Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials

Size: px
Start display at page:

Download "Algebra Unit 6 Syllabus revised 2/27/13 Exponents and Polynomials"

Transcription

1 Algebra Unit 6 Syllabus revised /7/13 1 Objective: Multiply monomials. Simplify expressions involving powers of monomials. Pre-assessment: Exponents, Fractions, and Polynomial Expressions Lesson: Pages 4-41 Examples 1-5 Class work: Page 413 #16,18,,4,30,34,36 Homework: Read and study Chapter 8-1 Text pages #17,19,1,3,7,9,33,35,43,47,53 Extra Practice: Page 837 Lesson 8-1 #5,8,11,15,16 Objective: Simplify monomial expressions with quotients and negative exponents. Quiz 1: Monomials (No Calculators!) Lesson: Page 417 How, and transparency Simplifying Monomial Expressions with Quotients and Negative Exponents Class work: Text page 41 #16,18,,6,30 Homework: Read and study Chapter 8- Text pages 41-4 #15-3 (odds only), 7,9,31,35,38 Extra Practice: Page 837 Lesson 8- #1,,5,13,14 3 Objective: Find products and quotients of numbers expressed in scientific notation. Quiz : Quotients and Negative Exponents (No Calculators!) Lesson: Pages Why, Key Concept, and Examples 1,,4,5 Class work: Text page 48 #5-15 (odds only) Homework: Read and study Chapter 8-3 Text pages #1,3,5,35,39,41,45,49,51,53,55,56, 57 Extra Practice: Page 837 Lesson 8-3 #1,,11,1,6,7 4 Objective: Find the degree of a polynomial. Arrange the terms of a polynomial in order. Quiz 3: Scientific Notation (No Calculators!) Lesson: Pages How, and Examples 1-5 Class work: Text page 434 #4-9,1-14 Homework: Read and study Chapter 8-4 Text pages #15,17,19,,7,9,33,35,47,49,51,59,60 Cut out algebra tiles Extra Practice: Page 838 Lesson 8-4 #1,4,6,1,

2 Algebra Unit 6 Syllabus revised /7/13 5 Objective: Add and subtract polynomials. Quiz 4: Degree of a Polynomial (No Calculators!) Lesson: Pages Examples 1 and Class work: Text page 441 #,3,4,8 Homework: Test 1 (Assignments 1-4) review sheet 6 Objective: Add and subtract polynomials. Test 1: Assignments 1-4 (No Calculators!) Homework: Read and study Chapter 8-5 Text pages #13-3 (odds only), 36,37,38 Extra Practice: Page 838 Lesson 8-5 # Objective: Find the product of a monomial and a polynomial. Solve equations involving polynomials. Quiz 5: Add and Subtract Polynomials Lesson: Pages How and Examples 1,,4 Class work: Text page 446 #5,7,9,11 Homework: Read and study Chapter 8-6 Text pages #15-3 (odds only), 9,31,33,37,43 Extra Practice: Page 838 Lesson 8-6 #7,8,13,6 8 Objective: Multiply polynomials. Quiz 6: Products of Monomials and Polynomials Lesson: Page 45 How and Examples 1-4 Class work: Text page 455 #14,16,18,0,34 Homework: Read and study Chapter 8-7 Text pages #15-31 (odds only), 48,49,50,51 Extra Practice: Page 839 Lesson 8-7 #1,,13,0

3 Algebra Unit 6 Syllabus revised /7/13 9 Objective: Square binomials and determine the product of the sum and difference of the same two terms. Quiz 7: Products of Polynomials Lesson: Pages Key Concepts and Examples 1,,4 Class work: Page 461 #5,7, Homework: Read and study Chapter 8-8 Text pages #15-31 (odds only), (all) Extra Practice: Page 839 Lesson 8-8 #1-4 Objective: Determine the greatest common factor of a set of monomials. Divide a polynomial by a monomial. Quiz 8: Special Binomial Products Lesson: Pages Examples 1-5; page 666 Examples 1 and Class work: Page 477 #4-1 Homework: Test (Assignments 6-9) review sheet 11 Objective: Determine the greatest common factor of a set of monomials. Divide a polynomial by a monomial. Test : Assignments 6-9 Homework: Read and study Chapters 9-1 and 1-5 Text page 478 #41,45,47,53,55,57,61,63-64 Worksheet Dividing Polynomials Extra Practice: Page 839 Lesson 9-1 #7,9,13,14,3,33 Page 669 # Objective: Factor polynomials using the distributive property. Solve equations of the form ax + bx + c = 0. Quiz 9: Divide Polynomials Lesson: Page How and TWE In-Class Examples 1,4,5 Class work: Page 484 #4-7, -1 Homework: Read and study Chapter 9- Text pages #19-7 (odds only), 40,41,49,53,55,59,61 Extra Practice: Page 840 Lesson 9- #7-,18,19 50

