to release resources for the TCP/UDP/... payload Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/17 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/18 Change of agent Data transfer from the mobile system old new request update ACK 1 warning update ACK changes location home sender update ACK t receiver Problems: Firewall at TTL Multicast Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/19 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/20

6 Reverse tunneling (RFC 2344) Mobile IP with reverse tunneling home receiver sender 1. sends to 2. tunnels packets to by encapsulation 3. forwards the packet to the receiver (standard case) Router accept often only topologically correct addresses (firewall!) a packet from the encapsulated by the is now topologically correct furthermore multicast and TTL problems solved (TTL in the home correct, but is too far away from the receiver) Reverse tunneling does not solve problems with firewalls, the reverse tunnel can be abused to circumvent security mechanisms (tunnel hijacking) optimization of paths, i.e. packets will be forwarded through the tunnel via the to a sender (double triangular routing) Reverse tunneling is backwards compatible the extensions can be implemented easily and cooperate with current implementations without these extensions Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/21 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/22 Mobile IP and IPv6 DHCP: Dynamic Host Configuration Protocol Mobile IP was developed for IPv4, but IPv6 simplifies the protocols security is integrated and not an add-on, authentication of is included COA can be assigned via auto-configuration (DHCPv6 is one candidate), every node has address auto-configuration no need for a separate, all s perform advertisement which can be used instead of the special agent advertisement can signal a sender directly the COA, sending via not needed in this case (automatic path optimization) soft hand-over, i.e. without packet loss, between two subnets is supported sends the new COA to its old the old encapsulates all incoming packets for the and forwards them to the new COA authentication is always granted Application simplification of installation and maintenance of ed computers supplies systems with all necessary information, such as IP address, DNS server address, domain name, subnet mask, default etc. enables automatic integration of systems into an Intranet or the, can be used to acquire a COA for Mobile IP Client/Server-Model the client sends via a MAC broadcast a request to the DHCP server (might be via a DHCP relay) DHCPDISCOVER DHCPDISCOVER client relay server client Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/23 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/24

7 time DHCP - protocol mechanisms DHCP characteristics server (not selected) determine the configuration DHCPDISCOVER DHCPOFFER DHCPREQUEST (reject) client initialization collection of replies selection of configuration initialization completed DHCPDISCOVER DHCPOFFER DHCPREQUEST (options) DHCPACK server (selected) determine the configuration confirmation of configuration Server several servers can be configured for DHCP, coordination not yet standardized (i.e., manual configuration) Renewal of configurations IP addresses have to be requested periodically, simplified protocol Options available for s, subnet mask, NTP ( time protocol) timeserver, SLP (service location protocol) directory, DNS (domain name system) Security problems no authentication of DHCP information specified release DHCPRELEASE delete context Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/25 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/26 TCP Overview TCP slow-start Transport control protocols typically designed for Fixed end-systems in wired s Research activities Performance Congestion control Efficient retransmissions TCP congestion control packet loss in fixed s typically due to (temporary) overload situations have to discard packets as soon as the buffers are full TCP recognizes congestion only indirectly via missing acknowledgements, retransmissions unwise, they would only contribute to the congestion and make it even worse sender calculates a congestion window for a receiver start with a congestion window size equal to one segment exponential increase* of the congestion window up to the congestion threshold, then linear increase missing acknowledgement causes the reduction of the congestion threshold to one half of the current congestion window congestion window starts again with one segment *slow-start vs. exponential increase: window is increased by one for each acknowledgement, that is, In other words, the slow-start mechanism is rather a quick-start. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/27 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/28

8 TCP fast retransmit/fast recovery TCP on lossy (wireless) link TCP sends an acknowledgement only after receiving a packet If a sender receives several acknowledgements for the same packet, this is due to a gap in received packets at the receiver Sender can retransmit missing packets (fast retransmit) Also, the receiver got all packets up to the gap and is actually receiving packets Therefore, packet loss is not due to congestion, continue with current congestion window (fast recovery) Without fast retransmit/fast recovery [Lakshman/Madhow] In the following simplied analysis, we do consider neither fast retransmit nor fast recovery. Very high loss probability High loss probability Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/29 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/30 Simple analysis model for lossy TCP Simple analysis of lossy TCP Segment loss probability q = 1 p We are interested in the throughput T If there are no losses (and all ACKs are received in time): Number of segments S first doubles up to threshold W (slow start phase) Number of segments S is incremented after S successful ACKs At some point we reach the bandwidth of the channel B If there is a loss We go back to S = 1 For not too high error probability q we are usually in the congestion mode (that is: not the slow start mode). The expected number of successful transmission E before we get an error is In the equilibrium, we are in the states 1, 2, 3,, S-1, S, and then back to 1 because we have a missing ACK, that is, we have S S 2 /2 successful transmissions. Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/31 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/32

