Math 150 Sample Exam #2


 Angel Thompson
 1 years ago
 Views:
Transcription
1 Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent events, then P (A and B) = P (A) P (B). d. If a family has three children, the probability that two of them are girls is 3. e. Two dice are rolled, Event A is getting a sum greater than 10, and event B is getting a sum of odd number. Event A and event B are mutually exclusive. f. The arrival time of a student in a classroom 10 minutes after the scheduled beginning time of class is an example of continuous random variable. g. In a binomial experiment, if the probability of success is 0.7, the probability of failure is 0.3. h. A random variable with binomial distribution is a discrete random variable. Problem 2. (12 points) Two die are rolled. a. What is the probability of getting a sum of odd number? b. What is the probability of getting a sum that is at least 2? c. What is the probability of getting a sum that is odd or less than?
2 Problem 3. (20 points) Suppose that two balls are randomly drawn in succession, without replacement, from a box containing 7 red and green balls. a. Complete and label the tree diagram as follows that will describe the probabilities of the various outcomes. Fill your answers in the boxes provided. Red Start Red Green Green Red Green First Draw Second Draw b. Give the following values: P (2 nd Green 1 st Red) = P (1 st Green and 2 nd Red) = c. What is the probability of getting two of different colors?
3 Problem 4. (10 points) Suppose you plan to insure your new laptop computer, which you will be taking to campus, against theft for the amount of $2000. An insurance company claims that their records indicate 0.2% of such computers on college campuses are stolen within one year and offers to insure. If the insurance company wants to maintain expected earnings of $200 per such policy, what should the premium be? Problem 5. (10 points) In a hospital unit, there are 14 nurses and 6 physicians. nurses and 4 physicians are females. Staff Females Males Nurses 6 Physicians 4 2 If a staff person is selected, a. Find the probability that the subject is a nurse or male. b. Find the probability that the subject is female physician. c. If two people are selected without replacement, what is the probability that both are female physicians?
4 Problem 6. (12 points) Determine whether the given table represents a probability distribution for a random variable. State the reasons. A. X P(X) B. X P(X) C. X P(X)
5 Problem 7 (10 points) A ski loses $70,000 per season when it does not snow very much and makes $250,000 in profit when it does snow at lot. The probability of it snowing at least 75 inches (a good season) is 40%. If the random variable X that represents the earnings of the ski resort. A. Find the probability distribution for the random variable X. B. Find the expected values (mean) for the ski resort. Problem ( points) There is a binomial experiment with the following numbers: The fixed number of trial is n = 12; Every trial is independent of any other trial; There are only two possible outcomes for each trial, success (S) or failure (F); The probability of success (S) are the same for all trials, which is p = P(S) = 0.. X : the number of successes, then A. List all the possible values of X : { } B. Set up the probability of X successes if X = 7:
6 Problem 9. (10 points) It is believed that 90% of the people interviewed got the H1N1 vaccine. If 10 people are selected at random, A. Find the probability that exactly 7 people interviewed got the H1N1 vaccine (use the table provided). B. Find the probability that at least 2 people interviewed got the H1N1 vaccine (use the table provided). C. Find the expected number of people interview got the H1N1 vaccine. D. Find the standard deviation of the number of people interview got the H1N1 vaccine.
Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
More informationACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers
ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups
More informationDetermine the empirical probability that a person selected at random from the 1000 surveyed uses Mastercard.
Math 120 Practice Exam II Name You must show work for credit. 1) A pair of fair dice is rolled 50 times and the sum of the dots on the faces is noted. Outcome 2 4 5 6 7 8 9 10 11 12 Frequency 6 8 8 1 5
More informationX: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001
Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationAP Statistics 7!3! 6!
Lesson 64 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
More informationStatistics 100A Homework 2 Solutions
Statistics Homework Solutions Ryan Rosario Chapter 9. retail establishment accepts either the merican Express or the VIS credit card. total of percent of its customers carry an merican Express card, 6
More informationThursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More information36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.4 Homework 4.65 You buy a hot stock for $1000. The stock either gains 30% or loses 25% each day, each with probability.
More informationThe Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
More information14.4. Expected Value Objectives. Expected Value
. Expected Value Objectives. Understand the meaning of expected value. 2. Calculate the expected value of lotteries and games of chance.. Use expected value to solve applied problems. Life and Health Insurers
More informationWe rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is
Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 136, and there are two compartments labeled 0 and 00. Half of the compartments numbered 136
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More information13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
More informationSTAT 35A HW2 Solutions
STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },
More informationProbability Using Dice
Using Dice One Page Overview By Robert B. Brown, The Ohio State University Topics: Levels:, Statistics Grades 5 8 Problem: What are the probabilities of rolling various sums with two dice? How can you
More informationBasic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
More informationExam. Name. How many distinguishable permutations of letters are possible in the word? 1) CRITICS
Exam Name How many distinguishable permutations of letters are possible in the word? 1) CRITICS 2) GIGGLE An order of award presentations has been devised for seven people: Jeff, Karen, Lyle, Maria, Norm,
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More informationExam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.
Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white
More informationName: Date: Use the following to answer questions 24:
Name: Date: 1. A phenomenon is observed many, many times under identical conditions. The proportion of times a particular event A occurs is recorded. What does this proportion represent? A) The probability
More informationLecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000
Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationMath 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
More informationChapter 5 A Survey of Probability Concepts
Chapter 5 A Survey of Probability Concepts True/False 1. Based on a classical approach, the probability of an event is defined as the number of favorable outcomes divided by the total number of possible
More informationMidterm Exam #1 Instructions:
Public Affairs 818 Professor: Geoffrey L. Wallace October 9 th, 008 Midterm Exam #1 Instructions: You have 10 minutes to complete the examination and there are 6 questions worth a total of 10 points. The
More informationChapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
More informationSecond Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
More informationChapter 16: law of averages
Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................
More informationResponsible Gambling Education Unit: Mathematics A & B
The Queensland Responsible Gambling Strategy Responsible Gambling Education Unit: Mathematics A & B Outline of the Unit This document is a guide for teachers to the Responsible Gambling Education Unit:
More informationQuestion 1 Formatted: Formatted: Formatted: Formatted:
In many situations in life, we are presented with opportunities to evaluate probabilities of events occurring and make judgments and decisions from this information. In this paper, we will explore four
More informationBetting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
More informationX X AP Statistics Solutions to Packet 7 X Random Variables Discrete and Continuous Random Variables Means and Variances of Random Variables
AP Statistics Solutions to Packet 7 Random Variables Discrete and Continuous Random Variables Means and Variances of Random Variables HW #44, 3, 6 8, 3 7 7. THREE CHILDREN A couple plans to have three
More informationStatistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
More informationThe power of a test is the of. by using a particular and a. value of the that is an to the value
DEFINITION The power of a test is the of a hypothesis. The of the is by using a particular and a value of the that is an to the value assumed in the. POWER AND THE DESIGN OF EXPERIMENTS Just as is a common
More informationBusiness Statistics, 9e (Groebner/Shannon/Fry) Chapter 5 Discrete Probability Distributions
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 5 Discrete Probability Distributions 1) A random variable is generated when a variableʹs value is determined by using classical probability. Answer:
More informationProbability, statistics and football Franka Miriam Bru ckler Paris, 2015.
Probability, statistics and football Franka Miriam Bru ckler Paris, 2015 Please read this before starting! Although each activity can be performed by one person only, it is suggested that you work in groups
More informationSTATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4
STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate
More information$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
More informationRandom Variables. Chapter 2. Random Variables 1
Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets
More informationThis document contains Chapter 2: Statistics, Data Analysis, and Probability strand from the 2008 California High School Exit Examination (CAHSEE):
This document contains Chapter 2:, Data Analysis, and strand from the 28 California High School Exit Examination (CAHSEE): Mathematics Study Guide published by the California Department of Education. The
More informationUnit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
More informationSession 8 Probability
Key Terms for This Session Session 8 Probability Previously Introduced frequency New in This Session binomial experiment binomial probability model experimental probability mathematical probability outcome
More informationProbability and Counting Rules
blu3496x_ch04.qxd 7/6/06 0:49 AM Page 77 B&W CONFIRMINGS C H A P T E R 4 Probability and Counting Rules Objectives Outline After completing this chapter, you should be able to 4 Determine sample spaces
More informationWeek 2: Conditional Probability and Bayes formula
Week 2: Conditional Probability and Bayes formula We ask the following question: suppose we know that a certain event B has occurred. How does this impact the probability of some other A. This question
More informationStatistics. Head First. A BrainFriendly Guide. Dawn Griffiths
A BrainFriendly Guide Head First Statistics Discover easy cures for chart failure Improve your season average with the standard deviation Make statistical concepts stick to your brain Beat the odds at
More informationCHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS
CHAPTER 7 SECTION 5: RANDOM VARIABLES AND DISCRETE PROBABILITY DISTRIBUTIONS TRUE/FALSE 235. The Poisson probability distribution is a continuous probability distribution. F 236. In a Poisson distribution,
More informationSTATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS
STATISTICS 8: CHAPTERS 7 TO 10, SAMPLE MULTIPLE CHOICE QUESTIONS 1. If two events (both with probability greater than 0) are mutually exclusive, then: A. They also must be independent. B. They also could
More informationWeek 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
More informationFun ways to group students
Fun ways to group students Tips for dividing into groups. Picture Cards: Hand out cards with images on such as strawberries, blueberries, blackberries and other such groups of things. Then get them to
More informationSums of Independent Random Variables
Chapter 7 Sums of Independent Random Variables 7.1 Sums of Discrete Random Variables In this chapter we turn to the important question of determining the distribution of a sum of independent random variables
More informationSouth East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, 2011. Sample not collected
At 14:05 April 16, 2011 At 13:55 April 16, 2011 At 14:20 April 16, 2011 ND ND 3.6E01 ND ND 3.6E01 1.3E01 9.1E02 5.0E01 ND 3.7E02 4.5E01 ND ND 2.2E02 ND 3.3E02 4.5E01 At 11:37 April 17, 2011 At
More informationDistinguishing Between Binomial, Hypergeometric and Negative Binomial Distributions
Distinguishing Between Binomial, Hypergeometric and Negative Binomial Distributions Jacqueline Wroughton Northern Kentucky University Tarah Cole Northern Kentucky University Journal of Statistics Education
More informationChapter 2: Systems of Linear Equations and Matrices:
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
More informationMath 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand. Problem Set 1 (with solutions)
Math 370, Actuarial Problemsolving Spring 2008 A.J. Hildebrand Problem Set 1 (with solutions) About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years,
More informationSolution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.34.4) Homework Solutions. Section 4.