4 Algebra Unit 6 Syllabus revised /7/13 13 Objective: Factor trinomials of the form x + bx + c. Solve equations of the form x + bx + c = 0. Quiz : Factor Polynomials (GCF) Lesson: Page 489 How; TWE In-Class Examples 1-5; Page 49 Ex. 6 Homework: Read and study Chapter 9-3 Text pages 493 #1-9 (odds only),37-43 (odds only),54,56 Extra Practice: Page 840 Lesson 9-3 #-5,0,1 14 Objective: Factor trinomials of the form ax + bx + c. Solve equations of the form ax + bx + c = 0. Quiz 11: Binomial Factors of Trinomials Lesson: Worksheet The Box Method Class work: Page 498 #4-9 Homework: Read and study Chapter 9-4 Text page 499 #15,17,19,3,5,9,35,41 Extra Practice: Page 840 Lesson 9-4 #1,,5,19,1 15 Objective: Factor binomials that are the differences of squares. Factor perfect square trinomials. Lesson: WS: Difference of Squares & Perfect Square Trinomials Class work: Page 504 #5,6,11 and pages #30,34,46 Homework: Read and study Chapters 9-5 and 9-6 Text page 505 #19,1,7,9,35,37 page #5,7,9,31,43,45 Extra Practice: Page 841 Lesson 9-5 #3,4,0 and Lesson 9-6 #8,,19 16 Objective: Review for Test 3 Quiz 1: Factor Special Polynomials Class work: Unit 6 Formative Homework: Test 3 (Assignments 11-15) review sheet

5 Algebra Unit 6 Syllabus revised /7/13 17 Objective: Review for Unit 6 Assessment Test 3: Assignments Homework: Unit 6 review packet 18 Objective: Review for Unit 6 Assessment : Unit 6 review packet Homework: Study for Unit 6 Assessment 19 Unit 6 Assessment 0

6 Algebra Unit 6 Syllabus revised /7/13 Lesson 8 1 Answers to Extra Practice Problems a 8. b 5 c s t w , Lesson or 16. 3b a b 3 c a 14. u 3 v 9 Lesson , ,000,000, Lesson yes, trinomial 4. yes, binomial px 1p x p Lesson a 4. 3x 3. 3z n 15 Lesson ab 4a b 6a b m n 4m n 0m n 13. 6a 41a 6. 6 Lesson d 7d. z 3z a a x 5x 8x 55 Lesson t 14t 49. w q 8qh 16h 4. 0x 11y

7 Algebra Unit 6 Syllabus revised /7/13 Lesson m n a a a b j Worksheet: 6. y 3 7. a b 8. n 8mn x y z xyz 9y z. k 3 j 4 3kj k Lesson ab (5a 6b) 8. mn ( m n 8n 4) 9. ( x b)( a 3c). ( m r)(3x ) 18. {0,.5} 19. { 3, 1} Lesson 9 3. ( a 1)( a 3) 3. ( x 5)( x 3) 4. ( n 5)( n 3) 5. ( 3a 7)( a 3) 0. { 8, 4} 1. { 1, } 5 Lesson ( a 7)(a 9). ( 3x )( x 3) 5. ( 3a 7)( a 3) 19. { 3, 1} 1. { 1, 5 } Lesson ( x 3y)(x 3y) 4. ( 1 3z)(1 3z) 0. { 5} Lesson ( n 4). 6( a 1) 19. { 5}

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1) Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