9 Lossy TCP: Graphical Interpretation Mobility and TCP Plot of T(p), with B = 50 Note that 1% faulty transmissions is enough to degrade the throughput to about 14% of the bandwidth. 10% error rate gives about 4% of possible bandwidth. The higher the bandwidth, the worse the relative loss. TCP assumes congestion if packets are dropped typically wrong in wireless s, here we often have packet loss due to transmission errors furthermore, mobility itself can cause packet loss, if e.g. a mobile node roams from one access point (e.g. agent in Mobile IP) to another while there are still packets in transit to the wrong access point and forwarding is not possible The performance of an unchanged TCP degrades severely however, TCP cannot be changed fundamentally due to the large base of installation in the fixed, TCP for mobility has to remain compatible the basic TCP mechanisms keep the whole together Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/33 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/34 Indirect TCP (I-TCP) I-TCP socket and state migration segments the connection no changes to the TCP protocol for hosts connected to the wired, millions of computers use (variants of) this protocol optimized TCP protocol for mobile hosts splitting of the TCP connection at, e.g., the agent into two TCP connections, no real end-to-end connection any longer hosts in the fixed part of the net do not notice the characteristics of the wireless part socket migration and state transfer access point 1 mobile host access point ( agent) wired mobile host access point 2 wireless TCP standard TCP Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/35 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/36

10 Indirect TCP Advantages and Disadvantages + no changes in the fixed necessary, no changes for the hosts (TCP protocol) necessary, all current optimizations to TCP still work + transmission errors on the wireless link do not propagate into the fixed + simple to control, mobile TCP is used only for one hop, between a agent and a mobile host + therefore, a very fast retransmission of packets is possible, the short delay on the mobile hop is known loss of end-to-end semantics, an acknowledgement to a sender does now not any longer mean that a receiver really got a packet, agents might crash higher latency possible due to buffering of with the agent and forwarding to a new agent high trust at agent; end-to-end encryption impossible Snooping TCP Transparent extension of TCP within the agent buffering of packets sent to the mobile host lost packets on the wireless link (both directions!) will be retransmitted immediately by the mobile host or agent, respectively (so called local retransmission) the agent therefore snoops the packet flow and recognizes acknowledgements in both directions, it also filters ACKs changes of TCP only within the agent mobile host local retransmission snooping of ACKs agent buffering of end-to-end TCP connection wired correspondent host Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/37 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/38 Snooping TCP Data transfer to the mobile host buffers until it receives ACK of the MH, detects packet loss via duplicated ACKs or time-out fast retransmission possible, transparent for the fixed Data transfer from the mobile host detects packet loss on the wireless link via sequence numbers, answers directly with a NACK to the MH MH can now retransmit with only a very short delay Integration of the MAC layer MAC layer often has similar mechanisms to those of TCP thus, the MAC layer can already detect duplicated packets due to retransmissions and discard them Problems snooping TCP does not isolate the wireless link as good as I-TCP snooping might be useless depending on encryption schemes Mobile TCP Special handling of lengthy and/or frequent disconnections M-TCP splits as I-TCP does unmodified TCP fixed to supervisory host (SH) optimized TCP SH to MH Supervisory host no caching, no retransmission monitors all packets, if disconnection detected set sender window size to 0 sender automatically goes into persistent mode old or new SH re-open the window + maintains end-to-end semantics, supports disconnection, no buffer forwarding does not solve problem of bad wireless link, only disconnections adapted TCP on wireless link; new software needed Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/39 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/40

