# MACHINE LEARNING. Introduction. Alessandro Moschitti

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 MACHINE LEARNING Introduction Alessandro Moschitti Department of Computer Science and Information Engineering University of Trento

2 Course Schedule Lectures Tuesday, 14:00-16:00 Wednesday, 8:30-10:30 Room 107 Consulting Hours: My office at third floor Thursday at 14:30 Sending is recommended

3 Lectures Introduction to ML Vector spaces PAC Learning VC dimension Perceptron Vector Space Model Representer Theorem Support Vector Machines (SVMs) Hard/Soft Margin (Classification) Regression and ranking

4 Lectures Kernels Methods Theory and Algebraic properties Linear, Polynomial, Gaussian Kernel construction, Kernels for structured data Sequence, Tree Kernels Structured Output

5 Lab Automated Text Categorization Question Classification (Question Answering)

6 Reference Book + some articles

7 Today Introduction to Machine Learning Vector Spaces

8 Why Learning Functions Automatically? Anything is a function From the planet motion To the input/output actions in your computer Any problem would be automatically solved

9 More concretely Given the user requirement (input/output relations) we write programs Different cases typically handled with if-then applied to input variables What happens when millions of variables are present and/or values are not reliable (e.g. noisy data) Machine learning writes the program (rules) for you

10 What is Statistical Learning? Statistical Methods Algorithms that learn relations in the data from examples Simple relations are expressed by pairs of variables: x 1,y 1, x 2,y 2,, x n,y n Learning f such that evaluate y * given a new value x *, i.e. x *, f(x * ) = x *, y *

11 You have already tackled the learning problem Y X

12 Linear Regression Y X

13 Degree 2 Y X

14 Degree Y X

15 Machine Learning Problems Overfitting How dealing with millions of variables instead of only two? How dealing with real world objects instead of real values?

16 Learning Models Real Values: regression Finite and integer: classification Binary Classifiers: 2 classes, e.g. f(x) {cats,dogs}

17 The Idea of Statistical Learning Category 1 Support Examples Category 2

18 Similarity in Statistical Learning Theory Similarity is intuitively useful to learn classification function This does not lead to heuristic models In statistical learning theory valid similarities are called Kernel Functions Kernels map examples in vector spaces Examples are classified based on geometric properties Formally proved upperbound to the system error Optimize trade-off

19 In other words Category 1 z3 Category 2 kernels z1 z2

20 Vector Spaces

21 Definition (1) A set V is a vector space over a field F (for example, the field of real or of complex numbers) if, given an operation vector addition defined in V, denoted v + w (where v, w V), and an operation, scalar multiplication in V, denoted a * v (where v V and a F), the following properties hold for all a, b F and u, v, and w V: v + w belongs to V. (Closure of V under vector addition) u + (v + w) = (u + v) + w (Associativity of vector addition in V) There exists a neutral element 0 in V, such that for all elements v in V, v + 0 = v (Existence of an additive identity element in V)

22 Definition (2) For all v in V, there exists an element w in V, such that v + w = 0 (Existence of additive inverses in V) v + w = w + v (Commutativity of vector addition in V) a * v belongs to V (Closure of V under scalar multiplication) a * (b * v) = (ab) * v (Associativity of scalar multiplication in V) If 1 denotes the multiplicative identity of the field F, then 1 * v = v (Neutrality of one) a * (v + w) = a * v + a * w (Distributivity with respect to vector addition.) (a + b) * v = a * v + b * v (Distributivity with respect to field addition.)

23 An example of Vector Space For all n, R n forms a vector space over R, with component-wise operations. Let V be the set of all n-tuples, [v 1,v 2,v 3,...,v n ] where v i is a member of R={real numbers} Let the field be R, as well Define Vector Addition: For all v, w, in V, define v+w=[v 1 +w 1,v 2 +w 2,v 3 +w 3,...,v n +w n ] Define Scalar Multiplication: For all a in F and v in V, a*v=[a*v 1,a*v 2,a*v 3,...,a*v n ] Then V is a Vector Space over R.

