Goodness of Fit Goodness of fit  2 classes


 Diana Lawson
 2 years ago
 Views:
Transcription
1 Goodness of Fit Goodness of fit  2 classes A B Do these data correspond reasonably to the proportions 3:1? We previously discussed options for testing p A =0.75! Exact pvalue Exact confidence interval Normal approximation
2 Goodness of fit  3 classes AA AB BB Do these data correspond reasonably to the proportions 1:2:1? Multinomial distribution Imagine an urn with k types of balls. Let p i denote the proportion of type i. Draw n balls with replacement. Outcome: (n 1, n 2,...,n k ), with i n i = n, where n i is the no. balls drawn that were of type i. n! P(X 1 =n 1,...,X k =n k )= n 1! n k! pn 1 1 pn k k if 0 n i n, i n i =n Otherwise P(X 1 =n 1,...,X k =n k ) = 0.
3 Example Let (p 1, p 2, p 3 ) =(0.25,0.50,0.25)andn=100. P(X 1 =35, X 2 =43, X 3 =22) = 100! 35! 43! 22! Rather brutal, numerically speaking. Take logs (and use a computer). Goodness of fit test We observe (n 1, n 2, n 3 ) Multinomial(n,p={p 1, p 2, p 3 }). We seek to test H 0 : p 1 = 0.25, p 2 = 0.5, p 3 = versus H a : H 0 is false. We need two things: Ateststatistic. The null distribution of the test statistic.
4 The likelihoodratio test (LRT) Back to the first example: A n A B n B Test H 0 :(p A, p B )=(π A, π B ) versus H a :(p A, p B ) (π A, π B ). MLE under H a : ˆp A = n A /n where n = n A + n B. Likelihood under H a : Likelihood under H 0 : L a =Pr(n A p A = ˆp A )= ( ) n n A ˆp n A A (1 ˆp A ) n n A L 0 =Pr(n A p A = π A )= ( ) n n A π n A A (1 π A) n n A Likelihood ratio test statistic: LRT = 2 ln (L a /L 0 ) Some clever people have shown that if H 0 is true, then LRT follows a χ 2 (df=1) distribution (approximately). Likelihoodratio test for the example We observed n A =78andn B =22. H 0 :(p A, p B )=(0.75,0.25) H a :(p A, p B ) (0.75,0.25) L a =Pr(n A =78 p A =0.78) = ( ) = L 0 =Pr(n A =78 p A =0.75) = ( ) = LRT = 2 ln (L a /L 0 ) = Using a χ 2 (df=1) distribution, we get a pvalue of We therefore have no evidence against the null hypothesis. In R: pvalue = 1  pchisq(0.49,1)
5 Null distribution Obs LRT A little math... n=n A +n B, n 0 A =E[n A H 0 ]=n π A, n 0 B =E[n B H 0 ]=n π B. ( ) na ( Then L a /L 0 = na n nb 0 n A 0 B ) nb ) Or equivalently LRT = 2 n A ln( na n 0 A ) +2 n B ln( nb. n 0 B Why do this?
6 Generalization to more than two groups If we have k groups, then the likelihood ratio test statistic is LRT = 2 k i=1 n i ln ( ni n 0 i ) If H 0 is true, LRT χ 2 (df=k1) Null distributions 3 groups: χ 2 (df=2) 5 groups: χ 2 (df=4) groups: χ 2 (df=6) 9 groups: χ 2 (df=8)
7 Example In a dihybrid cross of tomatos we expect the ratio of the phenotypes to be 9:3:3:1. In 1611 tomatos, we observe the numbers 926, 288, 293, 104. Do these numbers support our hypothesis? Phenotype n i n 0 i n i /n 0 i n i ln ( ) n i /n 0 i Tall, cutleaf Tall, potatoleaf Dwarf, cutleaf Dwarf, potatoleaf Sum Results Obs LRT The test statistics LRT is Using a χ 2 (df=3) distribution, we get a pvalue of We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.