11 Fast retransmit/fast recovery Transmission/time-out freezing Problem: Change of agent often results in packet loss TCP reacts with slow-start although there is no congestion Solution: Forced fast retransmit as soon as the mobile host has registered with a new agent, the MH sends (three) duplicated acknowledgements on purpose this forces the fast retransmit mode at the communication partners additionally, the TCP on the MH is forced to continue sending with the actual window size and not to go into slow-start after + simple changes result in significant higher performance what a hack Mobile hosts can be disconnected for a longer time no packet exchange possible, e.g., in a tunnel, disconnection due to overloaded cells or multiplex with higher priority traffic TCP disconnects after time-out completely TCP freezing MAC layer is often able to detect interruption in advance MAC can inform TCP layer of upcoming loss of connection TCP stops sending, but does now not assume a congested link MAC layer signals again if reconnected + scheme is independent of TCP on mobile host has to be changed, mechanism depends on MAC layer Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/41 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/42 Selective retransmission Transaction oriented TCP TCP acknowledgements are often cumulative ACK n acknowledges correct and in-sequence receipt of packets up to n if single packets are missing quite often a whole packet sequence beginning at the gap has to be retransmitted (go-back-n), thus wasting bandwidth, especially if the bandwidth-delay product is high. Selective retransmission as one solution RFC2018 allows for acknowledgements of single packets, not only acknowledgements of in-sequence packet streams without gaps sender can now retransmit only the missing packets + much higher efficiency more complex software in a receiver, more buffer needed at the receiver TCP phases connection setup, transmission, connection release using 3-way-handshake needs 3 packets for setup and release, respectively thus, even short messages need a minimum of 7 packets! Transaction oriented TCP RFC1644, T-TCP, describes a TCP version to avoid this overhead connection setup, transfer and connection release can be combined thus, only 2 or 3 packets are needed + Efficiency Requires changed TCP Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/43 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/44

12 Comparison of different approaches for a mobile TCP Approach Mechanism Advantages Disadvantages Indirect TCP splits TCP connection into two connections isolation of wireless link, simple loss of TCP semantics, higher latency at handover Snooping TCP M-TCP snoops and transparent for end-toend acknowledgements, local connection, MAC retransmission integration possible splits TCP connection, chokes sender via window size Fast retransmit/ avoids slow-start after fast recovery roaming Transmission/ freezes TCP state at time-out freezing disconnect, resumes after reconnection Selective retransmission Transaction oriented TCP Maintains end-to-end semantics, handles long term and frequent disconnections simple and efficient independent of content or encryption, works for longer interrupts problematic with encryption, bad isolation of wireless link Bad isolation of wireless link, processing overhead due to bandwidth management mixed layers, not transparent changes in TCP required, MAC dependant retransmit only lost very efficient slightly more complex receiver software, more buffer needed combine connection setup/release and transmission Efficient for certain applications changes in TCP required, not transparent [Schiller] Distributed Computing Group MOBILE COMPUTING R. Wattenhofer 8/45

TCP for Wireless Networks

TCP for Wireless Networks TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted

More information

Mobile IP and DHCP. Motivation for Mobile IP. Terminology

Mobile IP and DHCP. Motivation for Mobile IP. Terminology Motivation for Mobile IP Motivation transfer Encapsulation Security Mobile IP and DHCP Problems DHCP Dr. Ka-Cheong Leung CSIS 7304 The Wireless and Mobile Computing 1 Routing based on IP destination address,

More information

Chapter 6 MOBILE IP AND TCP

Chapter 6 MOBILE IP AND TCP Distributed Computing Group Chapter 6 MOBILE IP AND TCP Mobile Computing Summer 2004 Overview Network Protocols / Mobile IP Motivation Data transfer Encapsulation Problems DHCP Mobile Transport Layer /

More information

Mobile Communications Chapter 9: Mobile Transport Layer

Mobile Communications Chapter 9: Mobile Transport Layer Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery

More information

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Wireless Networks: Network Protocols/Mobile IP

Wireless Networks: Network Protocols/Mobile IP Wireless Networks: Network Protocols/Mobile IP Mo$va$on Data transfer Encapsula$on Security IPv6 Problems DHCP Adapted from J. Schiller, Mobile Communications 1 Mo$va$on for Mobile IP Rou$ng based on IP

More information

MOBILE COMPUTING. Dynamic Host Configuration Protocol

MOBILE COMPUTING. Dynamic Host Configuration Protocol MOBILE COMPUTING CSE 40814/60814 Fall 2015 Dynamic Host Configuration Protocol Application simplification of installation and maintenance of ed computers supplies systems with all necessary information,

More information

IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP

IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS

More information

Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff.

