# Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12

Save this PDF as:

Size: px
Start display at page:

Download "Unit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12"

## Transcription

1 Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials Introduction to Equations One Step Equations Two Step Equations 0 1 Multi Step Equations 4 Algebra Applications 5 6 Review 1

2 Algebra Terminology Algebra: The branch of math that deals with general statements of relations and uses letters or other symbols to represent specific numbers. Variable: A letter used to represent a value that can change or vary. Ex. In the expression z + 4, z is the variable Constant: A term that contains no variables. Its value does not change. Ex. In x + 5, the constant term is 5. Coefficient: The number by which a variable is multiplied. Ex. In the term 8y, 8 is the coefficient. Like Term: Terms that have the same variable(s) raised to the same exponent(s). Ex. 3xy and xy are like terms. Monomial: A polynomial with one term. Ex. 7y Binomial: A polynomial with two terms. Ex. 3x + 3 Polynomial: An algebraic expression formed by adding and/or subtracting terms. Ex. 3x + y 4 is a polynomial. Expression: A mathematical phrase made up of numbers and variables, connected by operators. Ex. 3x + is an expression. Simplify: Get an expression in the simplest form by combining like terms. Ex. 3x + x + 7 simplifies to x + 9 Equation: A mathematical statement made of two expressions that equal each other. Ex. 3x + = 8 Solve: Find all possible values of the variable that make the equation true. Ex. If 3x + = 8, then x = is the solution

3 Variables 1. Consider the following situation. In your class, your teacher has decided to give each student three pencils at the start of the year. a) How many pencils would he or she need if there were i) 0 students? ii) 5 students? iii) 8 students? b) Create an expression that would determine the number of pencils if you didn t know how many students there were.. In the previous question expression should have included a variable. Explain what a variable is when it is in an expression. 3. Sometimes variables are used in mathematical expressions or equations. Explain what the expression 5w means mathematically? 3

4 Introduction to Algebra Tiles Algebra Tiles can be used to represent different variables. The different sizes represent different variables, whereas the different colours represent positive or negative variables Positive Tiles : (BLUE) Negative Tiles : (RED) We can use Algebra tiles to help us model algebraic expressions. Red Tiles Blue Tiles Zero Principle Represents 1 Represents = 0 ( 1 ) + ( +1 ) = 0 Represents x Represents + x + = 0 ( x ) + (+ x) = 0 Represents x Represents + x + = 0 ( x ) + (+ x ) = 0 We can use algebra tiles to help is write algebraic expressions Writing Algebraic Expressions Example: Write the expression represented by each group of tiles a) b) c) d) Example: Write the expression represented by each group of tiles, remember the zero principal! a) b) 4

5 Practice: Write the expression represented by each group of tiles. a) b) c) Modeling Algebraic Expressions Example: Use algebra tiles and diagrams to model each of the following expressions a) x + x b) 3 + 4x x c) x + x 3 Practice: Use algebra tiles and diagrams to model each of the following expressions a) x 4x + 5 b) 4x + x 3 c) x + 7 5

6 Simplifying Algebraic Expressions Like Terms To simplify a collection of algebra tiles, we need to collect like tiles or like terms Like terms have the variables raised to the exponent. Unlike terms have variables or the same variables raised to a exponent. To simplify an algebraic expression, we need to collect like terms An expression is simplified when all the like terms are combined and any zero pairs are removed. Examples of Like Tiles Examples of Like Terms 1) Like Terms 1) Not Like Terms ) Like Terms ) Not Like Terms 10x + 3x 4x 5x + 6x + 1 CAN Simplify Cannot Simplify CAN Simplify Cannot Simplify = = = = Example: Simplify a) b) = = 6

7 We can also simplify algebraic expressions without using the algebra tiles by using paper and pencil. Example: Simplify without using algebra tiles 5 + x + 3x x + 4 x + 3 = = STEPS Step # 1: Identify like terms Step # : Group like terms Step # 3: Add coefficients of like terms = Practice: 1. Write the algebraic expression modeled by the tiles below. a) b) c) d) e) f). Use algebra tiles to model each algebraic expression below. Sketch the tiles you used. a) x + 6 b) x 3x + 5 c) 5 + 3x + 7x 3. Circle the terms that are like terms to the first term given in brackets. 5 b) ( x ): x, 3y, x, - 4y, 3x a) ( y) : 3y, y, xy, 4y, 9y 7