8 The chisquare test There is an alternative technique. The test is called the chisquare test, and has the greater tradition in the literature. For two groups, calculate the following: X 2 = (n A n 0 A) 2 n 0 A + (n B n 0 B) 2 n 0 B If H 0 is true, then X 2 is a draw from a χ 2 (df=1) distribution (approximately). Example In the first example we observed n A =78andn B = 22. Under the null hypothesis we have n 0 A =75andn 0 B =25.Wethereforeget X 2 = (7875) (2225)2 25 = =0.48. This corresponds to a pvalue of We therefore have no evidence against the hypothesis (p A, p B )=(0.75,0.25). Note: using the likelihood ratio test we got a pvalue of In R: chisq.test(c(78,22),p=c(0.75,0.25))
9 Generalization to more than two groups As with the likelihood ratio test, there is a generalization to more than just two groups. If we have k groups, the chisquare test statistic we use is X 2 = k i=1 (n i n 0 i ) 2 n 0 i χ 2 (df=k1) Tomato example For the tomato example we get X 2 = ( ) ( ) ( ) ( ) = = 1.47 Using a χ 2 (df=3) distribution, we get a pvalue of We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1. Using the likelihood ratio test we also got a pvalue of In R: chisq.test(c(926,288,293,104),p=c(9,3,3,1)/16)
10 Test statistics Let n 0 i denote the expected count in group i if H 0 is true. LRT statistic LRT = 2 ln { } Pr(data p = MLE) Pr(data H 0 ) =...=2 i n i ln(n i /n 0 i ) χ 2 test statistic X 2 = (observed expected) 2 expected = i (n i n 0 i ) 2 n 0 i Null distribution of test statistic What values of LRT (or X 2 )shouldweexpect,ifh 0 were true? The null distributions of these statistics may be obtained by: Bruteforce analytic calculations Computer simulations Asymptotic approximations If the sample size n is large, we have LRT χ 2 (k 1) and X 2 χ 2 (k 1)
11 The bruteforce method Pr(LRT = g H 0 ) = n 1,n 2,n 3 giving LRT = g Pr(n 1, n 2, n 3 H 0 ) This is not feasible. Computer simulation 1. Simulate a table conforming to the null hypothesis. E.g., simulate (n 1, n 2, n 3 ) Multinomial(n=100, {1/4, 1/2, 1/4}) 2. Calculate your test statistic. 3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times. Estimated critical value the 95th percentile of the results. Estimated Pvalue the prop n of results the observed value. In R, use rmultinom(n, size, prob) to do n simulations of a Multinomial(size, prob).
12 Example We observe the following data: AA AB BB We imagine that these are counts (n 1, n 2, n 3 ) Multinomial(n=100,{p 1, p 2, p 3 }). We seek to test H 0 : p 1 = 1/4, p 2 = 1/2, p 3 = 1/4. We calculate LRT 4.96 and X Referring to the asymptotic approximations (χ 2 dist n with 2 degrees of freedom), we obtain P 8.4% and P 6.9%. With 10,000 simulations under H 0,wegetP 8.9% and P 7.4%. Example Est d null dist n of LRT statistic Observed 95th %ile = LRT Est d null dist n of chi square statistic Observed 95th %ile = X 2
13 Summary and recommendation For either the LRT or the χ 2 test: The null distribution is approximately χ 2 (k 1) if the sample size is large. The null distribution can be approximated by simulating data under the null hypothesis. If the sample size is sufficiently large that the expected count in eachcell is 5, use the asymptotic approximation without worries. Otherwise, consider using computer simulations. Composite hypotheses Sometimes, we ask not p AA = 0.25, p AB = 0.5, p BB = 0.25 But rather something like: p AA = f 2, p AB = 2f(1 f), p BB =(1 f) 2 for some f. For example: Consider the genotypes, of a random sample of individuals, at a diallelic locus. Is the locus in HardyWeinberg equilibrium (as expected in the case of random mating)? Example data: AA AB BB