24 Linear dependency Linear combination: α 1 v α n v n = 0 for some α 1 α n not all zero y = α 1 v α n v n has a unique expression In case α i > 0 and the sum is 1 it is called convex combination

25 Normed Vector Spaces Given a vector space V over a field K, a norm on V is a function from V to R, it associates each vector v in V with a real number, v The norm must satisfy the following conditions: For all a in K and all u and v in V, 1. v 0 with equality if and only if v = 0 2. av = a v 3. u + v u + v A useful consequence of the norm axioms is the inequality u ± v u - v for all vectors u and v

26 Inner Product Spaces Let V be a vector space and u, v, and w be vectors in V and c be a constant. Then, an inner product (, ) on V is a function with domain consisting of pairs of vectors and range real numbers satisfying the following properties: 1. (u, u) > 0 with equality if and only if u = (u, v) = (v, u) 3. (u + v, w) = (u, w) + (v, w) 4. (cu, v) = (u, cv) = c(u, v)

27 Example Let V be the vector space consisting of all continuous functions with the standard + and *. Then define an inner product by For example: The four properties follow immediately from the analogous property of the definite integral:

28 Inner Product Properties (v, 0) = 0 v = ( v, v) If (v, u) = 0, v,u are called orthogonal Schwarz Inequality: [(v, u)] 2 (v, v) (u, u) The classical scalar product is the component-wise product (x 1, x 2,,x n ) (y 1, y 2,,y n ) = x 1 y 1 + x 2 y 2 + +x n y n ( u, v) cos( u, v) = u v

29 Projection From cos( x, w) = x x w w It follows that x cos(, ) w w x x w = = x w w x on w x w x Norm of times the cosine between and, i.e. the projection of

30 Similarity Metrics The simplest distance for continuous m- dimensional instance space is Euclidian distance. The simplest distance for m-dimensional binary instance space is Hamming distance (number of feature values that differ). Cosine similarity is typically the most effective

31 A Simple Example: Text Categorization Berlusconi Wonderful Bush acquires declares Totti Ibrahimović Yesterday before war match elections Politic C 1 Economic C 2 Sport C n

32 Text Classification Problem Given: C = C 1,.., C n { } a set of target categories: the set T of documents, define f : T 2 C

33 The Vector Space Model (VSM) Berlusconi d 1 : Politic Bush declares war. Berlusconi gives support d 1 d 2 C 1 d 3 C 2 Totti d 2 : Sport Wonderful Totti in the yesterday match against Berlusconi s Milan d 3 :Economic Berlusconi acquires Ibrahimović before elections C 1 : Politics Category C 2 : Sport Category Bush

34 Summary of VSM VSM (Salton89 ) Features are dimensions of a Vector Space Linear Kernel Documents and Categories are vectors of feature weights. d is assigned to if d C i C i > th Changing symbols w x th > 0 w x + b > 0

35 Summary of Today Machine Learning Concepts Positive and Negative examples Feature representation Kernels Learning Algorithm Training and test set Accuracy measurement Generalization/Empirical error Trade-off

36 What Next? Can we learn any function? Statistical Learning Theory PAC learning

37 END

38 Several Kinds of Learning Algorithms Logic boolean expressions, (e.g. Decision Trees). Probabilistic Functions, (Bayesian Classifier). Separating Functions working in vector spaces Non linear: KNN, neural network multiple-layers, Linear: SVMs, neural network with one neuron, These approaches are largely applied In language technology Very Simple Example: Text Categorization

### LCs for Binary Classification

Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

### Big Data Analytics CSCI 4030

High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

### Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

### Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval

Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### 1 VECTOR SPACES AND SUBSPACES

1 VECTOR SPACES AND SUBSPACES What is a vector? Many are familiar with the concept of a vector as: Something which has magnitude and direction. an ordered pair or triple. a description for quantities such

### Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

### Artificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence

Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network? - Perceptron learners - Multi-layer networks What is a Support

### Similarity and Diagonalization. Similar Matrices

MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

### Statistical Machine Learning

Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

### MATH 304 Linear Algebra Lecture 24: Scalar product.

MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B A A vector is represented by a directed segment. Directed segment is drawn as an arrow. Different arrows represent

### Introduction to Support Vector Machines. Colin Campbell, Bristol University

Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multi-class classification.

### Vectors Math 122 Calculus III D Joyce, Fall 2012

Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be

### Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

### Machine Learning in Spam Filtering

Machine Learning in Spam Filtering A Crash Course in ML Konstantin Tretyakov kt@ut.ee Institute of Computer Science, University of Tartu Overview Spam is Evil ML for Spam Filtering: General Idea, Problems.

### Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

### Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011

Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning

### Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

### MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

### Linear Algebra I. Ronald van Luijk, 2012

Linear Algebra I Ronald van Luijk, 2012 With many parts from Linear Algebra I by Michael Stoll, 2007 Contents 1. Vector spaces 3 1.1. Examples 3 1.2. Fields 4 1.3. The field of complex numbers. 6 1.4.