8 4. Simplify the algebraic expression by combining like terms and removing any zero pairs. a) b) c) d) e) f) 5. Simplify each expression using algebra tiles a) x 3x + 3x + 5x b) x + + x 1 c) 3x + x + x + x Simplify each expression without using algebra tiles. Show all steps. a) + 4x x + 3 b) x + x + 3x + 1 c) 15x x x 8 9x Algebra Tile Assignment Using the algebra tiles, create a tile pattern of your choice. Transfer the picture to a white piece of paper and colour it appropriately. Create a mathematical expression to represent your pattern and then simplify it. 8

9 Adding and Subtracting Polynomials Adding Polynomials Using Algebra Tiles To add polynomials is not much different than simplify a polynomial. To simplify the polynomial (5x 7) + ( 3x + 4) Algebra Tile Representation Algebraic Representation 1. Represent each polynomial with algebra tiles:. Collect all similar sized tiles: 3. Use the zero principle to reduce the number of tiles. Final answer: Practice: Use Algebra tiles to simplify the following expressions a) (6x + 7) + (3x + 5) b) (x 8) + ( 5x + 7) c) (3x + x + ) + (x + 5x + 3) d) (x 3x + 1) + (x 4x 3) 9

10 Adding Polynomials without Algebra Tiles To add polynomials without algebra tiles, we simply remove the bracket then simplify by collecting and combining like terms. Examples: a) (5x + 4) + ( 7x 1) b) ( 4x x + 9) + (x x 7) Steps: 1. Remove brackets (and double signs if present). Collect like terms 3. Simplify (combine like terms) Practice: 1. Complete the following question in the space provided. Be sure to show ALL your work a) (3x + 1) + (4x ) b) (3x + x + 1) + (x x + 1) c) ( x + 7x 5) + (x x 1). a) Determine a simplified expression for the perimeter of the following triangle. x + 1 5x + 3x 4 b) Using your expression from part a), determine the perimeter if x = 3m. 3. Two polynomials are added. The sum (answer) is 3x 5x. One polynomial is x x + 3. What is the other polynomial? Explain how you found it. 10

11 Subtracting Polynomials with Algebra Tiles To subtract polynomials requires one more step than adding polynomials. To simplify the polynomial (5x 7) ( 3x + 4) Algebra Tile Representation Algebraic Representation 1. Represent each polynomial with algebra tiles:. Reverse each of the tiles in the nd polynomial. 3. Collect all similar sized tiles: 4. Use the zero principle to reduce the number of tiles. Final answer: Practice: 1. Simplify the following polynomials using algebra tiles. a) (3x + 5) (x +1) b) (x + x) ( 3x + x) c) (x + 3x ) ( x x + 1) d) (4x 6x 10) (3x + x 1) 11

12 Subtracting Polynomials without Algebra Tiles To Subtract Polynomials we need to remove the brackets and change the signs of ALL the terms in the SECOND bracket then simplify by collecting and combining like terms Examples a) (5x + 4) ( 7x 1) b) (3x x + 5) (x x + 4) Steps: 1. Change all signs in second bracket and make it an addition question. Remove brackets (and double signs if present). Collect like terms. 3. Simplify Practice: Complete the following question in the space provided. Be sure to show ALL your work 1. Subtract the following polynomials. a) (3x + 1) (4x ) b) (3x + x + 1) (x x + 1) c) (x + 3x 5) ( 5x x + 4). John subtracted these polynomials ( x 4x + 6) ( 3x + x 4) a) Explain why his solution is incorrect b) What is the correct solution? ( x 4x + 6) ( 3x + x 4) = x = x = x 4x + 6 3x + x 4 3x 4x + x x + 1

