7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers.

Size: px
Start display at page:

Download "7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers."

Transcription

1 APES Miller 17th ed. Chapter 3 Questions 5. Describe the 2 chemical equations used by autotrophs and heterotrophs to gain energy for chemical functions. Compare/contrast respiration to fossil fuel combustion in both process and efficiency. 6. Some scientists think chemosynthesis started life on earth. How does chemosynthesis work? What is the chemical energy source? How important do you think chemosynthesis is in our world systems today? 7. Use the dead tree in Fig 3-10 to describe the processes of detritus feeders and decomposers. 8. What are the chemical outputs of anaerobic respiration and fermentation? 9. Use the laws of thermodynamics to describe the flow arrows in Fig 3-11 and explain why these flows are one way. Describe where you think the heat goes? Add to your Venn Diagram (+VD). 10. Compare and contrast the diagrams of food chain, food web, and pyramid of energy flow and include the roles of producers, primary consumers, secondary consumers, and decomposers. 12. Explain the measure unit kcal./m2/yr for GPP and NPP. Why is NPP a more important measure than GPP? What percentage of total NPP do humans use? How could we change this estimate? 14. What are the 7 unique properties of water? Describe a situation where each property is needed. 15. Which processes in the water cycle (Fig 3-16) are affected by gravity? by sun energy? Rank the 4 human impacts on the water cycle. Explain why your top pick needs to be addressed first. +VD 16. Which processes in the carbon cycle (Fig 3-19) are affected by gravity? by sun energy? Rank the 5 human impacts on the carbon cycle. Explain why your top pick needs to be addressed first. 17. Describe how bacteria change the chemical form of N in each step of the nitrogen cycle: nitrogen fixation, nitrification, ammonification, and denitrification. How does N move through the spheres? What are the 5 ways we interfere with the nitrogen cycle? 19. Why do living organisms need P? Why is P limiting to growth? How do we affect the P cycle? 20. Describe ways S enters the atmosphere? In what forms? Describe 3 ways we affect the S cycle?

2 5. Autotrophs use the photosynthesis equation. Heterotrophs reverse it. a. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy (Heterotrophs) b. 6CO 2 + 6H 2 O + solar energy C 6 H 12 O 6 + 6O 2 (Autotrophs) c. CH 4 + 2O 2 CO 2 + 2H 2 O + energy i. One molecule of methane, combined with two oxygen molecules, react to form a carbon dioxide molecule, and two water molecules usually given off as steam or water vapor during the reaction and energy. Natural gas is the cleanest burning fossil fuel. Coal and oil, the other fossil fuels, are more chemically complicated than natural gas, and when combusted, release a variety of potentially harmful air pollutants. Burning methane releases only carbon dioxide and water. Since natural gas is mostly methane, the combustion of natural gas releases fewer byproducts than other fossil fuels. 6. Process where specialized bacteria can convert simple inorganic compounds from their environment into more complex nutrient compounds without using sunlight. Bacteria living near hydrothermal vents draw energy from hydrogen sulfide gas (H 2 S) escaping through the vent. 7. Detritus feeders and decomposers feed on parts of the log and convert its complex organic chemicals into simpler inorganic nutrients that can be taken up by autotrophic producers. Detritus feeders and decomposers are a vital part of the nutrient cycling process. 8. The chemical outputs of anaerobic respiration and fermentation, instead of carbon dioxide and water, are methane gas (CH 4 ), ethyl alcohol (C 2 H 6 O), acetic acid (C 2 H 4 O 2 ), and hydrogen sulfide (H 2 S). 9. Nutrient cycling (conservation of matter) and the one-way flow of energy first from the sun, then through organisms, and finally into the environment as low-quality heat link all of these components. 10. (Show 3-12 and 3-13) a. A food chain is a sequence of organisms, each of which serves as a source of food or energy for the next. It shows how chemical energy and nutrients move along the same pathways from one organism to another through the trophic levels in an ecosystem. VERY SIMPLIFIED. A food web represents reality more, as a complex network of interconnected food chains really develop in ecosystems. Trophic levels can be assigned. Basically chains and webs show how producers, consumers and decomposers are connected to one another as energy flows through the ecosystem it represents. b. Energy flow pyramids explain the percentage of usable chemical energy that is transferred as biomass from one trophic level to the next. The more trophic levels, the greater the cumulative loss of usable energy. (Show 3-14) 12. GPP/NPP (Show 3-15) a. Gross Primary Productivity is the rate at which an ecosystem s producers convert solar energy into chemical energy in the form of biomass found in their tissues. Measured in terms of energy production per unit area over a given time span kilocalories per square meter per year. b. Net Primary Productivity is the rate at which producers use photosynthesis to produce and store chemical energy minus the rate at which they use some of this stored chemical energy through aerobic respiration. NPP measures how fast producers can make the chemical energy that is stored in their tissues and that is potentially available to other organisms in an ecosystem. c. THE PLANET S NPP ULTIMATELY LIMITS THE NUMBER OF CONSUMERS THAT CAN SURVIVE ON EARTH. 14. Unique properties of water