Algebra II New Summit School High School Diploma Program

Algebra II New Summit School High School Diploma Program Syllabus Course Description: Algebra II is a two semester course. Students completing this course will earn 1.0 unit upon completion. Required Materials: 1. Student Text Glencoe Algebra 2: Integration,

More information

Learning Objectives 9.2. Media Run Times 9.3

Learning Objectives 9.2. Media Run Times 9.3 Unit 9 Table of Contents Unit 9: Factoring Video Overview Learning Objectives 9.2 Media Run Times 9.3 Instructor Notes 9.4 The Mathematics of Factoring Polynomials Teaching Tips: Conceptual Challenges

More information

MATD 0390 - Intermediate Algebra Review for Pretest

MATD 0390 - Intermediate Algebra Review for Pretest MATD 090 - Intermediate Algebra Review for Pretest. Evaluate: a) - b) - c) (-) d) 0. Evaluate: [ - ( - )]. Evaluate: - -(-7) + (-8). Evaluate: - - + [6 - ( - 9)]. Simplify: [x - (x - )] 6. Solve: -(x +

More information

Primes. Name Period Number Theory

Primes. Name Period Number Theory Primes Name Period A Prime Number is a whole number whose only factors are 1 and itself. To find all of the prime numbers between 1 and 100, complete the following exercise: 1. Cross out 1 by Shading in

More information

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant

13. Write the decimal approximation of 9,000,001 9,000,000, rounded to three significant æ If 3 + 4 = x, then x = 2 gold bar is a rectangular solid measuring 2 3 4 It is melted down, and three equal cubes are constructed from this gold What is the length of a side of each cube? 3 What is the

More information

Interpretation of Test Scores for the ACCUPLACER Tests

Interpretation of Test Scores for the ACCUPLACER Tests Interpretation of Test Scores for the ACCUPLACER Tests ACCUPLACER is a trademark owned by the College Entrance Examination Board. Visit The College Board on the Web at: www.collegeboard.com/accuplacer

More information

Mathematics as Problem Solving The students will demonstrate the ability to gather information from a graphical representation of an equation.

Mathematics as Problem Solving The students will demonstrate the ability to gather information from a graphical representation of an equation. Title: Another Way of Factoring Brief Overview: Students will find factors for quadratic equations with a leading coefficient of one. The students will then graph these equations using a graphing calculator

More information

1.3. Maximum or Minimum of a Quadratic Function. Investigate A

1.3. Maximum or Minimum of a Quadratic Function. Investigate A < P1-6 photo of a large arched bridge, similar to the one on page 292 or p 360-361of the fish book> Maximum or Minimum of a Quadratic Function 1.3 Some bridge arches are defined by quadratic functions.

More information

College Readiness Math MOOC

College Readiness Math MOOC College Readiness Math MOOC Instructor Information: Dr. Jennifer Kosiak, jkosiak@uwlax.edu General email: mathmooc@uwlax.edu Mathematics Department, University of Wisconsin- La Crosse Description: The

More information

Blue Pelican Alg II First Semester

Blue Pelican Alg II First Semester Blue Pelican Alg II First Semester Teacher Version 1.01 Copyright 2009 by Charles E. Cook; Refugio, Tx (All rights reserved) Alg II Syllabus (First Semester) Unit 1: Solving linear equations and inequalities

More information

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x

x 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0

More information

chapter > Make the Connection Factoring CHAPTER 4 OUTLINE Chapter 4 :: Pretest 374

chapter > Make the Connection Factoring CHAPTER 4 OUTLINE Chapter 4 :: Pretest 374 CHAPTER hapter 4 > Make the Connetion 4 INTRODUCTION Developing seret odes is big business beause of the widespread use of omputers and the Internet. Corporations all over the world sell enryption systems

More information

The finite field with 2 elements The simplest finite field is

The finite field with 2 elements The simplest finite field is The finite field with 2 elements The simplest finite field is GF (2) = F 2 = {0, 1} = Z/2 It has addition and multiplication + and defined to be 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 0 0 0 = 0 0 1 = 0