### A Simple Introduction to Support Vector Machines

A Simple Introduction to Support Vector Machines Martin Law Lecture for CSE 802 Department of Computer Science and Engineering Michigan State University Outline A brief history of SVM Large-margin linear

### Chapter 7. Diagnosis and Prognosis of Breast Cancer using Histopathological Data

Chapter 7 Diagnosis and Prognosis of Breast Cancer using Histopathological Data In the previous chapter, a method for classification of mammograms using wavelet analysis and adaptive neuro-fuzzy inference

### Automatic Web Page Classification

Automatic Web Page Classification Yasser Ganjisaffar 84802416 yganjisa@uci.edu 1 Introduction To facilitate user browsing of Web, some websites such as Yahoo! (http://dir.yahoo.com) and Open Directory

### Vectors. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Vectors Spring /

Vectors Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Vectors Spring 2012 1 / 18 Introduction - Definition Many quantities we use in the sciences such as mass, volume, distance, can be expressed

### Introduction to Statistical Machine Learning

CHAPTER Introduction to Statistical Machine Learning We start with a gentle introduction to statistical machine learning. Readers familiar with machine learning may wish to skip directly to Section 2,

### BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

### This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

### 3. INNER PRODUCT SPACES

. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

### Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer

Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next

### Intro to Rings, Fields, Polynomials: Hardware Modeling by Modulo Arithmetic

Intro to Rings, Fields, Polynomials: Hardware Modeling by Modulo Arithmetic Priyank Kalla Associate Professor Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla

### Neural Networks. CAP5610 Machine Learning Instructor: Guo-Jun Qi

Neural Networks CAP5610 Machine Learning Instructor: Guo-Jun Qi Recap: linear classifier Logistic regression Maximizing the posterior distribution of class Y conditional on the input vector X Support vector

### 203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

### A Introduction to Matrix Algebra and Principal Components Analysis

A Introduction to Matrix Algebra and Principal Components Analysis Multivariate Methods in Education ERSH 8350 Lecture #2 August 24, 2011 ERSH 8350: Lecture 2 Today s Class An introduction to matrix algebra

### 1. Classification problems

Neural and Evolutionary Computing. Lab 1: Classification problems Machine Learning test data repository Weka data mining platform Introduction Scilab 1. Classification problems The main aim of a classification

### Introduction to finite fields

Introduction to finite fields Topics in Finite Fields (Fall 2013) Rutgers University Swastik Kopparty Last modified: Monday 16 th September, 2013 Welcome to the course on finite fields! This is aimed at

### Lecture 18 - Clifford Algebras and Spin groups

Lecture 18 - Clifford Algebras and Spin groups April 5, 2013 Reference: Lawson and Michelsohn, Spin Geometry. 1 Universal Property If V is a vector space over R or C, let q be any quadratic form, meaning

### So let us begin our quest to find the holy grail of real analysis.

1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

### Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction Logistics Prerequisites: basics concepts needed in probability and statistics

### Montana Common Core Standard

Algebra 2 Grade Level: 10(with Recommendation), 11, 12 Length: 1 Year Period(s) Per Day: 1 Credit: 1 Credit Requirement Fulfilled: Mathematics Course Description This course covers the main theories in

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

### Vector and Matrix Norms

Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

### Decision tree algorithm short Weka tutorial

Decision tree algorithm short Weka tutorial Croce Danilo, Roberto Basili Machine leanring for Web Mining a.a. 2009-2010 Machine Learning: brief summary Example You need to write a program that: given a

### High School Algebra 1 Common Core Standards & Learning Targets

High School Algebra 1 Common Core Standards & Learning Targets Unit 1: Relationships between Quantities and Reasoning with Equations CCS Standards: Quantities N-Q.1. Use units as a way to understand problems

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

### Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

### Data mining knowledge representation

Data mining knowledge representation 1 What Defines a Data Mining Task? Task relevant data: where and how to retrieve the data to be used for mining Background knowledge: Concept hierarchies Interestingness

### Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.

Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,

### Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

### NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise

### 1 Sets and Set Notation.

LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

### Support Vector Machine (SVM)

Support Vector Machine (SVM) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

### Neural Networks and Support Vector Machines

INF5390 - Kunstig intelligens Neural Networks and Support Vector Machines Roar Fjellheim INF5390-13 Neural Networks and SVM 1 Outline Neural networks Perceptrons Neural networks Support vector machines

### LECTURE NOTES: FINITE ELEMENT METHOD

LECTURE NOTES: FINITE ELEMENT METHOD AXEL MÅLQVIST. Motivation The finite element method has two main strengths... Geometry. Very complex geometries can be used. This is probably the main reason why finite

### Learning is a very general term denoting the way in which agents:

What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

### C19 Machine Learning

C9 Machine Learning 8 Lectures Hilary Term 25 2 Tutorial Sheets A. Zisserman Overview: Supervised classification perceptron, support vector machine, loss functions, kernels, random forests, neural networks

### TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

### 4.1 Learning algorithms for neural networks

4 Perceptron Learning 4.1 Learning algorithms for neural networks In the two preceding chapters we discussed two closely related models, McCulloch Pitts units and perceptrons, but the question of how to

### MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

### INTRODUCTION TO NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS Pictures are taken from http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html http://research.microsoft.com/~cmbishop/prml/index.htm By Nobel Khandaker Neural Networks An

### Orthogonal Diagonalization of Symmetric Matrices

MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

### MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

### Coding and decoding with convolutional codes. The Viterbi Algor

Coding and decoding with convolutional codes. The Viterbi Algorithm. 8 Block codes: main ideas Principles st point of view: infinite length block code nd point of view: convolutions Some examples Repetition

### Numerical Analysis Lecture Notes

Numerical Analysis Lecture Notes Peter J. Olver 5. Inner Products and Norms The norm of a vector is a measure of its size. Besides the familiar Euclidean norm based on the dot product, there are a number

### Feature Selection with Decision Tree Criterion

Feature Selection with Decision Tree Criterion Krzysztof Grąbczewski and Norbert Jankowski Department of Computer Methods Nicolaus Copernicus University Toruń, Poland kgrabcze,norbert@phys.uni.torun.pl

### South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

### Sequences and Convergence in Metric Spaces

Sequences and Convergence in Metric Spaces Definition: A sequence in a set X (a sequence of elements of X) is a function s : N X. We usually denote s(n) by s n, called the n-th term of s, and write {s

### Support Vector Machines

Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

### Introduction to Online Learning Theory

Introduction to Online Learning Theory Wojciech Kot lowski Institute of Computing Science, Poznań University of Technology IDSS, 04.06.2013 1 / 53 Outline 1 Example: Online (Stochastic) Gradient Descent

### Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

### These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

### Support Vector Machines

Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot, we get creative in two

### CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### PowerTeaching i3: Algebra I Mathematics

PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and

### Lecture 3. Mathematical Induction

Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion

### Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

### We call this set an n-dimensional parallelogram (with one vertex 0). We also refer to the vectors x 1,..., x n as the edges of P.

Volumes of parallelograms 1 Chapter 8 Volumes of parallelograms In the present short chapter we are going to discuss the elementary geometrical objects which we call parallelograms. These are going to

### BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

### Machine Learning Final Project Spam Email Filtering

Machine Learning Final Project Spam Email Filtering March 2013 Shahar Yifrah Guy Lev Table of Content 1. OVERVIEW... 3 2. DATASET... 3 2.1 SOURCE... 3 2.2 CREATION OF TRAINING AND TEST SETS... 4 2.3 FEATURE

### Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

### Solution: 2. Sketch the graph of 2 given the vectors and shown below.

7.4 Vectors, Operations, and the Dot Product Quantities such as area, volume, length, temperature, and speed have magnitude only and can be completely characterized by a single real number with a unit

### x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

### Inner Product Spaces

Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

### Linear Algebra Review. Vectors

Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

### Lecture 20: Clustering

Lecture 20: Clustering Wrap-up of neural nets (from last lecture Introduction to unsupervised learning K-means clustering COMP-424, Lecture 20 - April 3, 2013 1 Unsupervised learning In supervised learning,

### SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING

I J I T E ISSN: 2229-7367 3(1-2), 2012, pp. 233-237 SURVEY OF TEXT CLASSIFICATION ALGORITHMS FOR SPAM FILTERING K. SARULADHA 1 AND L. SASIREKA 2 1 Assistant Professor, Department of Computer Science and

### Math 115 Spring 2011 Written Homework 5 Solutions

. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

### Linear Codes. In the V[n,q] setting, the terms word and vector are interchangeable.

Linear Codes Linear Codes In the V[n,q] setting, an important class of codes are the linear codes, these codes are the ones whose code words form a sub-vector space of V[n,q]. If the subspace of V[n,q]

### Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

### Paper Classification for Recommendation on Research Support System Papits

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 006 17 Paper Classification for Recommendation on Research Support System Papits Tadachika Ozono, and Toramatsu Shintani,

### Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley)

Machine Learning 1 Attribution Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) 2 Outline Inductive learning Decision

### Let H and J be as in the above lemma. The result of the lemma shows that the integral

Let and be as in the above lemma. The result of the lemma shows that the integral ( f(x, y)dy) dx is well defined; we denote it by f(x, y)dydx. By symmetry, also the integral ( f(x, y)dx) dy is well defined;