3 a. Hydrogen bonds hold water molecules together, and it therefore takes a large amount of energy to evaporate water because of these forces of attraction between its molecules. b. Water exists as a liquid over a wide temperature range because of the hydrogen bonds. c. Liquid water changes temperature slowly because it can store a large amount of heat without a large change in its own temperature. d. Liquid water can dissolve a variety of compounds. e. Water filters out wavelengths of UV radiation that would harm some aquatic organisms. f. Hydrogen bonds allow water to cling to solid surfaces. (Capillary action) g. Water expands when it freezes. 15. Water cycle (show 3-16) a cycle of natural renewal of water quality a. Precipitation, runoff, and infiltration are influenced by gravity. b. Sun energy influences evaporation and transpiration. c. Human impacts on the water cycle: i. Withdraw large quantities of water faster than nature can replace it ii. Clear vegetation for agriculture, mining, roads, etc. and replace it with impermeable surfaces increases runoff, reduces infiltration, accelerates topsoil erosion, and increases risk of flooding iii. Increase flooding with wetland drainage/filling for farming and urban development (Wetlands are like sponges) iv. Introduce pollutants to the system 16. Carbon cycle (show 3-19) exchange of carbon between various organic and inorganic elements in the atmosphere and biosphere. Elements that release carbon are called sources, while those that absorb carbon are called sinks. a. Sources i. Volcanic eruptions ii. Respiration of animals iii. Decay of dead matter iv. Combustion of fossil fuels v. Conversion of limestone to lime, metamorphism of rocks, etc. vi. Warm water bodies b. Sinks i. Earth s atmosphere ii. Organic elements like rocks, soil, sediments, limestone, coal deposits, etc. iii. Oceans contain a lot of dissolved carbon c. Process i. CO 2 used by plants (with sunlight) for photosynthesis ii. Animals consume these plants, transferring carbon iii. Carbon sent back to atmosphere through respiration iv. Dead organisms decay, carbon transferred to the Earth (can become fossil fuels) v. Burning of wood, fossil fuels, combustion transfer carbon back to atmosphere vi. Oceans and other large water bodies absorb carbon from atmosphere 1. When ocean cool, carbon is absorbed 2. When ocean warm, carbon is released d. Human altering i. Adding large amounts of CO 2 to atmosphere through burning of fossil fuels ii. Clearing carbon-absorbing vegetation from forests faster than it can grow back

4 17. Nitrogen cycle (show 3-20) how nitrogen moves between plants, animals, bacteria, the atmosphere, and the soil a. For nitrogen to be used by different life forms on earth, it must change into different states. i. Atmosphere N 2 ii. Nitrates NO 3 iii. Nitrites NO 2 iv. Ammonium NH 4 b. Most important part of the cycle is BACTERIA, as bacteria help the nitrogen change between states so it can be used. When N is absorbed by the soil, bacteria help to change it to states that can be used by plants. Animals then get their nitrogen from the plants. c. Processes i. Fixation first step in the process of making nitrogen usable by plants. Bacteria change nitrogen into ammonium. ii. Nitrification ammonium gets changed into nitrates by bacteria. Nitrates are what plants can then absorb. iii. Assimilation how plants get nitrogen. Absorb nitrates from the soil into their roots. Nitrogen gets used in amino acids, nucleic acids, and chlorophyll. iv. Ammonification part of the decaying process. When a plant or animal dies, decomposers like fungi and bacteria turn the nitrogen back into ammonium so it can re-enter the cycle. v. Denitrification extra nitrogen in the soil gets put back out into the air. Bacteria perform this task as well. d. Human altering i. Add large amounts of nitric oxide (NO) into atmosphere as we burn any fuel at high temps (car, truck, jet engines). This converts to NO 2 and HNO 3, which returns to surface as acid rain. ii. Add nitrous oxide (N 2 O) to atmosphere through the action of anaerobic bacteria on commercial inorganic fertilizer or organic animal manure applied to the soil. (Greenhouse gas) iii. Destruction of forests, grasslands, wetlands releases large amounts of gaseous N stored in soils and plants. iv. Upset cycle in aquatic ecosystems by adding excess nitrates through agricultural runoff of fertilizers/animal manure and through discharge from municipal sewage systems. v. Remove nitrogen from topsoil when we harvest nitrogen-rich crops, irrigate crops, and burn/clear grasslands and forests before planting crops

5 19. Phosphorus cycle (show 3-21) phosphorus is an essential nutrient for plants and animals that plays a critical role in cell development and is a key component of molecules that store energy (ATP, DNA, lipids). Low phosphorus can lead to decreased crop yield. a. Process i. Rain and weathering cause rocks to release phosphate ions. Inorganic phosphate is distributed in soils and water. ii. Plants take up inorganic phosphate from soil. Plants then consumed by animals. Phosphate then incorporated into organic molecules (like DNA). When plant or animal dies, it decays, and organic phosphate is returned to the soil. iii. Organic forms of phosphate within the soil can be made available to plants by bacterial that break down organic matter to inorganic forms of phosphorus. (Mineralization) iv. Phosphorus in soil can end up in waterways and eventually oceans. It can then be incorporated into sediments (and eventually rocks) over time. b. Human effects i. Removal of large amounts of phosphate to make fertilizers ii. Reduce levels in tropical soils by clearing forests iii. Eroded topsoil from fertilized areas (crop fields, lawns, golf courses) carries large amounts of phosphates into streams, lakes, oceans. Stimulates the growth of producers, like algae, which can upset chemical cycling in those water bodies. iv. Basically, we remove scarce phosphate ions from land areas and feed them in excess to producers in aquatic systems, causing these producer populations to explode (algal blooms). 20. Sulfur cycle (show 3-22) sulfur is one of the components that makes up proteins and vitamins. It is important for the functioning of proteins/enzymes in plant and in animals that depend on plants for sulfur. Plants absorb sulfur when it is dissolved in water. Animals consume these plants. a. Enters atmosphere i. Naturally through volcanic eruptions, bacterial processes, evaporation from water, decaying organisms ii. Human processes industrial processes release sulfur dioxide (SO 2 ) and hydrogen sulfide (H 2 S) b. Human effects i. Burn sulfur-containing coal and oil to produce electric power ii. Refine sulfur-containing oil to make gasoline and heating oil iii. Extract metals (copper, lead, zinc) from sulfur-containing compounds in rocks that are mined for these metals. iv. Once the sulfur is in the atmosphere, sulfuric acid and sulfate salts are created, which return to earth as acid rain