13 Expanding Polynomials Using Algebra Tiles Expanding Polynomials We can use an area model to multiply monomials and polynomials. Multiplying polynomials is like calculating the area of a rectangle. Steps: 1. Determine the polynomials being multiplied.. Trace the algebra tile representation of each term in the multiplication template; one on the top and one on the left. 3. Fill the rectangle in with algebra tiles so the side lengths match the top and side. 4. Write your answer Ex. 3(x + ) What are the two polynomials being multiplied? Represent these polynomials with algebra tiles Place the tiles for the first polynomial on the left hand side, and the tiles that represent the second polynomial on the top. Fill in the rectangle with the product. *Remember your sign rules for multiplying integers Ex. x( 3x + 1) What are the two polynomials being multiplied? Represent these polynomials with algebra tiles Place the tiles for the first polynomial on the left hand side, and the tiles that represent the second polynomial on the top. Fill in the rectangle with the product. *Remember your sign rules for multiplying integers Would you get the same answer if you switched the location of the tiles? 13

14 Practice: 1. Use algebra tiles and the area model to expand the following: a) x(3x +4) b) ( x + 1) c) x(5x ) d) 3x( x 3). Use algebra tiles and the area model to expand the following: a) 4(x) = b) 3x(5) = c) x(3x) = d) 3x(4x) = 3. Look at your solutions for question. Is there a pattern that might help determine the answer without using algebra tiles? Explain your pattern. 4. Use your pattern to simplify the following: a) 6(3x) = b) 8(5x) = c) 9x( 3x) d) 7x( 6x) = Expanding polynomials without algebra tiles To multiply polynomials, we use the distributive property. This tells us to multiply the term in front of the brackets by EVERY term inside the brackets. Example: Expanding using the distributive property: a) (x + 5) b) ( x + 7) Some expressions may involve multiplying more than one polynomial and then collecting like terms. If so, multiply one set at a time. Be sure to watch the signs of the number in front of the brackets when you are multiplying. Example: Expand and simplify (collect and combine like terms) (x + 1) 3(x ) 14

15 Practice: 1. Expand and simplify when possible: a) 3(x + ) b) (5x 8) c) 6( 4x + 7) d) 5x(x 3) e) 4( 9x + 11) 3( 10x 1) f) 3 (9x + 4) + 4( x + 5). a) Determine a simplified expression for the area of the following rectangle. [HINT: A = lw] x + 7 x b) Use your simplified equation from part a) and determine the area of the rectangle if x = 5 m. [HINT: use substitution] 15

16 Introduction to Equations 1. Draw an X through the example that does not belong. Justify your answer. a) b) x + 4 = 8 x 4 = 3 3x 3x = 9 + x = 8 x + 4 x = 8 -x = 4 c) d) 3x 3 = 3 4 x y = 3x + 1 C = 10t + 1 x 1 = 5 -x = 4 y + 3x P = l + w. Answer True (T) or False (F). Be prepared to justify your answer. a) Every equation has exactly two sides. b) Every equation has one equal sign. c) Every equation has one variable. 16

17 What does the Answer Mean? *Match the solution that is most likely the answer to each of the equations by placing the appropriate number in the space provided. Equations 5x 3 = = -x x = 0 3x 9 = -9 x + 1 = -6 9x 7 = -x = = 5x - 3 3x 6 = 0 Possible Solutions #1 x = 1 #5 5 = x #9 4 = x # x = #6 4 = x #10 x = - #3 x = 4 #7 #11 x = 0 x = 4 #4-5 = x #8 x = -3 ½ #1 10 = x 17

18 One Step Equations To solve an equation, we are trying to find the number that makes the statement true. *We must isolate the variable (get the variable by itself) Solve each equation using algebra tiles. Check your answer. x + 5 = 4 x - 1 = 6 3x = 6 x = 8 Practice: x + 1 = -3 x + 6 = 9 4x = 1 5x = 0 18

