( )+( 7 4)


 Kevin Mason
 1 years ago
 Views:
Transcription
1 5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future courses. Oh happy day. Adding/Subtracting Polynomials Recall that addition means combining like things and that subtraction is really just adding the opposite. These two definitions should carry us through these operations. If addition means combining like things, then when we add polynomials we can only add the like terms. The quadratic terms are alike (they re all to the second power), so we can add all the quadratic terms. The cubic terms are alike (they re all to the third power), so we can add all the cubic terms. I could type sentences like that until I m blue in the face, or we could just look some examples. Let s just look at some examples )+( 7 4) In this case, we might look for all the cubic terms first. Notice that there is no cubic term in the second polynomial, so the 2 will stay 2. Now let s look for quadratic terms. ( )+( 7 4) We have a 4 and an to add. Since the coefficient on the is really the understood 1, we ll end up with 3. In a similar fashion, we can combine the linear terms and the constant terms. So we might mark all the terms that can be combined as follows to get our final sum Subtraction works exactly the same way. Just remember to distribute the subtraction sign through the second polynomial. Since subtract means add the opposite, we have to take the opposite of every term in the second polynomial Notice that there was no quadratic term in the first polynomial, so we just subtracted the negative quadratic from the second polynomial. This gave us the +4 term. Also note that the linear terms became zero (you might think of canceling ) because we had 7 7 which is really
2 Multiplying Polynomials Multiplying polynomials really boils down to the distributive property. Let s step through an example of a monomial times a polynomial, and then we ll step it up a bit. 2 ( 3 +4) Now let s look at a binomial times a trinomial. In this case we can think of the binomial as a single entity that we are distributing to every term of the trinomial as follows. ( Since we are still not completely simplified, we ll need to distribute again as follows. Finally, combine like terms to simplify The question now becomes whether or not there is an easier way to do this multiplication than the double distributive property. Notice that each term in the binomial 2 1 got multiplied by each term in the trinomial In other words, the 2 got multiplied by each term in the trinomial. Then the 1 got multiplied by every term in the trinomial. This shows us that really the distributive property can be expanded to mean each term in the first parentheses times each term in the second parentheses
3 A Closed System Alright, let s think about the integers. Now, you may be thinking, Why are we switching topics to the integers? Just stick with me. We ll get there. So, the integers. One of the crazy things about the integers is that they form what is called a closed system under the operations of addition, subtraction, and multiplication. A closed system means that if you add two integers, you get an integer answer. If you subtract two integers, you get an integer answers. If you multiply two integers, you get an integer answer. A closed system means if you perform operations, what you start with is what you end up with. You should probably be able to see why the integers aren t closed under the operation of division. While some integers divided by integers will give you integer answers (such as four divided by two), most give you a rational answer (like five divided by two). Rabbits also have a closed system under addition, subtraction, and multiplication. If you add rabbits and rabbits, you get rabbits. If you subtract rabbits from rabbits, you get rabbits. If rabbits multiply, you get more rabbits. That is a closed system. Now take a guess as to whether or not polynomials are a closed system. If you add two polynomials, do you get another polynomial? If you subtract two polynomials, do you get another polynomial? If you multiply two polynomials, do you get another polynomial? Take a look at the examples on the previous page and you should see that the polynomials are closed over addition, subtraction, and multiplication. 234
4 Lesson 5.2 Perform the following polynomial operations
5 What degree of polynomial would you get if you added a 5 th degree polynomial to a 3 rd degree polynomial and how do you know? 26. If you added a trinomial to a binomial, how many terms could the sum have? 27. If you add or subtract two polynomials, why do you always get another polynomial? 28. If you multiply two polynomials, why do you always get another polynomial? 236
Chapter 13: Polynomials
Chapter 13: Polynomials We will not cover all there is to know about polynomials for the math competency exam. We will go over the addition, subtraction, and multiplication of polynomials. We will not
More informationCorinne: I m thinking of a number between 220 and 20. What s my number? Benjamin: Is it 25?
Walk the Line Adding Integers, Part I Learning Goals In this lesson, you will: Model the addition of integers on a number line. Develop a rule for adding integers. Corinne: I m thinking of a number between
More informationWhen factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.
Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property
More informationUnit 3 Polynomials Study Guide
Unit Polynomials Study Guide 75 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial
More information3.4 Multiplying Polynomials
3.4 Multiplying Polynomials Let s turn our attention to the next basic operation on polynomials, multiplication. There are a number of ways to learn how to multiply polynomials, however, they all boil
More informationexpression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
More informationAlum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
More informationAlgebra Tiles Activity 1: Adding Integers
Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting
More informationMonomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ.
Chapter 7.1 Introduction to Polynomials A monomial is an expression that is a number, a variable or the product of a number and one or more variables with nonnegative exponents. Monomials that are real
More informationUnit 3: Algebra. Date Topic Page (s) Algebra Terminology 2. Variables and Algebra Tiles 3 5. Like Terms 6 8. Adding/Subtracting Polynomials 9 12
Unit 3: Algebra Date Topic Page (s) Algebra Terminology Variables and Algebra Tiles 3 5 Like Terms 6 8 Adding/Subtracting Polynomials 9 1 Expanding Polynomials 13 15 Introduction to Equations 16 17 One
More informationSTUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS
STUDY GUIDE FOR SOME BASIC INTERMEDIATE ALGEBRA SKILLS The intermediate algebra skills illustrated here will be used extensively and regularly throughout the semester Thus, mastering these skills is an
More informationSometimes it is easier to leave a number written as an exponent. For example, it is much easier to write
4.0 Exponent Property Review First let s start with a review of what exponents are. Recall that 3 means taking four 3 s and multiplying them together. So we know that 3 3 3 3 381. You might also recall
More informationNSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
More informationMth 95 Module 2 Spring 2014
Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression
More information3. Power of a Product: Separate letters, distribute to the exponents and the bases
Chapter 5 : Polynomials and Polynomial Functions 5.1 Properties of Exponents Rules: 1. Product of Powers: Add the exponents, base stays the same 2. Power of Power: Multiply exponents, bases stay the same
More informationAddition and Multiplication of Polynomials
LESSON 0 addition and multiplication of polynomials LESSON 0 Addition and Multiplication of Polynomials Base 0 and Base  Recall the factors of each of the pieces in base 0. The unit block (green) is x.
More informationx n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.
Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense
More informationChapter 3 Section 6 Lesson Polynomials
Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.
More informationFirst Degree Equations First degree equations contain variable terms to the first power and constants.
Section 4 7: Solving 2nd Degree Equations First Degree Equations First degree equations contain variable terms to the first power and constants. 2x 6 = 14 2x + 3 = 4x 15 First Degree Equations are solved
More informationMATH 65 NOTEBOOK CERTIFICATIONS
MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1
More information1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
More informationFactoring. Factoring Monomials Monomials can often be factored in more than one way.
Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,
More informationRadicals  Rationalize Denominators
8. Radicals  Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
More informationAnswers to Basic Algebra Review
Answers to Basic Algebra Review 1. 1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
More informationUnderstand the difference between linear equations and quadratic equations Multiply polynomials Factor quadratic equations
LESSON 26: Quadratic Equations part 1 Weekly Focus: quadratic equations Weekly Skill: factoring Lesson Summary: For the warmup, students will solve a problem about oil usage. Activity 1 is an introduction
More informationAlgebra. Indiana Standards 1 ST 6 WEEKS
Chapter 1 Lessons Indiana Standards  11 Variables and Expressions  12 Order of Operations and Evaluating Expressions  13 Real Numbers and the Number Line  14 Properties of Real Numbers  15 Adding
More informationGreatest Common Factor (GCF) Factoring
Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication
More informationSECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
More informationAlgebra I Pacing Guide Days Units Notes 9 Chapter 1 ( , )
Algebra I Pacing Guide Days Units Notes 9 Chapter 1 (1.11.4, 1.61.7) Expressions, Equations and Functions Differentiate between and write expressions, equations and inequalities as well as applying order
More informationCAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
More informationLESSON 6.2 POLYNOMIAL OPERATIONS I
LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order
More informationOperations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
More information2 is the BASE 5 is the EXPONENT. Power Repeated Standard Multiplication. To evaluate a power means to find the answer in standard form.