14 Another example ABO blood groups 3 alleles A, B, O. Phenotype A genotype AA or AO B genotype BB or BO AB genotype AB O genotype O Allele frequencies: f A, f B, f O (Note that f A + f B + f O = 1) Under HardyWeinberg equilibrium, we expect p A = f 2 A + 2f A f O p B = f 2 B + 2f B f O p AB = 2f A f B p O = f 2 O Example data: O A B AB LRT for example 1 Data: (n AA, n AB, n BB ) Multinomial(n,{p AA, p AB, p BB }) We seek to test whether the data conform reasonably to H 0 : p AA = f 2, p AB = 2f(1 f), p BB =(1 f) 2 for some f. General MLEs: ˆp AA = n AA /n, ˆp AB = n AB /n, ˆp BB = n BB /n MLE under H 0 : ˆf =(naa + n AB /2)/n p AA = ˆf 2, p AB = 2ˆf (1 ˆf), p BB =(1 ˆf) 2 LRT statistic: LRT = 2 ln { } Pr(nAA, n AB, n BB ˆp AA, ˆp AB, ˆp BB ) Pr(n AA, n AB, n BB p AA, p AB, p BB )
15 LRT for example 2 Data: (n O, n A, n B, n AB ) Multinomial(n,{p O, p A, p B, p AB }) We seek to test whether the data conform reasonably to H 0 : p A = f 2 A + 2f A f O,p B = f 2 B + 2f B f O,p AB = 2f A f B,p O = f 2 O for some f O, f A, f B,wheref O + f A + f B = 1. General MLEs: ˆp O, ˆp A, ˆp B, ˆp AB, like before. MLE under H 0 : Requires numerical optimization Call them (ˆf O,ˆf A,ˆf B ) ( p O, p A, p B, p AB ) LRT statistic: LRT = 2 ln { } Pr(nO, n A, n B, n AB ˆp O, ˆp A, ˆp B, ˆp AB ) Pr(n O, n A, n B, n AB p O, p A, p B, p AB ) χ 2 test for these examples Obtain the MLE(s) under H 0. Calculate the corresponding cell probabilities. Turn these into (estimated) expected counts under H 0. Calculate X 2 = (observed expected) 2 expected
16 Null distribution for these cases Computer simulation (with one wrinkle) Simulate data under H 0 (plug in the MLEs for the observed data) Calculate the MLE with the simulated data Calculate the test statistic with the simulated data Repeat many times Asymptotic approximation Under H 0,ifthesamplesize,n,islarge,boththeLRTstatistic and the χ 2 statistic follow, approximately, a χ 2 distribution with k s 1degrees of freedom, where s is the number of parameters estimated under H 0. Note that s = 1 for example 1, and s = 2 for example 2, and so df = 1 for both examples. Example 1 Example data: AA AB BB MLE: ˆf =(5+20/2)/100=15% Expected counts: Test statistics: LRT statistic = 3.87 X 2 =4.65 Asymptotic χ 2 (df = 1) approx n: P 4.9% P 3.1% 10,000 computer simulations: P 8.2% P 2.4%
17 Example 1 Est d null dist n of LRT statistic Observed 95th %ile = LRT Est d null dist n of chi square statistic 95th %ile = 3.36 Observed X 2 Example 2 Example data: O A B AB MLE: ˆfO 62.8%, ˆf A 25.0%, ˆf B 12.2%. Expected counts: Test statistics: LRT statistic = 1.99 X 2 =2.10 Asymptotic χ 2 (df = 1) approx n: P 16% P 15% 10,000 computer simulations: P 17% P 15%
18 Example 2 Est d null dist n of LRT statistic Observed 95th %ile = LRT Est d null dist n of chi square statistic Observed 95th %ile = X 2 Example 3 Data on number of sperm bound to an egg: count Do these follow a Poisson distribution? MLE: ˆλ =sampleaverage=( ) / Expected counts n 0 i = n e ˆλ ˆλi / i!