More information

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers

FSCJ PERT. Florida State College at Jacksonville. assessment. and Certification Centers FSCJ Florida State College at Jacksonville Assessment and Certification Centers PERT Postsecondary Education Readiness Test Study Guide for Mathematics Note: Pages through are a basic review. Pages forward

More information

Virginia Placement Test Practice Questions and Answers

Virginia Placement Test Practice Questions and Answers Virginia Placement Test Practice Questions and Answers Table of Contents Practice Problems for UNIT 1 Operations with Positive Fractions... 1 Practice Problems for UNIT Operations with Positive Decimals

More information

Virginia Placement Test Practice Questions and Answers

Virginia Placement Test Practice Questions and Answers Virginia Placement Test Practice Questions and Answers Table of Contents Practice Problems for MTE Operations with Positive Fractions... Practice Problems for MTE Operations with Positive Decimals and

More information

COMPASS Placement Test Preparation Packet

COMPASS Placement Test Preparation Packet COMPASS Placement Test Preparation Packet For preparing to take the COMPASS Math Placement Test Funded through the Gulf-Coast PASS Grant Table of Contents: 1. The COMPASS Test 1 The COMPASS Test 3 Test

More information

Algebra II and Trigonometry

Algebra II and Trigonometry Algebra II and Trigonometry Textbooks: Algebra 2: California Publisher: McDougal Li@ell/Houghton Mifflin (2006 EdiHon) ISBN- 13: 978-0618811816 Course descriphon: Algebra II complements and expands the

More information

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.6. Finding a Particular Integral. Introduction. Prerequisites. Learning Outcomes. Learning Style Finding a Particular Integral 19.6 Introduction We stated in Block 19.5 that the general solution of an inhomogeneous equation is the sum of the complementary function and a particular integral. We have

More information

PROOFS BY DESCENT KEITH CONRAD

PROOFS BY DESCENT KEITH CONRAD PROOFS BY DESCENT KEITH CONRAD As ordinary methods, such as are found in the books, are inadequate to proving such difficult propositions, I discovered at last a most singular method... that I called the

More information

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom. Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

Example 1: Dear Abby. Stat Camp for the Full-time MBA Program

Example 1: Dear Abby. Stat Camp for the Full-time MBA Program Stat Camp for the Full-time MBA Program Daniel Solow Lecture 4 The Normal Distribution and the Central Limit Theorem 188 Example 1: Dear Abby You wrote that a woman is pregnant for 266 days. Who said so?

More information

(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED

(x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED Student: Instructor: Vicky Kauffman Assignment: Final problems Date: Course: Kauffman's Math 12 1 1. A Norman window consists of a rectangle surmounted by a semicircle. Find the area of the Norman window

More information

Solving Quadratic Equations by Factoring

Solving Quadratic Equations by Factoring 4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written

More information

Alabama Department of Postsecondary Education. Representing The Alabama Community College System

Alabama Department of Postsecondary Education. Representing The Alabama Community College System Alabama Department of Postsecondary Education Representing The Alabama Community College System Central Alabama Community College MTH 100 Intermediate Algebra Prerequisite: MTH 092 or MTH 098 or appropriate

More information

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.

IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa. IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of $2,000. She also earns $500 for

More information

The Convolution Operation

The Convolution Operation The Convolution Operation Convolution is a very natural mathematical operation which occurs in both discrete and continuous modes of various kinds. We often encounter it in the course of doing other operations

More information

Such As Statements, Kindergarten Grade 8

Such As Statements, Kindergarten Grade 8 Such As Statements, Kindergarten Grade 8 This document contains the such as statements that were included in the review committees final recommendations for revisions to the mathematics Texas Essential

More information

Algebra II Unit 1: Foundations of Functions 2014-2015. 27 2.2 Linear Equations Day 1. HW: Linear Equations WS 1. 3 Quiz 2.1, 2.2, and 2.