Life on Earth. Page 1. Energy (sunlight) Energy (heat) Nutrients. Nutrients. Chapter 28: How Do Ecosystems Work?

Life on Earth. Page 1. Energy (sunlight) Energy (heat) Nutrients. Nutrients. Chapter 28: How Do Ecosystems Work? Chapter 28: How Do Ecosystems Work? Introduction to Ecology Ecology - Increasing Levels of Complexity: Population: All members of a particular species living within a defined area Organism Community: All

More information

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A.

Which of the following can be determined based on this model? The atmosphere is the only reservoir on Earth that can store carbon in any form. A. Earth s Cycles 1. Models are often used to explain scientific knowledge or experimental results. A model of the carbon cycle is shown below. Which of the following can be determined based on this model?

More information

Objectives. Key Terms

Objectives. Key Terms Objectives Summarize the basic pattern of chemical cycling. Describe how carbon and oxygen are cycled through an ecosystem. Describe the movement of nitrogen through an ecosystem. Describe the processes

More information

Chapter 55: Ecosystems and Restoration Ecology

Chapter 55: Ecosystems and Restoration Ecology Chapter 55: Ecosystems and Restoration Ecology Overview: 1. What is an ecosystem? Name Period An ecosystem is the sum of all the organisms living in a given area and the abiotic factors with which they

More information

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?)

NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) NUTRIENT CYCLES (How are nutrients recycled through ecosystems?) Why? We have learned the importance of recycling our trash. It allows us to use something again for another purpose and prevents the loss

More information

Carbon and Nitrogen Cycles Interdependence within Environmental Systems. Carbon the Element

Carbon and Nitrogen Cycles Interdependence within Environmental Systems. Carbon the Element Carbon the Element The element carbon is one of the most essential elements on our planet. All living organisms contain carbon, making it a critical component of all life on planet earth. In fact, the

More information

Ecosystem ecology emphasizes energy flow and chemical recycling

Ecosystem ecology emphasizes energy flow and chemical recycling AP Biology Chapter 54 notes Ecosystems Ecosystem ecology emphasizes energy flow and chemical recycling An ecosystem consists of all the organisms in a community and all the abiotic factors with which they

More information

How Ecosystems Work: Energy Flow and Nutrient Cycles. Multiple Choice Test

How Ecosystems Work: Energy Flow and Nutrient Cycles. Multiple Choice Test How Ecosystems Work: Energy Flow and Nutrient Cycles Multiple Choice Test 1. The flow of solar energy through an ecosystem is marked by a) plants converting light energy to chemical energy via photosynthesis

More information

THE WATER CYCLE. Ecology

THE WATER CYCLE. Ecology THE WATER CYCLE Water is the most abundant substance in living things. The human body, for example, is composed of about 70% water, and jellyfish are 95% water. Water participates in many important biochemical

More information

Chapter 3 How Ecosystems Work. You could cover the whole world with asphalt, but sooner or later green grass would break through.

Chapter 3 How Ecosystems Work. You could cover the whole world with asphalt, but sooner or later green grass would break through. Chapter 3 How Ecosystems Work You could cover the whole world with asphalt, but sooner or later green grass would break through. Ilya Ehrenburg Energy Flow in Ecosystems For most living organisms the sun

More information

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers

Ecosystem Ecology. Trophic levels energy flow through ecosystems. Productivity and energy. Autotrophs: primary producers Heterotrophs: consumers Ecosystem Ecology 1. Overview of material and energy flows in ecosystems 2. Primary production 3. Secondary production and trophic efficiency 4. Ecological Pyramids Trophic levels energy flow through ecosystems

More information

Grade 7. Objective. Students will be able to:

Grade 7. Objective. Students will be able to: Grade 7 Objective Students will be able to: Describe the carbon cycle in more detail: o Learn about the importance of carbon and the role it plays in photosynthesis and cellular respiration, Identify elements

More information

Unit 2 Lesson 3 Energy and Matter in Ecosystems. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 3 Energy and Matter in Ecosystems. Copyright Houghton Mifflin Harcourt Publishing Company Soak Up the Sun How do organisms get energy and matter? Energy is the ability to do work. Matter is anything that has mass and takes up space. All organisms need energy and matter to live, grow, and reproduce.