19 Example observed expected X 2 = (obs exp) 2 exp =...=42.8 LRT = 2 obs log(obs/exp) =...=18.8 Compare to χ 2 (df = = 4) Pvalue = (χ 2 ) and (LRT). By simulation: pvalue = 16/10,000 (χ 2 ) and 7/10,000 (LRT) Null simulation results Observed Simulated χ 2 statistic Observed Simulated LRT statistic
20 A final note With these sorts of goodnessoffit tests, we are often happy when our model does fit. In other words, we often prefer to fail to reject H 0. Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution. We should think: how much power do I have to detect, with these limited data, a reasonable deviation from H 0?
Goodness of fit  2 classes
Goodness of fit  2 classes A B 78 22 Do these data correspond reasonably to the proportions 3:1? We previously discussed options for testing p A =0.75! Exact pvalue Exact confidence interval Normal approximation
More informationTopic 19: Goodness of Fit
Topic 19: November 24, 2009 A goodness of fit test examine the case of a sequence if independent experiments each of which can have 1 of k possible outcomes. In terms of hypothesis testing, let π = (π
More informationTopic 21: Goodness of Fit
Topic 21: December 5, 2011 A goodness of fit tests examine the case of a sequence of independent observations each of which can have 1 of k possible categories. For example, each of us has one of 4 possible
More informationAllele Frequencies and Hardy Weinberg Equilibrium
Allele Frequencies and Hardy Weinberg Equilibrium Summer Institute in Statistical Genetics 013 Module 8 Topic Allele Frequencies and Genotype Frequencies How do allele frequencies relate to genotype frequencies
More informationTopic 21 Goodness of Fit
Topic 21 Goodness of Fit Fit of a Distribution 1 / 14 Outline Fit of a Distribution Blood Bank Likelihood Function Likelihood Ratio Lagrange Multipliers Hanging ChiGram 2 / 14 Fit of a Distribution Goodness
More informationChapter 4. The analysis of Segregation
Chapter 4. The analysis of Segregation 1 The law of segregation (Mendel s rst law) There are two alleles in the two homologous chromosomes at a certain marker. One of the two alleles received from one
More informationStatistics for EES and MEME Chisquare tests and Fisher s exact test
Statistics for EES and MEME Chisquare tests and Fisher s exact test Dirk Metzler 3. June 2013 Contents 1 X 2 goodnessoffit test 1 2 X 2 test for homogeneity/independence 3 3 Fisher s exact test 7 4
More informationCATEGORICAL DATA ChiSquare Tests for Univariate Data
CATEGORICAL DATA ChiSquare Tests For Univariate Data 1 CATEGORICAL DATA ChiSquare Tests for Univariate Data Recall that a categorical variable is one in which the possible values are categories or groupings.
More information2 GENETIC DATA ANALYSIS
2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have
More information4. Sum the results of the calculation described in step 3 for all classes of progeny
F09 Biol 322 chi square notes 1. Before proceeding with the chi square calculation, clearly state the genetic hypothesis concerning the data. This hypothesis is an interpretation of the data that gives
More informationMATH4427 Notebook 2 Spring 2016. 2 MATH4427 Notebook 2 3. 2.1 Definitions and Examples... 3. 2.2 Performance Measures for Estimators...
MATH4427 Notebook 2 Spring 2016 prepared by Professor Jenny Baglivo c Copyright 20092016 by Jenny A. Baglivo. All Rights Reserved. Contents 2 MATH4427 Notebook 2 3 2.1 Definitions and Examples...................................
More informationChi Square for Contingency Tables
2 x 2 Case Chi Square for Contingency Tables A test for p 1 = p 2 We have learned a confidence interval for p 1 p 2, the difference in the population proportions. We want a hypothesis testing procedure
More informationCHAPTER NINE. Key Concepts. McNemar s test for matched pairs combining pvalues likelihood ratio criterion
CHAPTER NINE Key Concepts chisquare distribution, chisquare test, degrees of freedom observed and expected values, goodnessoffit tests contingency table, dependent (response) variables, independent
More informationO, A, B, and AB. 0 for all i =1,...,k,
Topic 1 1.1 Fit of a Distribution Goodness of fit tests examine the case of a sequence of independent observations each of which can have 1 of k possible categories. For example, each of us has one of
More informationStatistical Testing of Randomness Masaryk University in Brno Faculty of Informatics
Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics Jan Krhovják Basic Idea Behind the Statistical Tests Generated random sequences properties as sample drawn from uniform/rectangular
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More information13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations.