19 One Step Equations To solve an equation, we are trying to find the number that makes the statement true. We must isolate the variable (get the variable by itself) REMEMBER : What we do to one side of an equation, we need to do to the other side too! To solve an equation we need to isolate the variable To do this, we need to perform the opposite operations: The opposite of adding is The opposite of subtracting is The opposite of multiplying is Examples a) 4 x = 16 To get x by itself, we need to do the opposite of multiplying by 4 b) x + 5 = 8 To get x by itself, we need to do the opposite of adding 5 c) x 4 = 18 To get x by itself, we need to do the opposite of subtracting 4 Practice: 1. Solve each equation. Show your work. a) 3 w = 1 b) a + = 5 c) x 4 = d) p 7 = 3 e) 6 z = 4 f) 1 = x + 7 g) 5 x = 10 h) 36 + e = 84 19

20 Solve each equation using algebra tiles. Two Step Equations x + 3 = 5 3x 1 = - 7 Practice: Solve each equation using algebra tiles + x = x = - 4x + 1 = -3 3x + 6 = 9 0

21 Two Step Equations To solve equations with a coefficient in front of the variable, we still want to get the variable by itself using opposite operations. Examples: Solve each of the following and check your answer. a) 3x + 4 = 6 Formal check: 3x Steps: (backwards BEDMAS) 1.. b) 3 6x = 15 Formal check: - 3-6x 15 Practice: Solve the following equations. Show all your work. Check your answer for part e. a) 4x + 4 = 44 b) 3 + 4x = 11 c) 1 + 6x = 41 d) 1 + 5x = 54 e) 1 + 7x = 43 Formal check 1 + 7x 43 1

22 Multi Step Equations Solve each equation using algebra tiles. Check your answer. 3x + = x 4 x + 7 = x 3 Practice: Solve each equation using algebra tiles. Check your answer. 5x + 6 = x x 5 = - 4x x 4 = 0 x -x = 1 x

23 Multi Step Equations Multi step equations are equations that have brackets and/or variables on both sides of the equal sign. Equations with brackets: Example: 4( 4x + 10) = 7 Steps: Equations with variables on both sides of the equal sign: Example: 5x + 6 = x + 18 Steps: Formal Check: 5x + 6 x

24 Practice: 1. Solve the following equations. Proper form is expected. Show ALL steps. a) 3(x + 7) = 30 b) 5(x + 4) = 0 c) 8x 10 = 4x + 14 d) 4(x + 1) = 1 e) x = x 13 f) 4(x 3) + 9x = 38 g) 3(x 4) = 3 h) 10x 5 = 1 3x i) 3(x 5) = (5x 11) 3 ( x 4) 3 10x 5 1 3x 3(x 5) (5x 11) 4

25 Algebra Applications 1. Ivan shows his steps in solving the following equation for x: In which step has Ivan made an error? Complete the problem correctly. Pauline builds a fence around her garden, which is shaped like a parallelogram, as shown below. Pauline uses 100 metres of fencing along the perimeter of the garden. Find the dimensions of her garden. Show your work. 5

26 3. A field in the shape of a trapezoid has a perimeter of 460 m. A fence is being built along the field s perimeter. Determine the length of fencing needed for each side of the field. Show your work. 4. Peter has two part-time jobs. His earnings for one week are represented by the equation below: E = 7.50r + 8.5v E is his total earnings in one week; r is the number of hours he works at the restaurant and v is the number of hours he works at the video store. Peter earns a total of \$ in one week. If he works 8 hours at the restaurant, how many hours does he work at the video store? 6

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

### A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### (2 4 + 9)+( 7 4) + 4 + 2

5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future

### Algebra Tiles. AIMS PreK-16 Project. South Texas Rural Systemic Initiative

Let s Do Algebra Tiles David McReynolds AIMS PreK-16 Project Noel Villarreal South Texas Rural Systemic Initiative Algebra Tiles Manipulatives used to enhance student understanding of subject traditionally

### SIMPLIFYING ALGEBRAIC FRACTIONS

Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

### MATH Fundamental Mathematics II.

MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/fun-math-2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Math 9 Unit 5 Polynomials Practice Test

Name: Class: _ Date: _ ID: A Math 9 Unit Polynomials Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A large white square represents an x

### Chapter 13: Polynomials

Chapter 13: Polynomials We will not cover all there is to know about polynomials for the math competency exam. We will go over the addition, subtraction, and multiplication of polynomials. We will not

### Factors and Products

CHAPTER 3 Factors and Products What You ll Learn use different strategies to find factors and multiples of whole numbers identify prime factors and write the prime factorization of a number find square

### When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.

Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property

### 2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.

Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### Algebra Success. [OBJECTIVE] The student will learn how to multiply monomials and polynomials.