More information

a. a population. c. an ecosystem. b. a community. d. a species.

a. a population. c. an ecosystem. b. a community. d. a species. Name: practice test Score: 0 / 35 (0%) [12 subjective questions not graded] The Biosphere Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy A. Ecology I. Ecology 1. eco house & logy study of 2. The study of interactions among and between organisms in their abiotic environment B. Biotic - living environment 1.Includes

More information

Commensalism is a symbiotic relationship in which one organism benefits and the other organism is not affected.. What they might ask:

Commensalism is a symbiotic relationship in which one organism benefits and the other organism is not affected.. What they might ask: B-6.1 Explain how the interrelationships among organisms (including predation, competition, parasitism, mutualism, and commensalism) generate stability within ecosystems. ecosystem - biotic community (all

More information

Ecosystems and Energy

Ecosystems and Energy 3 Ecosystems and Energy Overview of Chapter 3 What is Ecology? The Energy of Life Laws of Thermodynamics Photosynthesis and Cellular Respiration Flow of Energy Through Ecosystems Producers, Consumers &

More information

What are the subsystems of the Earth? The 4 spheres

What are the subsystems of the Earth? The 4 spheres What are the subsystems of the Earth? The 4 spheres Essential Questions What are the 4 spheres of the Earth? How do these spheres interact? What are the major cycles of the Earth? How do humans impact

More information

Cycles of Matter. Chapter 13- Lesson 3

Cycles of Matter. Chapter 13- Lesson 3 Cycles of Matter Chapter 13- Lesson 3 What processes are involved in the water cycle? Matter in an ecosystem includes water, carbon, oxygen, nitrogen, and many other substances. The water cycle is the

More information

Nitrogen Cycling in Ecosystems

Nitrogen Cycling in Ecosystems Nitrogen Cycling in Ecosystems In order to have a firm understanding of how nitrogen impacts our ecosystems, it is important that students fully understand how the various forms of nitrogen cycle through

More information

The Nitrogen Cycle. What is Nitrogen? Human Alteration of the Global Nitrogen Cycle. How does the nitrogen cycle work?

The Nitrogen Cycle. What is Nitrogen? Human Alteration of the Global Nitrogen Cycle. How does the nitrogen cycle work? Human Alteration of the Global Nitrogen Cycle Heather McGraw, Mandy Williams, Suzanne Heinzel, and Cristen Whorl, Give SIUE Permission to Put Our Presentation on E-reserve at Lovejoy Library. What is Nitrogen?

More information

Carbon/Oxygen Cycle. Zain Aamer, Christine Pak, Lorrin Stone, Vivian Xu

Carbon/Oxygen Cycle. Zain Aamer, Christine Pak, Lorrin Stone, Vivian Xu Carbon/Oxygen Cycle Zain Aamer, Christine Pak, Lorrin Stone, Vivian Xu Step One - Carbon Dioxide Carbon is released into the atmosphere through the form of carbon dioxide due to combustion and respiration

More information

Ecology Module B, Anchor 4

Ecology Module B, Anchor 4 Ecology Module B, Anchor 4 Key Concepts: - The biological influences on organisms are called biotic factors. The physical components of an ecosystem are called abiotic factors. - Primary producers are

More information

Ecology. Initial Vocab and Practice. Page 1 in notes

Ecology. Initial Vocab and Practice. Page 1 in notes 2015 1 Ecology Initial Vocab and Practice Page 1 in notes 2 The study of the interactions of living organisms with one another and with their environment. 3 Organism/species an individual living thing.

More information

Ch. 55 Ecosystems And Restoration Ecology. AP Biology

Ch. 55 Ecosystems And Restoration Ecology. AP Biology Ch. 55 Ecosystems And Restoration Ecology Studying organisms in their environment organism population community ecosystem biosphere Essential questions What limits the production in ecosystems? How do

More information

4 Ecology. Chapter summary a reminder of the issues to be revised

4 Ecology. Chapter summary a reminder of the issues to be revised 4 Ecology Chapter summary a reminder of the issues to be revised 1 Ecology is the study of organisms in relation to their environment. An ecosystem, such as a lake or woodland, is a stable and settled

More information

Ecosystem Ecology. Ecosystems as machines. Simple laws of physics. Energy Ability to do work

Ecosystem Ecology. Ecosystems as machines. Simple laws of physics. Energy Ability to do work Ecosystem Ecology Read Chps 18-19 (know N, P, C cycles) Ecosystem: A community of organisms plus its nonlinving (=abiotic) environment At the individual level, the abiotic environment affects organisms

More information

Chapter 36: Population Growth. Population Concepts. Population: Carrying Capacity: Critical Number: Growth Rate: Growth rate = Birth rate - Death rate

Chapter 36: Population Growth. Population Concepts. Population: Carrying Capacity: Critical Number: Growth Rate: Growth rate = Birth rate - Death rate Chapter 36: Population Growth Population: Population Concepts interbreeding group of same species Carrying Capacity: maximum population size an ecosystem can sustainably support Critical Number: minimum

More information

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling

Ecosystems. The two main ecosystem processes: Energy flow and Chemical cycling Ecosystems THE REALM OF ECOLOGY Biosphere An island ecosystem A desert spring ecosystem Biosphere Ecosystem Ecology: Interactions between the species in a given habitat and their physical environment.