Algebra II Unit 1: Foundations of Functions 2014-2015. 27 2.2 Linear Equations Day 1. HW: Linear Equations WS 1. 3 Quiz 2.1, 2.2, and 2. Algebra II Unit 1: Foundations of Functions 2014-2015 Aug 25 School Starts Class rules, etc 26 2.1 Relations and Functions HW: Relations and functions WS 27 2.2 Linear Equations Day 1 HW: Linear Equations

More information

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

More information

Topics in Number Theory, Algebra, and Geometry. Ambar N. Sengupta

Topics in Number Theory, Algebra, and Geometry. Ambar N. Sengupta Topics in Number Theory, Algebra, and Geometry Ambar N. Sengupta December, 2006 2 Ambar N. Sengupta Contents Introductory Remarks........................... 5 1 Topics in Number Theory 7 1.1 Basic Notions

More information

Anyone know these guys?

Anyone know these guys? Anyone know these guys? Gavin Brown and Miles Reid We observe that some of our diptych varieties have a beautiful description in terms of key 5-folds V (k) A k+5 that are almost homogeneous spaces. By

More information

EXCEL SPREADSHEET MANUAL

EXCEL SPREADSHEET MANUAL EXCEL SPREADSHEET MANUAL to accompany CALCULUS FOR THE LIFE SCIENCES GREENWELL RITCHEY LIAL Paula Grafton Young Salem College J. Todd Lee Elon College Boston San Francisco New York London Toronto Sydney

More information

Similar matrices and Jordan form

Similar matrices and Jordan form Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

Beads Under the Cloud

Beads Under the Cloud Beads Under the Cloud Intermediate/Middle School Grades Problem Solving Mathematics Formative Assessment Lesson Designed and revised by Kentucky Department of Education Mathematics Specialists Field-tested

More information

Online Developmental Mathematics Instruction in Colleges and Universities: An Exploratory Investigation

Online Developmental Mathematics Instruction in Colleges and Universities: An Exploratory Investigation Online Developmental Mathematics Instruction in Colleges and Universities: An Exploratory Investigation Taylor Martin Nicole Forsgren Velasquez Jason Maughan ABSTRACT 1 Mathematics proficiency is critical

More information

The Dirichlet Unit Theorem

The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators

04 Mathematics CO-SG-FLD004-03. Program for Licensing Assessments for Colorado Educators 04 Mathematics CO-SG-FLD004-03 Program for Licensing Assessments for Colorado Educators Readers should be advised that this study guide, including many of the excerpts used herein, is protected by federal

More information

Just What Do You Mean? Expository Paper Myrna L. Bornemeier

Just What Do You Mean? Expository Paper Myrna L. Bornemeier Just What Do You Mean? Expository Paper Myrna L. Bornemeier In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics

More information

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

More information

8-5 Using the Distributive Property. Use the Distributive Property to factor each polynomial. 1. 21b 15a SOLUTION:

8-5 Using the Distributive Property. Use the Distributive Property to factor each polynomial. 1. 21b 15a SOLUTION: Use the Distributive Property to factor each polynomial. 1. 1b 15a The greatest common factor in each term is 3.. 14c + c The greatest common factor in each term is c. 3. 10g h + 9gh g h The greatest common

More information

5-1 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8

5-1 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8 5-1 NUMBER THEORY: DIVISIBILITY; PRIME & COMPOSITE NUMBERS 210 f8 Note: Integers are the w hole numbers and their negatives (additive inverses). While our text discusses only whole numbers, all these ideas

More information

BX in ( u, v) basis in two ways. On the one hand, AN = u+

BX in ( u, v) basis in two ways. On the one hand, AN = u+ 1. Let f(x) = 1 x +1. Find f (6) () (the value of the sixth derivative of the function f(x) at zero). Answer: 7. We expand the given function into a Taylor series at the point x = : f(x) = 1 x + x 4 x

More information

Guide for Texas Instruments TI-83, TI-83 Plus, or TI-84 Plus Graphing Calculator

Guide for Texas Instruments TI-83, TI-83 Plus, or TI-84 Plus Graphing Calculator Guide for Texas Instruments TI-83, TI-83 Plus, or TI-84 Plus Graphing Calculator This Guide is designed to offer step-by-step instruction for using your TI-83, TI-83 Plus, or TI-84 Plus graphing calculator

More information

Consultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana

Consultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana Teacher Annotated Edition Study Notebook Consultant: Lynn T. Havens SM Director of Project CRISS Kalispell, Montana i_sn_c1fmtwe_893629.indd i 3/16/09 9:17:03 PM Copyright by The McGraw-Hill Companies,