13.2 The Chi Square Test for Homogeneity of Populations The setting: Used to compare distribution of proportions in two or more populations. Data is organized in a two way table Explanatory variable (Treatments)
More informationtests whether there is an association between the outcome variable and a predictor variable. In the Assistant, you can perform a ChiSquare Test for
This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. In practice, quality professionals sometimes
More informationLecture 42 Section 14.3. Tue, Apr 8, 2008
the Lecture 42 Section 14.3 HampdenSydney College Tue, Apr 8, 2008 Outline the 1 2 the 3 4 5 the The will compute χ 2 areas, but not χ 2 percentiles. (That s ok.) After performing the χ 2 test by hand,
More informationMATH 10: Elementary Statistics and Probability Chapter 11: The ChiSquare Distribution
MATH 10: Elementary Statistics and Probability Chapter 11: The ChiSquare Distribution Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides,
More informationComparing Multiple Proportions, Test of Independence and Goodness of Fit
Comparing Multiple Proportions, Test of Independence and Goodness of Fit Content Testing the Equality of Population Proportions for Three or More Populations Test of Independence Goodness of Fit Test 2
More informationChisquare test Testing for independeny The r x c contingency tables square test
Chisquare test Testing for independeny The r x c contingency tables square test 1 The chisquare distribution HUSRB/0901/1/088 Teaching Mathematics and Statistics in Sciences: Modeling and Computeraided
More informationINTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS
INTRODUCTION TO GENETICS USING TOBACCO (Nicotiana tabacum) SEEDLINGS By Dr. Susan Petro Based on a lab by Dr. Elaine Winshell Nicotiana tabacum Objectives To apply Mendel s Law of Segregation To use Punnett
More informationMendelian Genetics. I. Background
Mendelian Genetics Objectives 1. To understand the Principles of Segregation and Independent Assortment. 2. To understand how Mendel s principles can explain transmission of characters from one generation
More informationLAB : THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Period Date LAB : THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationAP: LAB 8: THE CHISQUARE TEST. Probability, Random Chance, and Genetics
Ms. Foglia Date AP: LAB 8: THE CHISQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,
More informationTesting on proportions
Testing on proportions Textbook Section 5.4 April 7, 2011 Example 1. X 1,, X n Bernolli(p). Wish to test H 0 : p p 0 H 1 : p > p 0 (1) Consider a related problem The likelihood ratio test is where c is
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationUsing Stata for Categorical Data Analysis
Using Stata for Categorical Data Analysis NOTE: These problems make extensive use of Nick Cox s tab_chi, which is actually a collection of routines, and Adrian Mander s ipf command. From within Stata,
More informationMultiple random variables
Multiple random variables Multiple random variables We essentially always consider multiple random variables at once. The key concepts: Joint, conditional and marginal distributions, and independence of
More informationStatistical Analysis of Blood Group Using Maximum Likelihood Estimation
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume2, Issue6, June 2014 Statistical Analysis of Blood Group Using Maximum Likelihood Estimation Nagarajan.D, Sunitha.P,
More informationH + T = 1. p(h + T) = p(h) x p(t)
Probability and Statistics Random Chance A tossed penny can land either heads up or tails up. These are mutually exclusive events, i.e. if the coin lands heads up, it cannot also land tails up on the same
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationWe know from STAT.1030 that the relevant test statistic for equality of proportions is:
2. Chi 2 tests for equality of proportions Introduction: Two Samples Consider comparing the sample proportions p 1 and p 2 in independent random samples of size n 1 and n 2 out of two populations which
More informationToday s lecture. Lecture 6: Dichotomous Variables & Chisquare tests. Proportions and 2 2 tables. How do we compare these proportions
Today s lecture Lecture 6: Dichotomous Variables & Chisquare tests Sandy Eckel seckel@jhsph.edu Dichotomous Variables Comparing two proportions using 2 2 tables Study Designs Relative risks, odds ratios
More information12.5: CHISQUARE GOODNESS OF FIT TESTS
125: ChiSquare Goodness of Fit Tests CD121 125: CHISQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability
More informationCHAPTER 11. GOODNESS OF FIT AND CONTINGENCY TABLES