Grade 9 Mathematics Unit : Powers and Exponent Rules Sec.1 What is a Power 5 is the BASE 5 is the EXPONENT The entire 5 is called a POWER. 5 = written as repeated multiplication. 5 = 3 written in standard
More informationSupplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Section 5 Subtracting Integers
Supplemental Worksheet Problems To Accompany: The PreAlgebra Tutor: Volume 1 Please watch Section 5 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
More informationName Date Block. Algebra 1 Laws of Exponents/Polynomials Test STUDY GUIDE
Name Date Block Know how to Algebra 1 Laws of Eponents/Polynomials Test STUDY GUIDE Evaluate epressions with eponents using the laws of eponents: o a m a n = a m+n : Add eponents when multiplying powers
More information0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions  that is, algebraic fractions  and equations which contain them. The reader is encouraged to
More informationModuMath Algebra Lessons
ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations
More informationFactoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
More information( 7) + 4 = (9) =  3 ( 3) + 7 = ( 3) = 2
WORKING WITH INTEGERS: 1. Adding Rules: Positive + Positive = Positive: 5 + 4 = 9 Negative + Negative = Negative: ( 7) + ( 2) =  9 The sum of a negative and a positive number: First subtract: The answer
More informationMath 25 Activity 6: Factoring Advanced
Instructor! Math 25 Activity 6: Factoring Advanced Last week we looked at greatest common factors and the basics of factoring out the GCF. In this second activity, we will discuss factoring more difficult
More informationSIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More informationEAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
More information2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
More informationCOGNITIVE TUTOR ALGEBRA
COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,
More informationActually, if you have a graphing calculator this technique can be used to find solutions to any equation, not just quadratics. All you need to do is
QUADRATIC EQUATIONS Definition ax 2 + bx + c = 0 a, b, c are constants (generally integers) Roots Synonyms: Solutions or Zeros Can have 0, 1, or 2 real roots Consider the graph of quadratic equations.
More informationChapter 3. Algebra. 3.1 Rational expressions BAa1: Reduce to lowest terms
Contents 3 Algebra 3 3.1 Rational expressions................................ 3 3.1.1 BAa1: Reduce to lowest terms...................... 3 3.1. BAa: Add, subtract, multiply, and divide............... 5
More informationPolynomial Expression
DETAILED SOLUTIONS AND CONCEPTS  POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationUnit: Polynomials and Factoring
Name Unit: Polynomials: Multiplying and Factoring Specific Outcome 10I.A.1 Demonstrate an understanding of factors of whole numbers by determining: Prime factors Greatest common factor Least common multiple
More informationIn algebra, factor by rewriting a polynomial as a product of lowerdegree polynomials
Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting
More informationCLASS NOTES. We bring down (copy) the leading coefficient below the line in the same column.
SYNTHETIC DIVISION CLASS NOTES When factoring or evaluating polynomials we often find that it is convenient to divide a polynomial by a linear (first degree) binomial of the form x k where k is a real
More information2.4 Multiplication of Integers. Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since:
2.4 Multiplication of Integers Recall that multiplication is defined as repeated addition from elementary school. For example, 5 6 = 6 5 = 30, since: 5 6=6+6+6+6+6=30 6 5=5+5+5+5+5+5=30 To develop a rule
More informationChapter R.4 Factoring Polynomials
Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x
More information0.7 Quadratic Equations
0.7 Quadratic Equations 8 0.7 Quadratic Equations In Section 0..1, we reviewed how to solve basic nonlinear equations by factoring. The astute reader should have noticed that all of the equations in that
More informationFractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
More informationCOLLEGE ALGEBRA. Paul Dawkins
COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5
More informationIntroduction to the Practice Exams
Introduction to the Practice Eams The math placement eam determines what math course you will start with at North Hennepin Community College. The placement eam starts with a 1 question elementary algebra
More informationDefinition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
More informationSolving Quadratic Equations by Completing the Square
9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application
More informationMATH Fundamental Mathematics II.
MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/funmath2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics
More informationThe majority of college students hold credit cards. According to the Nellie May
CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials
More informationGRE MATH REVIEW #5. 1. Variable: A letter that represents an unknown number.
GRE MATH REVIEW #5 Eponents and Radicals Many numbers can be epressed as the product of a number multiplied by itself a number of times. For eample, 16 can be epressed as. Another way to write this is
More information2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
More informationRadicals  Multiply and Divide Radicals
8. Radicals  Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
More informationSection 1.9 Algebraic Expressions: The Distributive Property
Section 1.9 Algebraic Expressions: The Distributive Property Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Apply the Distributive Property.