Mobile Routing. When a host moves, its point of attachment in the network changes. This is called a handoff. Mobile Routing Basic Notions of Mobility When a host moves, its point of attachment in the changes. This is called a handoff. The point of attachment is a base station (BS) for cellular, or an access point

More information

TCP in Wireless Mobile Networks

TCP in Wireless Mobile Networks TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer

More information

Network Layer Mobile IP Routing in Ad-Hoc Networks. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme

Network Layer Mobile IP Routing in Ad-Hoc Networks. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the

More information

Tomás P. de Miguel DIT-UPM. dit UPM

Tomás P. de Miguel DIT-UPM. dit UPM Tomás P. de Miguel DIT- 15 12 Internet Mobile Market Phone.com 15 12 in Millions 9 6 3 9 6 3 0 1996 1997 1998 1999 2000 2001 0 Wireless Internet E-mail subscribers 2 (January 2001) Mobility The ability

More information

Mobile Computing/ Mobile Networks

Mobile Computing/ Mobile Networks Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

CS268 Exam Solutions. 1) End-to-End (20 pts)

CS268 Exam Solutions. 1) End-to-End (20 pts) CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person

More information

Mobile Communications Chapter 8: Network Protocols/Mobile IP

Mobile Communications Chapter 8: Network Protocols/Mobile IP Mobile Communications Chapter 8: Network Protocols/Mobile IP Motivation Data transfer Encapsulation Security IPv6 Problems Micro mobility support DHCP Ad-hoc networks Routing protocols Prof. Dr.-Ing. Jochen

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

IPv6, Mobile IP & Mobile IPv6. Tolga Numanoglu

IPv6, Mobile IP & Mobile IPv6. Tolga Numanoglu IPv6, Mobile IP & Mobile IPv6 Tolga Numanoglu Outline IPv6 Background Features Details Mobile IP Mobile Node, Home Agent, Foreign Agent Mobile IPv6 What s different? IPv6 Background IP has been patched

More information

Internet Protocols. Supporting Protocols and Framing. Updated: 9/30/14

Internet Protocols. Supporting Protocols and Framing. Updated: 9/30/14 Internet Protocols Supporting Protocols and Framing Updated: 9/30/14 Supporting Protocols ARP / RARP BOOTP ICMP DHCP NAT IP Supporting Protocols IP protocol only deals with the data transfer (best-effort)

More information

Ethernet. Ethernet. Network Devices

Ethernet. Ethernet. Network Devices Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking

More information

By: Chunyan Fu, PhD, Ericsson Canada

By: Chunyan Fu, PhD, Ericsson Canada TCP/UDP Basics By: Chunyan Fu, PhD, Ericsson Canada Internet Model Application TCP/UDP IP Link layer Physical layer Transport Service Overview Provide service to application layer by using the service

More information

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)

Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1) Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including

More information

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi

Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, dlagutin@cc.hut.fi 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols

More information

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology

TCP/IP Networking for Wireless Systems. Integrated Communication Systems Group Ilmenau University of Technology TCP/IP Networking for Wireless Systems Integrated Communication Systems Group Ilmenau University of Technology Content Internet Protocol Suite Link Layer: Ethernet, PPP, ARP, MAC Addressing Network Layer:

More information

TCP PERFORMANCE IN MOBILE-IP

TCP PERFORMANCE IN MOBILE-IP TCP PERFORMANCE IN MOBILE-IP Foo Chun Choong Department of Electrical Engineering, National University of Singapore ABSTRACT The throughput performance of TCP in Mobile-IP [1] was investigated. Compared

More information

Internet Protocol: IP packet headers. vendredi 18 octobre 13

Internet Protocol: IP packet headers. vendredi 18 octobre 13 Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)

More information

TCP - Introduction. Features of TCP

TCP - Introduction. Features of TCP TCP - Introduction The Internet Protocol (IP) provides unreliable datagram service between hosts The Transmission Control Protocol (TCP) provides reliable data delivery It uses IP for datagram delivery