Math 115 N. Psomas Chapter 4 (Sections 4.34.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If two events are mutually exclusive, what is the probability that one or the other occurs? A)
More informationSCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics
SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics Probability and Probability Distributions 1. Introduction 2. Probability 3. Basic rules of probability 4. Complementary events 5. Addition Law for
More informationHigh School Statistics and Probability Common Core Sample Test Version 2
High School Statistics and Probability Common Core Sample Test Version 2 Our High School Statistics and Probability sample test covers the twenty most common questions that we see targeted for this level.
More informationDefinition: Suppose that two random variables, either continuous or discrete, X and Y have joint density
HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,
More informationb. What is the probability of an event that is certain to occur? ANSWER: P(certain to occur) = 1.0
MTH 157 Sample Test 2 ANSWERS Student Row Seat M157ST2a Chapters 3 & 4 Dr. Claude S. Moore Score SHOW ALL NECESSARY WORK. Be Neat and Organized. Good Luck. 1. In a statistics class, 12 students own their
More informationIAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION
IAM 530 ELEMENTS OF PROBABILITY AND STATISTICS INTRODUCTION 1 WHAT IS STATISTICS? Statistics is a science of collecting data, organizing and describing it and drawing conclusions from it. That is, statistics
More information3) Construct the amortization table for a $1,000 debt that is to be repaid in 6 monthly payments at 1.24% interest per month on the unpaid balance.
` M118 Final Review 1) Find the amount due on a loan of $8,500 at 12.5% simple interest at the end of 4 years. 2) If you pay $5,500 for a simple interest note that will be worth $6,000 in 21 months, what
More informationFund Manager s Portfolio Choice
Fund Manager s Portfolio Choice Zhiqing Zhang Advised by: Gu Wang September 5, 2014 Abstract Fund manager is allowed to invest the fund s assets and his personal wealth in two separate risky assets, modeled
More informationInterpreting Data in Normal Distributions
Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,
More informationChapter 7 Probability and Statistics
Chapter 7 Probability and Statistics In this chapter, students develop an understanding of data sampling and making inferences from representations of the sample data, with attention to both measures of
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant
More informationStatistics and Data Analysis B01.1305
Statistics and Data Analysis B01.1305 Professor William Greene Phone: 212.998.0876 Office: KMC 778 Home page: www.stern.nyu.edu/~wgreene Email: wgreene@stern.nyu.edu Course web page: www.stern.nyu.edu/~wgreene/statistics/outline.htm
More informationExample. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)
: Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More information4.1 Exploratory Analysis: Once the data is collected and entered, the first question is: "What do the data look like?"
Data Analysis Plan The appropriate methods of data analysis are determined by your data types and variables of interest, the actual distribution of the variables, and the number of cases. Different analyses
More informationMath 2001 Homework #10 Solutions
Math 00 Homework #0 Solutions. Section.: ab. For each map below, determine the number of southerly paths from point to point. Solution: We just have to use the same process as we did in building Pascal
More informationProject Maths. Mathematics Resources for Students. Junior Certificate Strand 1. Statistics and Probability
Project Maths Mathematics Resources for Students Junior Certificate Strand 1 Statistics and Probability NCCA 2009 PROJECT MATHS  Mathematics Resources for Students Introduction This material is designed
More informationa) Find the five point summary for the home runs of the National League teams. b) What is the mean number of home runs by the American League teams?
1. Phone surveys are sometimes used to rate TV shows. Such a survey records several variables listed below. Which ones of them are categorical and which are quantitative?  the number of people watching
More informationChapter 5: Probability
Chapter 5: Probability 5.1 What is probability anyway? Probability is a branch of mathematics which intrudes on everyday conversation perhaps more than any other (except for just plain arithmetic and counting).