More information

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets

More information

Title of Lesson: Twilight Reconciling Edward Cullen s Bank Statement. Grade Level(s): 9th 12th Grades

Title of Lesson: Twilight Reconciling Edward Cullen s Bank Statement. Grade Level(s): 9th 12th Grades Title of Lesson: Twilight Reconciling Edward Cullen s Bank Statement Grade Level(s): 9th 12th Grades Materials Needed: Lesson Plan information sheet, worksheet, and quiz, pencils, & calculators Lesson

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( )

Answer: (a) Since we cannot repeat men on the committee, and the order we select them in does not matter, ( ) 1. (Chapter 1 supplementary, problem 7): There are 12 men at a dance. (a) In how many ways can eight of them be selected to form a cleanup crew? (b) How many ways are there to pair off eight women at the

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

Take a Trip. Materials Trip Cards Trip Sheet (one per group) Vocabulary sum, difference, product, quotient

Take a Trip. Materials Trip Cards Trip Sheet (one per group) Vocabulary sum, difference, product, quotient Take a Trip Reporting Category Topic Primary SOL Computation and Estimation Solving practical problems 5.4 The student will create and solve single-step and multistep practical problems involving addition,

More information

Advanced Problems. Core Mathematics

Advanced Problems. Core Mathematics Advanced Problems in Core Mathematics Stephen Siklos Fourth edition, October 2008 ABOUT THIS BOOKLET This booklet is intended to help you to prepare for STEP examinations. It should also be useful as preparation

More information

Just want the standards alone? You can find the standards alone at http://corestandards.org/the-standards

Just want the standards alone? You can find the standards alone at http://corestandards.org/the-standards 4 th Grade Mathematics Unpacked Content For the new Common Core State Standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North

More information

Month Rabbits # Pairs

Month Rabbits # Pairs 1. Fibonacci s Rabbit Problem. Fibonacci rabbits come in pairs. Once a pair is two months old, it bears another pair and from then on bears one pair every month. Starting with a newborn pair at the beginning

More information

Number boards for mini mental sessions

Number boards for mini mental sessions Number boards for mini mental sessions Feel free to edit the document as you wish and customise boards and questions to suit your learners levels Print and laminate for extra sturdiness. Ideal for working

More information

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old.

How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem. Will is w years old. How Old Are They? This problem gives you the chance to: form expressions form and solve an equation to solve an age problem Will is w years old. Ben is 3 years older. 1. Write an expression, in terms of

More information

WHAT COMMUNITY COLLEGE DEVELOPMENTAL MATHEMATICS STUDENTS UNDERSTAND ABOUT MATHEMATICS

WHAT COMMUNITY COLLEGE DEVELOPMENTAL MATHEMATICS STUDENTS UNDERSTAND ABOUT MATHEMATICS THE CARNEGIE FOUNDATION FOR THE ADVANCEMENT OF TEACHING Problem Solution Exploration Papers WHAT COMMUNITY COLLEGE DEVELOPMENTAL MATHEMATICS STUDENTS UNDERSTAND ABOUT MATHEMATICS James W. Stigler, Karen

More information

Taking Place Value Seriously: Arithmetic, Estimation, and Algebra

Taking Place Value Seriously: Arithmetic, Estimation, and Algebra Taking Place Value Seriously: Arithmetic, Estimation, and Algebra by Roger Howe, Yale University and Susanna S. Epp, DePaul University Introduction and Summary Arithmetic, first of nonnegative integers,

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 2006 Director Sarah R. Martinez,

More information

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m)

Revised Version of Chapter 23. We learned long ago how to solve linear congruences. ax c (mod m) Chapter 23 Squares Modulo p Revised Version of Chapter 23 We learned long ago how to solve linear congruences ax c (mod m) (see Chapter 8). It s now time to take the plunge and move on to quadratic equations.