More information

UG4/MSc Computer Networking (CN) Fall 09. Mobility

UG4/MSc Computer Networking (CN) Fall 09. Mobility UG/MSc Computer Networking (CN) Fall 09 Mobility What is Mobility? Spectrum of mobility, from the perspective: no mobility high mobility mobile wireless user, using same access point mobile user, connecting/

More information

Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744. The problem

Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744. The problem Mobility (and philosophical questions about names and identity) David Andersen CMU CS 15-744 The problem How to support mobile users What do we mean by support? Make it easy and convenient to effectively

More information

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)

TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP) TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page

More information

Internetworking. Mobile IP. Literature: Forouzan, TCP/IP Protocol Suite: Ch 24

Internetworking. Mobile IP. Literature: Forouzan, TCP/IP Protocol Suite: Ch 24 Internetworking Mobile IP Literature: Forouzan, TCP/IP Protocol Suite: Ch 24 Mobile use of Internet Mobility, Wireless and Portable are different terms Mobility: allows systems to move from one (network)

More information

William Stallings Data and Computer Communications. Chapter 15 Internetwork Protocols

William Stallings Data and Computer Communications. Chapter 15 Internetwork Protocols William Stallings Data and Computer Communications Chapter 15 Internetwork Protocols Internetworking Terms (1) Communications Network Facility that provides data transfer service An internet Collection

More information

Network Security TCP/IP Refresher

Network Security TCP/IP Refresher Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)

More information

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes

Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes Dynamic Host Configuration Protocol (DHCP) 1 1 Dynamic Assignment of IP addresses Dynamic assignment of IP addresses is desirable for several reasons: IP addresses are assigned on-demand Avoid manual IP

More information

Bluetooth and Mobile IP

Bluetooth and Mobile IP Bluetooth and Mobile IP Bluetooth Consortium: Ericsson, Intel, IBM, Nokia, Toshiba Scenarios: o connection of peripheral devices loudspeaker, joystick, headset o support of ad-hoc networking small devices,

More information

Mobile IP Protocols CHAPTER 25 25.1 INTRODUCTION

Mobile IP Protocols CHAPTER 25 25.1 INTRODUCTION Handbook of Wireless Networks and Mobile Computing, Edited by Ivan Stojmenović Copyright 2002 John Wiley & Sons, Inc. ISBNs: 0-471-41902-8 (Paper); 0-471-22456-1 (Electronic) CHAPTER 25 Mobile IP Protocols

More information

TCP/IP Tutorial. Transmission Control Protocol Internet Protocol

TCP/IP Tutorial. Transmission Control Protocol Internet Protocol TCP/IP Tutorial Transmission Control Protocol Internet Protocol 1 TCP/IP & OSI In OSI reference model terminology -the TCP/IP protocol suite covers the network and transport layers. TCP/IP can be used

More information

(Refer Slide Time: 01:38 01:37)

(Refer Slide Time: 01:38 01:37) Computer Networks Prof. S. Ghosh Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No: 29 IP Version 6 & Mobile IP Good day, in the last lecture we discussed

More information

Static and Dynamic Network Configuration

Static and Dynamic Network Configuration CHAPTER 6 This chapter describes: Static Networks Dynamic Networks Static Networks The mobile access router can be part of a static network or a dynamic network. A static network supports stub routers

More information

Mobility on IPv6 Networks

Mobility on IPv6 Networks Mobility on IPv6 Networks Pedro M. Ruiz Project Manager Agora Systems S.A. Global IPv6 Summit Madrid 13-15 March 2002 Pedro M. Ruiz (c) Agora Systems S.A, 2002 1 Outline Motivation MIPv6 architecture MIPv6

More information

Module 6. Internetworking. Version 2 CSE IIT, Kharagpur

Module 6. Internetworking. Version 2 CSE IIT, Kharagpur Module 6 Internetworking Lesson 2 Internet Protocol (IP) Specific Instructional Objectives At the end of this lesson, the students will be able to: Explain the relationship between TCP/IP and OSI model

More information

Mobility Management 嚴 力 行 高 雄 大 學 資 工 系

Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management 嚴 力 行 高 雄 大 學 資 工 系 Mobility Management in Cellular Systems Cellular System HLR PSTN MSC MSC VLR BSC BSC BSC cell BTS BTS BTS BTS MT BTS BTS BTS BTS HLR and VLR HLR (Home Location Register)

More information

Final for ECE374 05/06/13 Solution!!