More information

Name Date. Cycling WebQuest

Name Date. Cycling WebQuest Name Date Cycling WebQuest Directions: Visit the following websites and answer the related questions. Your goal is to gain a better understanding of the carbon and nitrogen cycles. Background: In biogeochemical

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

Ecosystem Ecology. Community interacts with abiotic factors. Objectives

Ecosystem Ecology. Community interacts with abiotic factors. Objectives Ecosystem Ecology Community interacts with abiotic factors Objectives Compare the processes of energy flow and chemical cycling as they relate to ecosystem dynamics. Define and list examples of producers,

More information

The chemistry of air pollution

The chemistry of air pollution The chemistry of air pollution Contents Air is very important as it provides oxygen and other gases that are essential to all life on Earth. It consists of a mixture of invisible gases that surround the

More information

An Introduction to the Nitrogen Cycle

An Introduction to the Nitrogen Cycle 1 + An Introduction to the Nitrogen Cycle Grade Level: 5-9 Activity Duration: 45 minutes Overview: I. Introduction to the nitrogen cycle II. Nitrogen Cycle Game III. Discussion Literacy Connection Leopold,

More information

Energy & Matter in Ecosystems. Chapter 13

Energy & Matter in Ecosystems. Chapter 13 Energy & Matter in Ecosystems Chapter 13 The Big Idea Matter cycles between organisms and the abiotic environment. Energy flows one way, from sunlight to producers to consumers and decomposers. Lesson

More information

Energy and Chemical Reactions

Energy and Chemical Reactions Fossil Fuels, Chemistry of Fuels Energy and Chemical Reactions Heat released or consumed in chemical reactions Measured in calories Food calorie is a kilocalorie (kcal) 1 Joule = 0.24 calories Energy shown

More information

Biological Productivity and Coastal Habitats

Biological Productivity and Coastal Habitats Biological Productivity and Coastal Habitats Why do we care? Fishing Water quality Wildlife Ecology and Ecosystems Ecology Natural systems Include interactions between living and non-living parts Ecosystem

More information

Ecology Review Questions

Ecology Review Questions 1. The food chain above shows (A) one autotroph and two heterotrophs (B) one producer, one autotroph, and one decomposer (C) one producer and two omnivores (D) one heterotroph and two autotrophs 2. Assume

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Ecosystems and Food Webs

Ecosystems and Food Webs Ecosystems and Food Webs How do AIS affect our lakes? Background Information All things on the planet both living and nonliving interact. An Ecosystem is defined as the set of elements, living and nonliving,

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

Name Class Date WHAT I KNOW. life by observing many different kinds of life forms. sunlight for their energy. Other animals eat food to get energy.

Name Class Date WHAT I KNOW. life by observing many different kinds of life forms. sunlight for their energy. Other animals eat food to get energy. The Biosphere Matter of Energy, Interdependence in Nature Q: How do Earth s living and nonliving parts interact and affect the survival of organisms? 3.1 How do we study life? WHAT I KNOW SAMPLE ANSWER:

More information

Chapter 55: Ecosystems

Chapter 55: Ecosystems Name Period Overview: 1. What is an ecosystem? 2. Where does energy enter most ecosystems? How is it converted to chemical energy and then passed through the ecosystem? How is it lost? Remember this: energy

More information

Energy flow in ecosystems. Lecture 6 Chap. 6

Energy flow in ecosystems. Lecture 6 Chap. 6 Energy flow in ecosystems Lecture 6 Chap. 6 1 What is an ecosystem? System = regularly interacting and interdependent components forming a unified whole Ecosystem = an ecological system; = a community

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

The concentration of water is a constant so we can combine it with Keq by dividing both sides of the equation by [H2O(l)].

The concentration of water is a constant so we can combine it with Keq by dividing both sides of the equation by [H2O(l)]. Dissolved Oxygen and Carbon Dioxide Every atmospheric gas is in equilibrium with that gas dissolved in ocean water. The concentrations of two of these are particularly important. The concentration of oxygen

More information

Macroevolution: Part IV Origin of Life

Macroevolution: Part IV Origin of Life Macroevolution: Part IV Origin of Life Possible Steps in the Origin of Life Shown are the steps necessary to create life as we know it Early Atmosphere is Anaerobic Oxygen is a very corrosive gas. It oxidizes

More information

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids

Energy Flow Through an Ecosystem. Food Chains, Food Webs, and Ecological Pyramids Energy Flow Through an Ecosystem Food Chains, Food Webs, and Ecological Pyramids What is Ecology? ECOLOGY is a branch of biology that studies ecosystems. Ecological Terminology Environment Ecology Biotic

More information

Chapter 3 Ecosystems and Energy

Chapter 3 Ecosystems and Energy Chapter 3 Ecosystems and Energy Overview of Chapter 3 What is Ecology? The Energy of Life Laws of Thermodynamics Photosynthesis and Cellular Respiration Flow of Energy Through Ecosystems Producers, Consumers

More information

Unit 2 Lesson 4 Effects of Energy Transfer Essential Question: How does the use of energy resources affect the environment?