CHAPTER 11. GOODNESS OF FIT AND CONTINGENCY TABLES The chisquare distribution was discussed in Chapter 4. We now turn to some applications of this distribution. As previously discussed, chisquare is
More informationChiSquare Test. Contingency Tables. Contingency Tables. ChiSquare Test for Independence. ChiSquare Tests for GoodnessofFit
ChiSquare Tests 15 Chapter ChiSquare Test for Independence ChiSquare Tests for Goodness Uniform Goodness Poisson Goodness Goodness Test ECDF Tests (Optional) McGrawHill/Irwin Copyright 2009 by The
More informationMendelian Inheritance & Probability
Mendelian Inheritance & Probability (CHAPTER 2 Brooker Text) January 31 & Feb 2, 2006 BIO 184 Dr. Tom Peavy Problem Solving TtYy x ttyy What is the expected phenotypic ratio among offspring? Tt RR x Tt
More informationSAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
More informationChapter 11 Chi square Tests
11.1 Introduction 259 Chapter 11 Chi square Tests 11.1 Introduction In this chapter we will consider the use of chi square tests (χ 2 tests) to determine whether hypothesized models are consistent with
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More information112 Goodness of Fit Test
112 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a oneway frequency table). We will use a hypothesis
More informationData Analysis and Uncertainty Part 3: Hypothesis Testing/Sampling
Data Analysis and Uncertainty Part 3: Hypothesis Testing/Sampling Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu Topics 1. Hypothesis Testing 1.
More informationCalculating PValues. Parkland College. Isela Guerra Parkland College. Recommended Citation
Parkland College A with Honors Projects Honors Program 2014 Calculating PValues Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating PValues" (2014). A with Honors Projects.
More informationPASS Sample Size Software
Chapter 250 Introduction The Chisquare test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
More informationChi Squared and Fisher's Exact Tests. Observed vs Expected Distributions
BMS 617 Statistical Techniques for the Biomedical Sciences Lecture 11: ChiSquared and Fisher's Exact Tests Chi Squared and Fisher's Exact Tests This lecture presents two similarly structured tests, Chisquared
More informationAppendix A The ChiSquare (32) Test in Genetics
Appendix A The ChiSquare (32) Test in Genetics With infinitely large sample sizes, the ideal result of any particular genetic cross is exact conformation to the expected ratio. For example, a cross between
More informationThe alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.
Section 8.28.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the
More informationStatistics for Management IISTAT 362Final Review
Statistics for Management IISTAT 362Final Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The ability of an interval estimate to
More informationBasic concepts and introduction to statistical inference
Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence
More informationTesting Hypotheses using SPSS
Is the mean hourly rate of male workers $2.00? TTest OneSample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 OneSample Test Test Value = 2 95% Confidence Interval Mean of the
More informationExamination 110 Probability and Statistics Examination
Examination 0 Probability and Statistics Examination Sample Examination Questions The Probability and Statistics Examination consists of 5 multiplechoice test questions. The test is a threehour examination
More informationMath 58. Rumbos Fall 2008 1. Solutions to Review Problems for Exam 2
Math 58. Rumbos Fall 2008 1 Solutions to Review Problems for Exam 2 1. For each of the following scenarios, determine whether the binomial distribution is the appropriate distribution for the random variable
More informationChi Square Test. Paul E. Johnson Department of Political Science. 2 Center for Research Methods and Data Analysis, University of Kansas
Chi Square Test Paul E. Johnson 1 2 1 Department of Political Science 2 Center for Research Methods and Data Analysis, University of Kansas 2011 What is this Presentation? Chi Square Distribution Find
More informationMath 62 Statistics Sample Exam Questions
Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected
More informationGeneralization of Chisquare GoodnessofFit Test for Binned Data Using Saturated Models, with Application to Histograms
Generalization of Chisquare GoodnessofFit Test for Binned Data Using Saturated Models, with Application to Histograms Robert D. Cousins Dept. of Physics and Astronomy University of California, Los Angeles,