Final for ECE374 05/06/13 Solution!! 1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

154 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 which had been found on MIPv4 protocol. IPv6 is derived from I

154 The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 which had been found on MIPv4 protocol. IPv6 is derived from I The International Arab Journal of Information Technology, Vol. 4, No. 2, April 2007 153 Performance Analysis of Mobile IPv4 and Mobile IPv6 Fayza Nada Faculty of Computers and information, Suez Canal University,

More information

HOST AUTO CONFIGURATION (BOOTP, DHCP)

HOST AUTO CONFIGURATION (BOOTP, DHCP) Announcements HOST AUTO CONFIGURATION (BOOTP, DHCP) I. HW5 online today, due in week! Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University copyright 2005 Douglas S. Reeves 2 I. Auto configuration

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

Application Protocols for TCP/IP Administration

Application Protocols for TCP/IP Administration Application Protocols for TCP/IP Administration BootP, TFTP, DHCP Agenda BootP TFTP DHCP BootP, TFTP, DHCP, v4.4 2 Page 60-1 BootP (RFC 951, 1542, 2132) BootP was developed to replace RARP capabilities

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks

Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Chapter 9: Transport Layer and Security Protocols for Ad Hoc Wireless Networks Introduction Issues Design Goals Classifications TCP Over Ad Hoc Wireless Networks Other Transport Layer Protocols Security

More information

6 Mobility Management

6 Mobility Management Politecnico di Milano Facoltà di Ingegneria dell Informazione 6 Mobility Management Reti Mobili Distribuite Prof. Antonio Capone Introduction Mobility management allows a terminal to change its point of

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

Scalable Support for Transparent Mobile Host Internetworking

Scalable Support for Transparent Mobile Host Internetworking Scalable Support for Transparent Mobile Host Internetworking David B. Johnson Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 dbj@cs.cmu.edu Abstract

More information

How do I get to www.randomsite.com?

How do I get to www.randomsite.com? Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local

More information

Mobile IP. 10.1 The Requirements of Mobile IP CHAPTER 10. Adrian Farrel

Mobile IP. 10.1 The Requirements of Mobile IP CHAPTER 10. Adrian Farrel CHAPTER 10 Mobile IP Adrian Farrel Today s computers are smaller and more mobile than they once were. Processing power that used to take up a whole air-conditioned room can now be easily carried around

More information

Internet Protocol. Raj Jain. Washington University in St. Louis.

Internet Protocol. Raj Jain. Washington University in St. Louis. Internet Protocol Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 13-1 Overview! Internetworking

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various

More information

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP

Mobile IP. Bheemarjuna Reddy Tamma IIT Hyderabad. Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP Mobile IP Bheemarjuna Reddy Tamma IIT Hyderabad Source: Slides of Charlie Perkins and Geert Heijenk on Mobile IP IP Refresher Mobile IP Basics 3 parts of Mobile IP: Outline Advertising Care-of Addresses

More information

Congestions and Control Mechanisms n Wired and Wireless Networks

Congestions and Control Mechanisms n Wired and Wireless Networks International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst

More information

Announcements. CMPE 257: Wireless and Mobile Networking. Wireless Internet. Challenges. Homework on MAC up. Midterm moved to

Announcements. CMPE 257: Wireless and Mobile Networking. Wireless Internet. Challenges. Homework on MAC up. Midterm moved to CMPE 257: Wireless and Mobile Networking Announcements Homework on MAC up. Midterm moved to 05.10. Spring 2005 Wireless Internetworking CMPE 257 Spring 2005 1 CMPE 257 Spring 2005 2 Wireless Internet Extension

More information

Computer Networks. Chapter 5 Transport Protocols

Computer Networks. Chapter 5 Transport Protocols Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Troubleshooting Tools

Troubleshooting Tools Troubleshooting Tools An overview of the main tools for verifying network operation from a host Fulvio Risso Mario Baldi Politecnico di Torino (Technical University of Turin) see page 2 Notes n The commands/programs

More information

OSI Network Layer OSI Layer 3

OSI Network Layer OSI Layer 3 OSI Network Layer OSI Layer 3 Network Fundamentals Chapter 5 ١ Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device Examine the most

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Figure 5.1: Issues addressed by network layer protocols. (Figure by Forouzan)