More information

Sports Marketing August 19-23

Sports Marketing August 19-23 Last Day of Summer Teachers Institute Sports Marketing August 19-23 Introduction to Sports and Entertainment Marketing, Sports Reporter Interview, Name Game Finish Sports Reporter Activity, Introduction

More information

Reviewer s Guide. Georgia High School. Coordinate Algebra Analytic Geometry Advanced Algebra

Reviewer s Guide. Georgia High School. Coordinate Algebra Analytic Geometry Advanced Algebra Reviewer s Guide Georgia High School Mathematics Coordinate Algebra Analytic Geometry Advanced Algebra Georgia High School Mathematics Pearson Georgia High School Mathematics offers a hybrid instructional

More information

4.3 Least Squares Approximations

4.3 Least Squares Approximations 18 Chapter. Orthogonality.3 Least Squares Approximations It often happens that Ax D b has no solution. The usual reason is: too many equations. The matrix has more rows than columns. There are more equations

More information

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x

DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of

More information

Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer

Mathematics. Mathematics MATHEMATICS. 298 2015-16 Sacramento City College Catalog. Degree: A.S. Mathematics AS-T Mathematics for Transfer MATH Degree: A.S. AS-T for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 916-558-2202 Associate in Science Degree Program Information The mathematics program provides

More information

Monday 13 May 2013 Afternoon

Monday 13 May 2013 Afternoon Monday 3 May 203 Afternoon AS GCE MATHEMATICS (MEI) 475/0 Introduction to Advanced Mathematics (C) QUESTION PAPER * 4 7 5 6 2 0 6 3 * Candidates answer on the Printed Answer Book. OCR supplied materials:

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

SOLUTIONS FOR PROBLEM SET 2

SOLUTIONS FOR PROBLEM SET 2 SOLUTIONS FOR PROBLEM SET 2 A: There exist primes p such that p+6k is also prime for k = 1,2 and 3. One such prime is p = 11. Another such prime is p = 41. Prove that there exists exactly one prime p such

More information

Progressions for the Common Core State Standards in Mathematics (draft)

Progressions for the Common Core State Standards in Mathematics (draft) Progressions for the Common Core State Standards in Mathematics (draft) cthe Common Core Standards Writing Team 2 April 202 K 5, Number and Operations in Base Ten Overview Students work in the base-ten

More information

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk

DNA Data and Program Representation. Alexandre David 1.2.05 adavid@cs.aau.dk DNA Data and Program Representation Alexandre David 1.2.05 adavid@cs.aau.dk Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued

More information

A Course on Number Theory. Peter J. Cameron

A Course on Number Theory. Peter J. Cameron A Course on Number Theory Peter J. Cameron ii Preface These are the notes of the course MTH6128, Number Theory, which I taught at Queen Mary, University of London, in the spring semester of 2009. There

More information

how to use dual base log log slide rules

how to use dual base log log slide rules how to use dual base log log slide rules by Professor Maurice L. Hartung The University of Chicago Pickett The World s Most Accurate Slide Rules Pickett, Inc. Pickett Square Santa Barbara, California 93102

More information

MEP Y9 Practice Book A

MEP Y9 Practice Book A 1 Base Arithmetic 1.1 Binary Numbers We normally work with numbers in base 10. In this section we consider numbers in base 2, often called binary numbers. In base 10 we use the digits 0, 1, 2, 3, 4, 5,

More information

NCTM Content Standard/National Science Education Standard:

NCTM Content Standard/National Science Education Standard: Title: Do These Systems Meet Your Expectations Brief Overview: This concept development unit is designed to develop the topic of systems of equations. Students will be able to graph systems of equations

More information

FRESHMAN SOPHOMORE JUNIOR SENIOR. Algebra 2** (H) Algebra 2 H. Pre-Calculus H Honors Pre-Calculus and/or AP Statistics

FRESHMAN SOPHOMORE JUNIOR SENIOR. Algebra 2** (H) Algebra 2 H. Pre-Calculus H Honors Pre-Calculus and/or AP Statistics MATH DEPARTMENT COURSE DESCRIPTIONS The Mathematics Department provides a challenging curriculum that strives to meet the needs of a diverse student body by: Helping the student realize that the analytical