More informationAnalyzing tables. Chisquared, exact and monte carlo tests. Jon Michael Gran Department of Biostatistics, UiO
Analyzing tables Chisquared, exact and monte carlo tests Jon Michael Gran Department of Biostatistics, UiO MF9130 Introductory course in statistics Thursday 26.05.2011 1 / 50 Overview Aalen chapter 6.5,
More informationBivariate Analysis. Comparisons of proportions: Chi Square Test (X 2 test) Variable 1. Variable 2 2 LEVELS >2 LEVELS CONTINUOUS
Bivariate Analysis Variable 1 2 LEVELS >2 LEVELS CONTINUOUS Variable 2 2 LEVELS X 2 chi square test >2 LEVELS X 2 chi square test CONTINUOUS ttest X 2 chi square test X 2 chi square test ANOVA (Ftest)
More informationHypothesis Testing. Learning Objectives. After completing this module, the student will be able to
Hypothesis Testing Learning Objectives After completing this module, the student will be able to carry out a statistical test of significance calculate the acceptance and rejection region calculate and
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationChapter Additional: Standard Deviation and Chi Square
Chapter Additional: Standard Deviation and Chi Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret
More informationRandom Uniform Clumped. 0 1 2 3 4 5 6 7 8 9 Number of Individuals per SubQuadrat. Number of Individuals per SubQuadrat
41 Population ecology Lab 4: Population dispersion patterns I. Introduction to population dispersion patterns The dispersion of individuals in a population describes their spacing relative to each other.
More informationDr. Young. Genetics Problems Set #1 Answer Key
BIOL276 Dr. Young Name Due Genetics Problems Set #1 Answer Key For problems in genetics, if no particular order is specified, you can assume that a specific order is not required. 1. What is the probability
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More informationEMPIRICAL FREQUENCY DISTRIBUTION
INTRODUCTION TO MEDICAL STATISTICS: Mirjana Kujundžić Tiljak EMPIRICAL FREQUENCY DISTRIBUTION observed data DISTRIBUTION  described by mathematical models 2 1 when some empirical distribution approximates
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationHardyWeinberg Equilibrium Problems
HardyWeinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in HardyWeinberg equilibrium. (a) Calculate the percentage of
More informationThe NeymanPearson lemma. The NeymanPearson lemma
The NeymanPearson lemma In practical hypothesis testing situations, there are typically many tests possible with significance level α for a null hypothesis versus alternative hypothesis. This leads to
More informationNPTEL STRUCTURAL RELIABILITY
NPTEL Course On STRUCTURAL RELIABILITY Module # 02 Lecture 6 Course Format: Web Instructor: Dr. Arunasis Chakraborty Department of Civil Engineering Indian Institute of Technology Guwahati 6. Lecture 06:
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationLS4 Problem Set 2, Population Genetics. Corresponding Quiz: November (Along with positional cloning)
LS4 Problem Set 2, 2010 Population Genetics Corresponding Lectures: November 5, 8 and 10 Corresponding Reading: Hartwell et al., 757773 Corresponding Quiz: November 1519 (Along with positional cloning)
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationEstimating the Frequency Distribution of the. Numbers Bet on the California Lottery
Estimating the Frequency Distribution of the Numbers Bet on the California Lottery Mark Finkelstein November 15, 1993 Department of Mathematics, University of California, Irvine, CA 92717. Running head:
More informationMorgan s fly experiment. Linkage Mapping. Genetic recombination. Genetic Recombination. Crossing Over and Recombination. CS Jim Holland
Morgan s fly experiment Linkage Mapping CS71 009 Jim Holland r r Vg Vg (red eyes, normal wings) prprvgvg (purple eyes, vestigial wings) r prvg vg (F1) prprvgvg 19 151 151 1195 r prvg vg r prvgvg prprvg
More informationLikelihood: Frequentist vs Bayesian Reasoning
"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200B University of California, Berkeley Spring 2009 N Hallinan Likelihood: Frequentist vs Bayesian Reasoning Stochastic odels and
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationPhysicsAndMathsTutor.com
1. A machine fills jars with jam. The weight of jam in each jar is normally distributed. To check the machine is working properly the contents of a random sample of 15 jars are weighed in grams. Unbiased
More informationSTATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 SigmaRestricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
More informationGenetics. The study of heredity. discovered the. Gregor Mendel (1860 s) garden peas.