Figure 5.1: Issues addressed by network layer protocols. (Figure by Forouzan) Chapter 5 Network Layer The main responsibility of a network layer protocol is host-to-host data delivery. In doing this, the network layer has to deal with network layer addressing, packetization and

More information

Improved Digital Media Delivery with Telestream HyperLaunch

Improved Digital Media Delivery with Telestream HyperLaunch WHITE PAPER Improved Digital Media Delivery with Telestream THE CHALLENGE Increasingly, Internet Protocol (IP) based networks are being used to deliver digital media. Applications include delivery of news

More information

Networking Semester 1 Final After Study Guide

Networking Semester 1 Final After Study Guide Networking Semester 1 Final After Study Guide The following have been found to be answered wrong by a majority of the class. The drag & drop questions are not partial credit questions. 1. Where do switches

More information

Lecture 6: Congestion Control

Lecture 6: Congestion Control Lecture 6: Congestion Control Overview Internet is a network of networks Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM

ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer. By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 UPRM ICOM 5026-090: Computer Networks Chapter 6: The Transport Layer By Dr Yi Qian Department of Electronic and Computer Engineering Fall 2006 Outline The transport service Elements of transport protocols A

More information

More Internet Support Protocols

More Internet Support Protocols Domain Name System (DNS) Ch 2.5 More Internet Support Protocols Problem statement: Average brain can easily remember 7 digits On average, IP addresses have 10.28 digits We need an easier way to remember

More information

5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network

5.0 Network Architecture. 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network 5.0 Network Architecture 5.1 Internet vs. Intranet 5.2 NAT 5.3 Mobile Network 1 5.1The Internet Worldwide connectivity ISPs connect private and business users Private: mostly dial-up connections Business:

More information

ProCurve Networking IPv6 The Next Generation of Networking

ProCurve Networking IPv6 The Next Generation of Networking ProCurve Networking The Next Generation of Networking Introduction... 2 Benefits from... 2 The Protocol... 3 Technology Features and Benefits... 4 Larger number of addresses... 4 End-to-end connectivity...

More information

TCP. Raj Jain. Professor of CIS The Ohio State University Columbus, OH 43210 Raj Jain 20-1

TCP. Raj Jain. Professor of CIS The Ohio State University Columbus, OH 43210  Raj Jain 20-1 TCP Professor of CIS Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 20-1 Overview Key features, Header format Mechanisms, Implementation choices Slow start congestion avoidance, Fast

More information

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall

We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall Chapter 10 Firewall Firewalls are devices used to protect a local network from network based security threats while at the same time affording access to the wide area network and the internet. Basically,

More information

This chapter covers the following topics: Characteristics of roaming Layer 2 roaming Layer 3 roaming and an introduction to Mobile IP

This chapter covers the following topics: Characteristics of roaming Layer 2 roaming Layer 3 roaming and an introduction to Mobile IP This chapter covers the following topics: Characteristics of roaming Layer 2 roaming Layer 3 roaming and an introduction to Mobile IP C H A P T E R 5 Mobility This book covers the major components of 802.11

More information

TCP over Wireless Networks

TCP over Wireless Networks TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/

More information

Network Protocol Configuration

Network Protocol Configuration Table of Contents Table of Contents Chapter 1 Configuring IP Addressing... 1 1.1 IP Introduction... 1 1.1.1 IP... 1 1.1.2 IP Routing Protocol... 1 1.2 Configuring IP Address Task List... 2 1.3 Configuring

More information

Mobile IP Part I: IPv4

Mobile IP Part I: IPv4 Mobile IP Part I: IPv4 Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-06/ 12-1 q Mobile

More information

Distributed Authentication Mechanism for Mobile IP Route Optimization

Distributed Authentication Mechanism for Mobile IP Route Optimization Distributed Authentication Mechanism for Mobile IP Route Optimization Neeraj Jaggi Department of ECSE Rensselaer Polytechnic Institute jaggin@rpi.edu Koushik Kar Department of ECSE Rensselaer Polytechnic

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There

More information

TCP in Wireless Networks

TCP in Wireless Networks Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems

More information

Transport and Network Layer Protocols Lab TCP/IP

Transport and Network Layer Protocols Lab TCP/IP Transport and Network Layer Protocols Lab TCP/IP Name: Date Experiment Performed: Group Members: TCP/IP lab Version 1.3, February 2004-1 - PART I: Internet Protocol (IP) Objective Internet Protocols are