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 18: Simple Random Sampling Tessa L. ChildersDay UC Berkeley 24 July 2014 By the end of this lecture... You will be able to: Draw box models for realworld
More informationProbability and statistical hypothesis testing. Holger Diessel holger.diessel@unijena.de
Probability and statistical hypothesis testing Holger Diessel holger.diessel@unijena.de Probability Two reasons why probability is important for the analysis of linguistic data: Joint and conditional
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.2 Homework Answers 4.17 Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen
More informationExample 1: Dear Abby. Stat Camp for the Fulltime MBA Program
Stat Camp for the Fulltime MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so?
More informationDiscrete Structures for Computer Science
Discrete Structures for Computer Science Adam J. Lee adamlee@cs.pitt.edu 6111 Sennott Square Lecture #20: Bayes Theorem November 5, 2013 How can we incorporate prior knowledge? Sometimes we want to know
More informationExpectation & Variance
Massachusetts Institute of Technology Course Notes, Week 13 6.042J/18.062J, Spring 06: Mathematics for Computer Science May 5 Prof. Albert R. Meyer revised May 26, 2006, 94 minutes Expectation & Variance
More informationResults from the 2014 AP Statistics Exam. Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu
Results from the 2014 AP Statistics Exam Jessica Utts, University of California, Irvine Chief Reader, AP Statistics jutts@uci.edu The six freeresponse questions Question #1: Extracurricular activities
More informationMath 370/408, Spring 2008 Prof. A.J. Hildebrand. Actuarial Exam Practice Problem Set 1
Math 370/408, Spring 2008 Prof. A.J. Hildebrand Actuarial Exam Practice Problem Set 1 About this problem set: These are problems from Course 1/P actuarial exams that I have collected over the years, grouped
More informationSolutions to Homework 6 Statistics 302 Professor Larget
s to Homework 6 Statistics 302 Professor Larget Textbook Exercises 5.29 (Graded for Completeness) What Proportion Have College Degrees? According to the US Census Bureau, about 27.5% of US adults over
More informationChapter 14 From Randomness to Probability
226 Part IV Randomness and Probability Chapter 14 From Randomness to Probability 1. Roulette. If a roulette wheel is to be considered truly random, then each outcome is equally likely to occur, and knowing
More informationMAT 211 Introduction to Business Statistics I Lecture Notes
MAT 211 Introduction to Business Statistics I Lecture Notes Muhammad ElTaha Department of Mathematics and Statistics University of Southern Maine 96 Falmouth Street Portland, ME 041049300 MAT 211, Spring
More informationSt. Stephen Catholic School
PS 3 1 Primary Composition book (marble look cover) 12 Glue sticks 3 containers of Baby Wipes 2 box of tissues 1 plastic poly/vinyl folder with pockets 1 box of 24 crayons 2 containers of antibacterial
More informationTeaching the, Gaussian Distribution with Computers in Senior High School
Teaching the, Gaussian Distribution with Computers in Senior High School Reishin Nakamura  Nagoyacity, Japan 1. Background features In keeping pace with the development of information science and technology,
More informationPayment of bets: In absence of further proofs, the bets will be assigned according to our statistics:
Bet types Soccer If a match is suspended, for example, because a team doesn't have enough players on field (7 players goalkeeper included) the match is canceled and all the relative bets are considered
More informationLaw of Large Numbers. Alexandra Barbato and Craig O Connell. Honors 391A Mathematical Gems Jenia Tevelev
Law of Large Numbers Alexandra Barbato and Craig O Connell Honors 391A Mathematical Gems Jenia Tevelev Jacob Bernoulli Life of Jacob Bernoulli Born into a family of important citizens in Basel, Switzerland
More informationName: Date: Use the following to answer questions 34:
Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin
More informationPractical Probability:
Practical Probability: Casino Odds and Sucker Bets Tom Davis tomrdavis@earthlink.net April 2, 2011 Abstract Gambling casinos are there to make money, so in almost every instance, the games you can bet
More informationImportant Probability Distributions OPRE 6301
Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in reallife applications that they have been given their own names.
More informationChapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) 
More informationIntroduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang
Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space
More informationCHAPTER 4 PRobAbiliTy And STATiSTiCS
Chapter 4 Probability and Statistics CHAPTER 4 Probability and Statistics 4.1 Elementary and Conditional Probability 4.2 Odds and Expected Value 4.3 Statistical Graphs 4.4 Analyzing Data 4.5 Polls and
More information6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
More informationCarpathian Cup Ski jumping
Carpathian Cup Ski jumping Goals and objectives: The Carpathian Cup is a number of competitions, both for the Carpathian Federations and adjacent countries. The competitions are held in order to develop
More information