More informationMonomial. 5 1 x A sum is not a monomial. 2 A monomial cannot have a. x 21. degree. 2x 3 1 x 2 2 5x Rewrite a polynomial
9.1 Add and Subtract Polynomials Before You added and subtracted integers. Now You will add and subtract polynomials. Why? So you can model trends in recreation, as in Ex. 37. Key Vocabulary monomial degree
More informationFive 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
More informationFlorida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies  Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
More informationFactoring A Quadratic Polynomial
Factoring A Quadratic Polynomial If we multiply two binomials together, the result is a quadratic polynomial: This multiplication is pretty straightforward, using the distributive property of multiplication
More informationPlacement Test Review Materials for
Placement Test Review Materials for 1 To The Student This workbook will provide a review of some of the skills tested on the COMPASS placement test. Skills covered in this workbook will be used on the
More information6.1 The Greatest Common Factor; Factoring by Grouping
386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.
More informationA Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles
A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...
More informationUnit 6  Lesson 5. Conceptual Understanding (Tier 1) 5. Evaluate the following product by applying the
Name: Date: Unit 6  Lesson 5 Conceptual Understanding (Tier 1) 1. Explain the concept of a monomial and provide evidence to support your explanation. 5. Evaluate the following product by applying the
More informationFactoring Polynomials
Factoring Polynomials 412014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall
More informationUnit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials
Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial
More informationPOLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
More information1.3 Order of Operations
1.3 Order of Operations As it turns out, there are more than just 4 basic operations. There are five. The fifth basic operation is that of repeated multiplication. We call these exponents. There is a bit
More information
Geometric Series. On the other hand, if 0
Geometric Series In the previous chapter we saw that if a>, then the exponential function with base a, the function f(x) =a x, has a graph that looks like this: On the other hand, if 0
More informationChapter 4 Fractions and Mixed Numbers
Chapter 4 Fractions and Mixed Numbers 4.1 Introduction to Fractions and Mixed Numbers Parts of a Fraction Whole numbers are used to count whole things. To refer to a part of a whole, fractions are used.
More informationPOLYNOMIALS and FACTORING
POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use
More information2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the xaxis and
More informationDefinitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).
Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32
More informationNow that we have a handle on the integers, we will turn our attention to other types of numbers.
1.2 Rational Numbers Now that we have a handle on the integers, we will turn our attention to other types of numbers. We start with the following definitions. Definition: Rational Number any number that
More informationMultiplying Polynomials 5
Name: Date: Start Time : End Time : Multiplying Polynomials 5 (WS#A10436) Polynomials are expressions that consist of two or more monomials. Polynomials can be multiplied together using the distributive
More informationis the degree of the polynomial and is the leading coefficient.
Property: T. HrubikVulanovic email: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 HigherDegree Polynomial Functions... 1 Section 6.1 HigherDegree Polynomial Functions...
More informationCopy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2  Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers  {1,2,3,4,...}
More information6.4 Special Factoring Rules
6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication
More information5.4 The Quadratic Formula
Section 5.4 The Quadratic Formula 481 5.4 The Quadratic Formula Consider the general quadratic function f(x) = ax + bx + c. In the previous section, we learned that we can find the zeros of this function
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationUnit 1: Polynomials. Expressions:  mathematical sentences with no equal sign. Example: 3x + 2
Pure Math 0 Notes Unit : Polynomials Unit : Polynomials : Reviewing Polynomials Epressions:  mathematical sentences with no equal sign. Eample: Equations:  mathematical sentences that are equated with
More informationSect 6.7  Solving Equations Using the Zero Product Rule
Sect 6.7  Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred
More information( ) FACTORING. x In this polynomial the only variable in common to all is x.
FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated
More informationMATH 90 CHAPTER 6 Name:.
MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a
More information6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
More information1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
More informationFOIL FACTORING. Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4.
FOIL FACTORING Factoring is merely undoing the FOIL method. Let s look at an example: Take the polynomial x²+4x+4. First we take the 3 rd term (in this case 4) and find the factors of it. 4=1x4 4=2x2 Now
More informationAlgebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials
Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Preassessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages
More informationVocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
More information