More information

Internet Control Protocols Reading: Chapter 3

Internet Control Protocols Reading: Chapter 3 Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

CHAPTER 2 BACKGROUND OF INTERNET PROTOCOL

CHAPTER 2 BACKGROUND OF INTERNET PROTOCOL CHAPTER 2 BACKGROUND OF INTERNET PROTOCOL This chapter presents the background and the using of Internet Protocol version 4 (IPv4). The IPv4 addresses have some problems and limitations. Several solutions

More information

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding

Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

Autumn Oct 21, Oct 21, 2004 CS573: Network Protocols and Standards 1 Oct 21, 2004 CS573: Network Protocols and Standards 2

Autumn Oct 21, Oct 21, 2004 CS573: Network Protocols and Standards 1 Oct 21, 2004 CS573: Network Protocols and Standards 2 IPv4 IP: Addressing, ARP, Routing Protocols and Standards Autumn 2004-2005 IP Datagram Format IPv4 Addressing ARP and RARP IP Routing Basics Subnetting and Supernetting ICMP Address Translation (NAT) Dynamic

More information

Router Architecture Overview. Input Port Functions. Switching Via Memory. Three types of switching fabrics. Switching Via a Bus

Router Architecture Overview. Input Port Functions. Switching Via Memory. Three types of switching fabrics. Switching Via a Bus Router Architecture Overview Two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding grams from incoming to outgoing link Input Port Functions Physical layer: bit-level reception

More information

Guide to TCP/IP Fourth Edition. Chapter 9: TCP/IP Transport Layer Protocols

Guide to TCP/IP Fourth Edition. Chapter 9: TCP/IP Transport Layer Protocols Guide to TCP/IP Fourth Edition Chapter 9: TCP/IP Transport Layer Protocols Objectives Explain the key features and functions of the User Datagram Protocol and the Transmission Control Protocol Explain,

More information

Getting started with IPv6 on Linux

Getting started with IPv6 on Linux Getting started with IPv6 on Linux Jake Edge LWN.net jake@lwn.net LinuxCon North America 19 August 2011 History and Motivation IPng project July 1994 IPv6 - RFC 2460 December 1998 IPv5 - Internet Stream

More information

Networking Theory. Jeffrey Miller, Ph.D. CSCI 201L USC CSCI 201L

Networking Theory. Jeffrey Miller, Ph.D. CSCI 201L  USC CSCI 201L Networking Theory CSCI 201L Jeffrey Miller, Ph.D. HTTP://WWW-SCF.USC.EDU/~CSCI201 USC CSCI 201L Outline Networking Overview DNS IP Addressing Subnets DHCP Ports NAT Test Yourself USC CSCI 201L 2/24 Networking

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples.

This tutorial will help you in understanding IPv4 and its associated terminologies along with appropriate references and examples. About the Tutorial Internet Protocol version 4 (IPv4) is the fourth version in the development of the Internet Protocol (IP) and the first version of the protocol to be widely deployed. IPv4 is described

More information

High Performance VPN Solutions Over Satellite Networks

High Performance VPN Solutions Over Satellite Networks High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have

More information

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics

Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002

More information

IPv6 Advantages. www.compaq.com. Yanick Pouffary. Yanick.Pouffary@compaq.com

IPv6 Advantages. www.compaq.com. Yanick Pouffary. Yanick.Pouffary@compaq.com IPv6 Advantages Yanick Pouffary Yanick.Pouffary@compaq.com IPv6 FORUM A world-wide consortium of leading Internet vendors and Research and Education Networks The IPv6 FORUM mission To promote IPv6 in order

More information

[Prof. Rupesh G Vaishnav] Page 1

[Prof. Rupesh G Vaishnav] Page 1 Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the

More information

TCP/IP. IPv4 packet layout. IPv4 packet layout. Emin Gun Sirer

TCP/IP. IPv4 packet layout. IPv4 packet layout. Emin Gun Sirer IP TCP/IP Emin Gun Sirer Internetworking protocol Network layer Common packet format for the Internet Specifies what packets look like Fragments long packets into shorter packets Reassembles fragments

More information