Algebra Success T697 [OBJECTIVE] The student will learn how to multiply monomials and polynomials. [MATERIALS] Student pages S269 S278 Transparencies T704, T705, T707, T709, T711, T713, T715 Red and yellow

### 2.4 Multiplication of Integers. Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since:

2.4 Multiplication of Integers Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since: 5 6=6+6+6+6+6=30 6 5=5+5+5+5+5+5=30 To develop a rule

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### Sect Properties of Real Numbers and Simplifying Expressions

Sect 1.6 - Properties of Real Numbers and Simplifying Expressions Concept #1 Commutative Properties of Real Numbers Ex. 1a.34 + 2.5 Ex. 1b 2.5 + (.34) Ex. 1c 6.3(4.2) Ex. 1d 4.2( 6.3) a).34 + 2.5 = 6.84

### Unit 3 Polynomials Study Guide

Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

### Algebra I Notes Review Real Numbers and Closure Unit 00a

Big Idea(s): Operations on sets of numbers are performed according to properties or rules. An operation works to change numbers. There are six operations in arithmetic that "work on" numbers: addition,

### LESSON 6.2 POLYNOMIAL OPERATIONS I

LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order

### Placement Test Review Materials for

Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the

### PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 NUMBER LINES

Name: Date: Block: PURPOSE: To practice adding and subtracting integers with number lines and algebra tiles (charge method). SOL: 7.3 Examples: NUMBER LINES Use the below number lines to model the given

### Lesson 3.2 Exercises, pages

Lesson 3.2 Exercises, pages 190 195 Students should verify all the solutions. A 4. Which equations are quadratic equations? Explain how you know. a) 3x 2 = 30 b) x 2-9x + 8 = 0 This equation is quadratic

### TYPES OF NUMBERS. Example 2. Example 1. Problems. Answers

TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### EQUATIONS. Main Overarching Questions: 1. What is a variable and what does it represent?

EQUATIONS Introduction to Variables, Algebraic Expressions, and Equations (2 days) Overview of Objectives, students should be able to: Main Overarching Questions: 1. Evaluate algebraic expressions given

### UNIT TWO POLYNOMIALS MATH 421A 22 HOURS. Revised May 2, 00

UNIT TWO POLYNOMIALS MATH 421A 22 HOURS Revised May 2, 00 38 UNIT 2: POLYNOMIALS Previous Knowledge: With the implementation of APEF Mathematics at the intermediate level, students should be able to: -

### 15.1 Factoring Polynomials

LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD)

HFCC Math Lab Intermediate Algebra - 7 FINDING THE LOWEST COMMON DENOMINATOR (LCD) Adding or subtracting two rational expressions require the rational expressions to have the same denominator. Example

### (- 7) + 4 = (-9) = - 3 (- 3) + 7 = ( -3) = 2

WORKING WITH INTEGERS: 1. Adding Rules: Positive + Positive = Positive: 5 + 4 = 9 Negative + Negative = Negative: (- 7) + (- 2) = - 9 The sum of a negative and a positive number: First subtract: The answer

### INTRODUCTION CONTENTS

INTRODUCTION Algebra for All and No Child Left Behind are phrases in the education community that suggest, and in many cases require, action. They give impetus for mathematics teachers at all levels to

### 1.4 Variable Expressions

1.4 Variable Expressions Now that we can properly deal with all of our numbers and numbering systems, we need to turn our attention to actual algebra. Algebra consists of dealing with unknown values. These

### Differentiating Math Instruction Using a Variety of Instructional Strategies, Manipulatives and the Graphing Calculator

Differentiating Math Instruction Using a Variety of Instructional Strategies, Manipulatives and the Graphing Calculator University of Houston Central Campus EatMath Workshop October 10, 2009 Differentiating

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS

CHAPTER 3: GRAPHS OF QUADRATIC RELATIONS Specific Expectations Addressed in the Chapter Collect data that can be represented as a quadratic relation, from experiments using appropriate equipment and technology

### Teaching & Learning Plans. Quadratic Equations. Junior Certificate Syllabus

Teaching & Learning Plans Quadratic Equations Junior Certificate Syllabus The Teaching & Learning Plans are structured as follows: Aims outline what the lesson, or series of lessons, hopes to achieve.

### STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS

STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an

### Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Summer Math Packet Student Name: Say Hello to Algebra 2 For Students Entering Algebra 2 This summer math booklet was developed to provide students in middle school an opportunity to review grade level

### Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c

Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

### Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### MAT 0950 Course Objectives

MAT 0950 Course Objectives 5/15/20134/27/2009 A student should be able to R1. Do long division. R2. Divide by multiples of 10. R3. Use multiplication to check quotients. 1. Identify whole numbers. 2. Identify

### Section 1.9 Algebraic Expressions: The Distributive Property

Section 1.9 Algebraic Expressions: The Distributive Property Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Apply the Distributive Property.

### EXPONENTS. To the applicant: KEY WORDS AND CONVERTING WORDS TO EQUATIONS

To the applicant: The following information will help you review math that is included in the Paraprofessional written examination for the Conejo Valley Unified School District. The Education Code requires

### The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself.

Exponents An integer is multiplied by itself one or more times. The integer is the base number and the exponent (or power). The exponent tells how many times the base number is multiplied by itself. Example:

### SOL Warm-Up Graphing Calculator Active

A.2a (a) Using laws of exponents to simplify monomial expressions and ratios of monomial expressions 1. Which expression is equivalent to (5x 2 )(4x 5 )? A 9x 7 B 9x 10 C 20x 7 D 20x 10 2. Which expression

### 2.6 Exponents and Order of Operations

2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated

### Clifton High School Mathematics Summer Workbook Algebra 1

1 Clifton High School Mathematics Summer Workbook Algebra 1 Completion of this summer work is required on the first day of the school year. Date Received: Date Completed: Student Signature: Parent Signature:

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

5.3 Multiplying Polynomials: Special Products Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Find products with monomial multipliers Multiplying binomials using the Distributive

### Addition and Multiplication of Polynomials

LESSON 0 addition and multiplication of polynomials LESSON 0 Addition and Multiplication of Polynomials Base 0 and Base - Recall the factors of each of the pieces in base 0. The unit block (green) is x.

### Campbellsport School District Understanding by Design (UbD) Template

Campbellsport School District Understanding by Design (UbD) Template Class Curriculum/Content Area: Math Course Length: 1 year Course Title: 6 th Grade Math Date last reviewed: April 24, 2015 Prerequisites:

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Topic: Integers. Addition Subtraction Multiplication Division Same signs: Add & keep sign = = - 10.

Topic: Integers Examples: Addition Subtraction Multiplication Division Same signs: Add & keep sign + 6 + + 5 = + 11-8 + - 2 = - 10 Different signs: Subtract & take sign of larger value + 9 + - 5 = + 4-6

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Instructions for SA Completion

Instructions for SA Completion 1- Take notes on these Pythagorean Theorem Course Materials then do and check the associated practice questions for an explanation on how to do the Pythagorean Theorem Substantive

### Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera

Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera 1 Overall Unit Objective I am currently student teaching Seventh grade at Springville Griffith Middle

### 2.3 Solving Equations - Mathematical & Word

2.3 Solving Equations - Mathematical & Word Problems 7.EE.4a Students will be able to use properties of numbers to correctly solve mathematical and word problems in one variable using fraction bars, word

### Introduction to the Instructor TERM 1

Introduction to the Instructor TERM 1 This calendar of lessons was prepared as a textbook independent sequence of lessons and the order of topics can be modified based on the textbook selection. The columns

### Chapter 4 -- Decimals

Chapter 4 -- Decimals \$34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789