Unit 2 Lesson 4 Effects of Energy Transfer Essential Question: How does the use of energy resources affect the environment? Big Idea: Energy exists in different forms and can change form one form to another but energy is always conserved. Unit 2 Lesson 4 Effects of Energy Transfer Essential Question: How does the use of energy

More information

9/6/2013. Ecosystem Ecology. Orgnaisms (biotic factors) interact with abiotic factors

9/6/2013. Ecosystem Ecology. Orgnaisms (biotic factors) interact with abiotic factors Ecosystem Ecology Orgnaisms (biotic factors) interact with abiotic factors 1 Matter and Energy Matter has mass and occupies space: it is the stuff you and everything else is made of. Energy is what you

More information

Lecture Eight: Energy Flow And Biogeochemical Cycles

Lecture Eight: Energy Flow And Biogeochemical Cycles Lecture Eight: Energy Flow And Biogeochemical Cycles We now know what a FOOD WEB is, and what TROPHIC LEVELS are. The Food Web reflects the flow of ENERGY and NUTRIENTS through ecosystems. ENERGY (E) is

More information

Ecology - Exchange of energy and matter

Ecology - Exchange of energy and matter - Exchange of energy and matter You should be able to: (a) briefly describe the non-cyclical nature of energy flow (b) establish the relationship of the following in food webs: producer, consumer, herbivore,

More information

CCR Biology - Chapter 13 Practice Test - Summer 2012

CCR Biology - Chapter 13 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 13 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A group of organisms of the same

More information

Basics. Energy from the sun, via photosynthesis in plants

Basics. Energy from the sun, via photosynthesis in plants Biomass Basics Energy from the sun, via photosynthesis in plants This is the same energy we use as food This is the same energy that made fossil fuels; fossil fuels are concentrated over time by the heat

More information

Ecology limiting factors plant limiting factors field mouse nitrogen nitrogen ALL nitrogen returned to soil process major role; mutualism

Ecology limiting factors plant limiting factors field mouse nitrogen nitrogen ALL nitrogen returned to soil process major role; mutualism Ecology List some limiting factors that would affect a plant (such as a corn plant) population. Light, carbon dioxide concentration, temperature, nutrients in soil, water List some limiting factors that

More information

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy

2. What kind of energy is stored in food? A. chemical energy B. heat energy C. kinetic energy D. light energy Assessment Bank Matter and Energy in Living Things SC.8.L.18.4 1. What is energy? A. anything that takes up space B. anything that has mass C. the ability to conduct current D. the ability to do work 2.

More information

3.2 Energy flows through ecosystems

3.2 Energy flows through ecosystems 3.2 Energy flows through ecosystems Printed Page 60 [Notes/Highlighting] To understand how ecosystems function and how to best protect and manage them, ecosystem ecologists study not only the biotic and

More information

Natural Resources. Air and Water Resources

Natural Resources. Air and Water Resources Natural Resources Key Concepts Why is it important to manage air and water resources wisely? How can individuals help manage air and water resources wisely? Air and Water Resources What do you think? Read

More information

Ecosystems. Chapter 55. Ecosystem Ecology Ecosystems, Energy, and Matter An ecosystem consists of

Ecosystems. Chapter 55. Ecosystem Ecology Ecosystems, Energy, and Matter An ecosystem consists of Chapter 55 Ecosystems Ecosystem Ecology Ecosystems, Energy, and Matter An ecosystem consists of All the organisms living in a community, and All the abiotic factors with which they interact PowerPoint

More information

Ecology PS 12 PS 13:

Ecology PS 12 PS 13: Ecology PS 12: Matter cycles and energy flows through living and nonliving components in ecosystems. The transfer of matter and energy is important for maintaining the health and sustainability of ecosystems.

More information

The Nitrogen Cycle in the Planted Aquarium. Raymond Wise. The nitrogen cycle in the aquarium as related to a balanced aquatic ecosystem.

The Nitrogen Cycle in the Planted Aquarium. Raymond Wise. The nitrogen cycle in the aquarium as related to a balanced aquatic ecosystem. The Nitrogen Cycle in the Planted Aquarium Raymond Wise The nitrogen cycle in the aquarium as related to a balanced aquatic ecosystem. What is the Nitrogen Cycle? The nitrogen cycle is simply the process

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

EARTH SCIENCE CONCEPTUAL FRAMEWORK GRADES K 12 WCCUSD/UCMP EARTH AS A SYSTEM

EARTH SCIENCE CONCEPTUAL FRAMEWORK GRADES K 12 WCCUSD/UCMP EARTH AS A SYSTEM EARTH AS A SYSTEM K-2 3-5 6-8 How is the Earth part of a larger system? The Earth is part of a bigger system called the Solar System. The Earth is part of the Solar System. The Earth is part of the Solar

More information

Phosphorus and Sulfur

Phosphorus and Sulfur Global Change Instruction Program Phosphorus and Sulfur The Important Nutrient Phosphorus Phosphorus is a key nutrient, fueling organic productivity on land and in water. A portion of its cycle is shown

More information

Autotrophs and Heterotrophs

Autotrophs and Heterotrophs Questions/ Main Ideas 8 1 Energy and Life Autotrophs and Heterotrophs Chemical Energy and ATP Energy is the ability to do work. Nearly every activity in modern society depends on one kind of energy or

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

autotroph Encyclopedic Entry producer

autotroph Encyclopedic Entry producer This website would like to remind you: Your browser (Safari 7) is out of date. Update your browser for more security, comfort and the best experience on this site. Encyclopedic Entry autotroph producer

More information

The animals at higher levels are more competitive, so fewer animals survive. B.