GENETICS Genetics The study of heredity. Gregor Mendel (1860 s) discovered the fundamental principles of genetics by breeding garden peas. Genetics Alleles 1. Alternative forms of genes. 2. Units that
More informationChapter 3 RANDOM VARIATE GENERATION
Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.
More informationUCLA STAT 13 Introduction to Statistical Methods for the Life and Health Sciences. Chapter 10 ChiSquare Test Relative Risk/Odds Ratios
UCLA STAT 3 Introduction to Statistical Methods for the Life and Health Sciences Instructor: Ivo Dinov, Asst. Prof. of Statistics and Neurology Chapter 0 ChiSquare Test Relative Risk/Odds Ratios Teaching
More informationGoodness of Fit. Proportional Model. Probability Models & Frequency Data
Probability Models & Frequency Data Goodness of Fit Proportional Model Chisquare Statistic Example R Distribution Assumptions Example R 1 Goodness of Fit Goodness of fit tests are used to compare any
More informationOrdinal Regression. Chapter
Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe
More informationNatural Selection, Chisquare & HardyWeinberg Calculations
BIOL 0 LAB 5 Natural Selection, Chisquare & HardyWeinberg Calculations Variability exists in all natural populations. For a wide variety of reasons, some phenotypes (visible characters) or genotypes
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationChapter 23. Two Categorical Variables: The ChiSquare Test
Chapter 23. Two Categorical Variables: The ChiSquare Test 1 Chapter 23. Two Categorical Variables: The ChiSquare Test TwoWay Tables Note. We quickly review twoway tables with an example. Example. Exercise
More informationChapter 11: Linear Regression  Inference in Regression Analysis  Part 2
Chapter 11: Linear Regression  Inference in Regression Analysis  Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.
More informationStatistics II Final Exam  January Use the University stationery to give your answers to the following questions.
Statistics II Final Exam  January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly
More informationBreeding Value versus Genetic Value
Breeding Value versus Genetic Value Gene351 (not( Gene251) Lecture 6 Key terms Breeding value Genetic value Average effect of alleles Reading: Prescribed None Suggested Falconer & McKay, 1996 Revision
More information12: Analysis of Variance. Introduction
1: Analysis of Variance Introduction EDA Hypothesis Test Introduction In Chapter 8 and again in Chapter 11 we compared means from two independent groups. In this chapter we extend the procedure to consider
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationProbability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540
Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540 1. Assume you are tossing a coin 11 times. The following distribution gives the likelihoods of getting a particular number of
More informationGENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics
GENERAL BIOLOGY LAB 1 (BSC1010L) Lab #8: Mendelian Genetics OBJECTIVES: Understand Mendel s laws of segregation and independent assortment. Differentiate between an organism s genotype and phenotype. Recognize
More informationCHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY
CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More information2 Tests for Goodness of Fit:
Tests for Goodness of Fit: General Notion: We often wish to know whether a particular distribution fits a general definition Example: To use t tests, we must suppose that the population is normally distributed
More information1. Rejecting a true null hypothesis is classified as a error. 2. Failing to reject a false null hypothesis is classified as a error.
1. Rejecting a true null hypothesis is classified as a error. 2. Failing to reject a false null hypothesis is classified as a error. 8.5 Goodness of Fit Test Suppose we want to make an inference about
More informationChi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980)
Chi Square (χ 2 ) Statistical Instructions EXP 3082L Jay Gould s Elaboration on Christensen and Evans (1980) For the Driver Behavior Study, the Chi Square Analysis II is the appropriate analysis below.
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More information