### Polynomial Expression

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95

REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets

### The graphs coincide. Therefore, the trinomial has been factored correctly. The factors are (x + 2)(x + 12).

8-6 Solving x^ + bx + c = 0 Factor each polynomial. Confirm your answers using a graphing calculator. 1. x + 14x + 4 In this trinomial, b = 14 and c = 4, so m + p is positive and mp is positive. Therefore,

### 4.2 Algebraic Properties: Combining Expressions

4.2 Algebraic Properties: Combining Expressions We begin this section with a summary of the algebraic properties of numbers. Property Name Property Example Commutative property (of addition) Commutative

### Polynomials and Factoring

7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

### Algebra I Teacher Notes Expressions, Equations, and Formulas Review

Big Ideas Write and evaluate algebraic expressions Use expressions to write equations and inequalities Solve equations Represent functions as verbal rules, equations, tables and graphs Review these concepts

### Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ.

Chapter 7.1 Introduction to Polynomials A monomial is an expression that is a number, a variable or the product of a number and one or more variables with nonnegative exponents. Monomials that are real

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### Introduction to the Practice Exams

Introduction to the Practice Eams The math placement eam determines what math course you will start with at North Hennepin Community College. The placement eam starts with a 1 question elementary algebra

### 7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1

7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Let's Review. Adding and Subtracting Polynomials. Remember that Combining Like Terms is an application of the Distributive Property.

Let's Review Adding and Subtracting Polynomials. Combining Like Terms Remember that Combining Like Terms is an application of the Distributive Property. 2x + 3x = (2 + 3)x = 5x 3x 2 + 2x 2 = (3 + 2)x 2

### Mathematics Success Level H

T393 [OBJECTIVE] The student will solve two-step inequalities and graph the solutions on number lines. [MATERIALS] Student pages S132 S140 Transparencies T372 from Lesson 15, T405, T407, T409, T411, T413,

### Grade 6 Math Circles. Algebra

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Grade 6 Math Circles October 8/9, 2013 Algebra Note: Some material and examples from the Tuesday lesson were changed for the Wednesday lesson. These notes

### Chapter 1.1 Rational and Irrational Numbers

Chapter 1.1 Rational and Irrational Numbers A rational number is a number that can be written as a ratio or the quotient of two integers a and b written a/b where b 0. Integers, fractions and mixed numbers,

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Chapter 4 Fractions and Mixed Numbers

Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.

### First Degree Equations First degree equations contain variable terms to the first power and constants.

Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved

### 3. Power of a Product: Separate letters, distribute to the exponents and the bases

Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same

### Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

### 5-2 Dividing Polynomials. Simplify. 2. (3a 2 b 6ab + 5ab 2 )(ab) 1 SOLUTION: 4. (2a 2 4a 8) (a + 1) SOLUTION: 6. (y 5 3y 2 20) (y 2) SOLUTION:

Simplify. 2. (3a 2 b 6ab + 5ab 2 )(ab) 1 4. (2a 2 4a 8) (a + 1) 6. (y 5 3y 2 20) (y 2) esolutions Manual - Powered by Cognero Page 1 Simplify. 8. (10x 2 + 15x + 20) (5x + 5) 10. 12. Simplify esolutions

### Monomial. 5 1 x A sum is not a monomial. 2 A monomial cannot have a. x 21. degree. 2x 3 1 x 2 2 5x Rewrite a polynomial

9.1 Add and Subtract Polynomials Before You added and subtracted integers. Now You will add and subtract polynomials. Why? So you can model trends in recreation, as in Ex. 37. Key Vocabulary monomial degree

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### 7-8 Multiplying Polynomials

7-8 Multiplying Polynomials California Standards 10.0 Students add, subtract, multiply, and divide monomials and polynomials. Students solve multistep problems, including word problems, by using these

### Domain Essential Question Common Core Standards Resources

Middle School Math 2016-2017 Domain Essential Question Common Core Standards First Ratios and Proportional Relationships How can you use mathematics to describe change and model real world solutions? How

### Greatest Common Factor (GCF) Factoring

Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

### MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab

MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will

### Simplifying Algebraic Fractions

5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a