The animals at higher levels are more competitive, so fewer animals survive. B. Energy Flow in Ecosystems 1. The diagram below shows an energy pyramid. Which of the following best explains why the number of organisms at each level decreases while moving up the energy pyramid? The

More information

ENERGY WHAT IS AN ECOSYSTEM? PATTERNS OF ENERGY FLOW IN ECOSYSTEMS LAWS OF THERMODYNAMICS

ENERGY WHAT IS AN ECOSYSTEM? PATTERNS OF ENERGY FLOW IN ECOSYSTEMS LAWS OF THERMODYNAMICS ENERGY PATTERNS OF ENERGY FLOW IN ECOSYSTEMS WHAT IS AN ECOSYSTEM? Biological community plus all abiotic factors affecting the community Ecosystem first proposed by Arthur Tansley Boundaries not fixed

More information

Topic 3: Nutrition, Photosynthesis, and Respiration

Topic 3: Nutrition, Photosynthesis, and Respiration 1. Base your answer to the following question on the chemical reaction represented below and on your knowledge of biology. If this reaction takes place in an organism that requires sunlight to produce

More information

ENERGY FLOW THROUGH LIVING SYSTEMS

ENERGY FLOW THROUGH LIVING SYSTEMS reflect Enter the word domino as a search term on the Internet; you can fi nd some amazing domino runs. You can make your own by setting up a series of dominoes in a line. When you push the fi rst domino

More information

Getting the energy the body needs

Getting the energy the body needs Getting the energy the body needs Identify the main bones of the skeleton. Describe the role of skeletal joints. Recall that muscles contract to move bones at joints. Investigate the strengths of different

More information

Bio EOC Topics for Ecology, Evolution and Natural Selection:

Bio EOC Topics for Ecology, Evolution and Natural Selection: Bio EOC Topics for Ecology, Evolution and Natural Selection: UEvolutionU Difference between macroevolution and microevolution Sexual reproduction and natural selection are mechanisms of microevolution

More information

ATMOSPHERE COMPOSITION AND STRUCTURE

ATMOSPHERE COMPOSITION AND STRUCTURE MODULE - 4 Atmosphere Composition and Structure 9 ATMOSPHERE COMPOSITION AND STRUCTURE Earth is a unique planet because the life is found only on this planet. The air has a special place among the conditions

More information

Respiration By Cindy Grigg

Respiration By Cindy Grigg By Cindy Grigg 1 Did you know there are two kinds of respiration? One kind of respiration is when we breathe air in and out of our lungs. The other kind happens in both plant and animal cells, including

More information

Chapter 3: Water and Life

Chapter 3: Water and Life Name Period Chapter 3: Water and Life Concept 3.1 Polar covalent bonds in water result in hydrogen bonding 1. Study the water molecules at the right. On the central molecule, label oxygen (O) and hydrogen

More information

Photosynthesis & Cellular Respiration. Hot Seat

Photosynthesis & Cellular Respiration. Hot Seat Photosynthesis & Cellular Respiration Hot Seat Hot Seat Instructions You are competing against classmates in your row (across the classroom). The hot seat is the seat in each row closest to the outside

More information

Ecosystem Ecology. Energy Flows and Nutrient Cycles

Ecosystem Ecology. Energy Flows and Nutrient Cycles Ecosystem Ecology Energy Flows and Nutrient Cycles Introduction to Ecosystems Some reflected Some converted to heat Some absorbed PSN Some absorbed by organisms, soils, water Introduction to Ecosystems

More information

Origin of Life on Earth: The Biological Processes. Geology 230, Fossils and Evolution

Origin of Life on Earth: The Biological Processes. Geology 230, Fossils and Evolution Origin of Life on Earth: The Biological Processes Geology 230, Fossils and Evolution What is Life? Internal chemical activity providing growth, repair, and generation of energy. The ability to reproduce.

More information

Oikos: House and Ology: to Study Scientific discipline in which the relationships among living organisms and the interaction the organisms have with

Oikos: House and Ology: to Study Scientific discipline in which the relationships among living organisms and the interaction the organisms have with Oikos: House and Ology: to Study Scientific discipline in which the relationships among living organisms and the interaction the organisms have with their environments are studied. An Ecologist is someone

More information

The role of phosphorous in the environment. phosphorous cycle sources of phosphorous applications of phosphorous eutrophication

The role of phosphorous in the environment. phosphorous cycle sources of phosphorous applications of phosphorous eutrophication The role of phosphorous in the environment phosphorous cycle sources of phosphorous applications of phosphorous eutrophication The Phosphorus Cycle The Phosphorus Cycle The phosphorus cycle is the biogeochemical

More information

Chapter 13- Food chains and webs

Chapter 13- Food chains and webs Section 4: Food Chains and Food Webs Chapter 13- Food chains and webs KEY CONCEPT Food chains and food webs model the flow of energy in an ecosystem. VOCABULARY food chain herbivore carnivore omnivore

More information

Physical laws govern energy flow and chemical cycling in ecosystems [2].

Physical laws govern energy flow and chemical cycling in ecosystems [2]. GUIDED READING - Ch. 55 - ECOSYSTEMS NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

Bacteria 7/21/2009. What are bacteria? Where do bacteria live? Bacterial cells have a cell membrane that is. tough cell wall.