More information

Brian Galvin Chris Kane. Data Sufficiency

Brian Galvin Chris Kane. Data Sufficiency Brian Galvin Chris Kane Data Sufficiency Authors Co-founders Contributing Writers Contributing Editor Cover Design Interior Design Brian Galvin Chris Kane Markus Moberg Chad Troutwine David Newland Ashley

More information

Teacher Annotated Edition

Teacher Annotated Edition Teacher Annotated Edition Contributing Author Dinah Zike Consultant Douglas Fisher, Ph.D. Professor of Language and Literacy Education San Diego State University San Diego, CA Organizing Your Foldables

More information

(!' ) "' # "*# "!(!' +,

(!' ) ' # *# !(!' +, Normally, when single line commands are entered, MATLAB processes the commands immediately and displays the results. MATLAB is also capable of processing a sequence of commands that are stored in files

More information

Mathematics Program Description Associate in Arts Degree Program Outcomes Required Courses............................. Units

Mathematics Program Description Associate in Arts Degree Program Outcomes Required Courses............................. Units Program Description Successful completion of this maj will assure competence in mathematics through differential and integral calculus, providing an adequate background f employment in many technological

More information

PRE-CALCULUS with TRIGONOMETRY MTH 166 Online

PRE-CALCULUS with TRIGONOMETRY MTH 166 Online PRE-CALCULUS with TRIGONOMETRY MTH 166 Online INSTRUCTOR INFORMATION Name: Dr. Pablo Chalmeta Phone: 540-674-3600, ext. 4266 (or 4115) Email: pchalmeta@nr.edu Office: Godbey Hall, Room 48 (or Mall 115A)

More information

Mathematical Practices

Mathematical Practices The New Illinois Learning Standards for Mathematics Incorporating the Common Core Mathematical Practices Grade Strand Standard # Standard K-12 MP 1 CC.K-12.MP.1 Make sense of problems and persevere in

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Problem of the Month: Digging Dinosaurs

Problem of the Month: Digging Dinosaurs : The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of

More information

Mathematics I, II and III (9465, 9470, and 9475)

Mathematics I, II and III (9465, 9470, and 9475) Mathematics I, II and III (9465, 9470, and 9475) General Introduction There are two syllabuses, one for Mathematics I and Mathematics II, the other for Mathematics III. The syllabus for Mathematics I and

More information

NCTM Content Standard/National Science Education Standard

NCTM Content Standard/National Science Education Standard Title: BASE-ic Space Travel Brief Overview: This unit introduces the concepts of bases and exponents (or powers) in order to gain a deeper understanding of place value. Students will assume the role of

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu

Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Arts Mathematics 62

More information

The Method of Least Squares

The Method of Least Squares The Method of Least Squares Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract The Method of Least Squares is a procedure to determine the best fit line to data; the

More information

NATIONAL GENETICS REFERENCE LABORATORY (Manchester)

NATIONAL GENETICS REFERENCE LABORATORY (Manchester) NATIONAL GENETICS REFERENCE LABORATORY (Manchester) MLPA analysis spreadsheets User Guide (updated October 2006) INTRODUCTION These spreadsheets are designed to assist with MLPA analysis using the kits

More information

4. FIRST STEPS IN THE THEORY 4.1. A

4. FIRST STEPS IN THE THEORY 4.1. A 4. FIRST STEPS IN THE THEORY 4.1. A Catalogue of All Groups: The Impossible Dream The fundamental problem of group theory is to systematically explore the landscape and to chart what lies out there. We

More information

Mathematics. Routine Bank

Mathematics. Routine Bank S D C S SAN DIEGO CITY SCHOOLS MIDDLE LEVEL Instruction & Curriculum Mathematics Mathematics Routine Bank Middle Level Routines in Mathematics: Number Sense and Algebraic Thinking page 2 Middle Level Routines

More information

Perpetuities and Annuities: Derivation of shortcut formulas

Perpetuities and Annuities: Derivation of shortcut formulas Perpetuities and Annuities: Derivation of shortcut formulas Outline Perpetuity formula... 2 The mathematical derivation of the PV formula... 2 Derivation of the perpetuity formula using the Law of One

More information

Approximating functions by Taylor Polynomials.

Approximating functions by Taylor Polynomials. Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If

More information