Bacteria 7/21/2009. What are bacteria? Where do bacteria live? Bacterial cells have a cell membrane that is. tough cell wall. What are bacteria? Bacteria Cells function similarly in all living organisms. Bacteria are the only prokaryotes (cells with no nuclei). Bacteria consist of a single, prokaryotic cell. All other life forms

More information

GLOBAL CIRCULATION OF WATER

GLOBAL CIRCULATION OF WATER Global Circulation of Water MODULE - 8A 27 GLOBAL CIRCULATION OF WATER More than three-fourths of the earth s surface is covered by water. Water is an odorless, tasteless, substance than can naturally

More information

Name Class Date. water, making steam to turn a turbine. Electric current produced by turbines flows through power lines to homes and industries.

Name Class Date. water, making steam to turn a turbine. Electric current produced by turbines flows through power lines to homes and industries. 6.7A Research and debate the advantages and disadvantages of using coal, oil, natural gas, nuclear power, biomass, wind, hydropower, geothermal, and solar resources. : ces? power lights and electronics,

More information

Energy: the capacity to do work. Living matter cannot function without it. (Fig 13.1)

Energy: the capacity to do work. Living matter cannot function without it. (Fig 13.1) Chapter 13: Life in the Ocean Energy: the capacity to do work. Living matter cannot function without it. (Fig 13.1) Laws of Thermodynamics: First Law: Energy cannot be created or destroyed, it can only

More information

Name Class Date. Explain how organisms get energy in the absence of oxygen. Identify the pathways the body uses to release energy during exercise.

Name Class Date. Explain how organisms get energy in the absence of oxygen. Identify the pathways the body uses to release energy during exercise. 9.3 Fermentation Lesson Objectives Explain how organisms get energy in the absence of oxygen. Identify the pathways the body uses to release energy during exercise. Lesson Summary Fermentation Fermentation

More information

1.2 The Biosphere and Energy

1.2 The Biosphere and Energy 1.2 The Biosphere and Energy All activities require a source of energy a fuel. For example, to sustain a campfire, you need to keep it supplied with wood. To reach a destination by car, you need to have

More information

Dynamics of Ecosystems

Dynamics of Ecosystems Dynamics of Ecosystems A- Trophic Relationships - Describes the trophic levels (producers, consumers, decomposers) - Explains the relationships between the trophic levels of a food web 1. a) What is a

More information

Freshwater, Water Cycle, and Water Quality sample questions

Freshwater, Water Cycle, and Water Quality sample questions Name: ate: 1. Which combination of processes from the water cycle is most likely to cause flooding? 4. diagram of the water cycle is shown below.. low runoff, low evaporation, high transpiration. high

More information

Chapter 2. The Nitrogen Cycle

Chapter 2. The Nitrogen Cycle Chapter 2 Plants need at least seventeen elements to grow. Three of these elements carbon, oxygen, and hydrogen are referred to as "building blocks." Plants get these elements from air and water. The other

More information

Presented by Paul Krauth Utah DEQ. Salt Lake Countywide Watershed Symposium October 28-29, 2008

Presented by Paul Krauth Utah DEQ. Salt Lake Countywide Watershed Symposium October 28-29, 2008 Basic Nutrient Removal from Water Beta Edition Presented by Paul Krauth Utah DEQ Salt Lake Countywide Watershed Symposium October 28-29, 2008 Presentation Outline Salt Lake County waters / 303(d) listings

More information

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment.

13.1. Principles of Ecology CHAPTER 13. Ecology is the study of the relationships among organisms and their environment. SECTION 13.1 KEY CONCEPT ECOLOGISTS STUDY RELATIONSHIPS Study Guide Ecology is the study of the relationships among organisms and their environment. VOCABULARY ecology community MAIN IDEA: Ecologists study

More information

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site

Amherst County Public Schools. AP Environmental Science Curriculum Pacing Guide. College Board AP Environmental Science Site Amherst County Public Schools AP Environmental Science Curriculum Pacing Guide College Board AP Environmental Science Site REV: 8/12 1 st 9 weeks AP Objectives Energy Resources and Consumption A. Energy

More information

5.1 Ecosystems, Energy, and Nutrients

5.1 Ecosystems, Energy, and Nutrients CHAPTER 5 ECOSYSTEMS 5.1 Ecosystems, Energy, and Nutrients Did anyone ever ask you the question: Where do you get your energy? Energy enters our world from the Sun but how does the Sun s energy become

More information

CHAPTER 4. Section 1 Do we get energy from food?

CHAPTER 4. Section 1 Do we get energy from food? Section 1 Do we get energy from food? CHAPTER 4 Food contains energy but it has to be broken down in order to be used. That means that energy comes from food but not directly. All cells, including plant

More information

- diversity is the results of interactions among the population adapting to each other. - 4 types of interactions are important in shaping community:

- diversity is the results of interactions among the population adapting to each other. - 4 types of interactions are important in shaping community: Biology 1407 Notes Exam 5 - Ecology Ch 34, 37, 38 Ecology - the study of how organisms interact with their environment; interactions occur at several levels and include both living (biotic) and nonliving

More information

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants.

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants. Name: ate: 1. Which molecule supplies the energy for cellular functions?. TP. oxygen. N. water 2. Photosynthesis The following equation represents the process of photosynthesis in green plants. What happens

More information