Cheng Soon Ong & Christfried Webers. Canberra February June 2016


 Flora Perkins
 1 years ago
 Views:
Transcription
1 c Cheng Soon Ong & Christfried Webers Research Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 31
2 c Part I Neural Network 3 2of 31
3 Number of layers c expression of a function is compact when it has few computational elements, i.e. few degrees of freedom that need to be tuned by learning for a fixed number of training examples, expect that compact representations of the target function would yield better generalization Depends on the base operations allowed affine operations, sigmoid linear regression and logistic regression have depth 1 fixed kernel, affine operations kernel machines have two levels affine transformation followed by a nonlinearity multilayer perceptron usually has two layers 3of 31
4 Easier to represent with more layers c functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k 1 architecture Example, the d bit parity function { d parity : (b 1,..., b d ) {0, 1} d 1 if i=1 b i 0 otherwise is even Theorem: dbit parity circuits of depth 2 have exponential size 4of 31
5 Recall: Multilayer Neural Network Architecture M y k (x, w) = g w (2) kj h j=0 ( D i=0 ) w (1) ji x i where w now contains all weight and bias parameters. x D hidden units z M w (1) MD w (2) KM c y K inputs outputs y 1 x 1 x 0 z 1 w (2) 10 z 0 We could add more hidden layers 5of 31
6 Empirical observations  pre 2006 c Deep architectures get stuck in local minima or plateaus As architecture gets deeper, more difficult to obtain good generalisation Hard to initialise random weights well 1 or 2 hidden layers seem to perform better 2006: Unsupervised pretraining, find distributed representation 6of 31
7 Deep representation  intuition c Bengio, "Learning Deep Architectures for AI", of 31
8 Deep representation  practice c AlexNet / VGGF network visualized by mneuron. 8of 31
9 Recall: PCA Idea: Linearly project the data points onto a lower dimensional subspace such that the variance of the projected data is maximised, or the distortion error from the projection is minimised. Both formulation lead to the same result. Need to find the lower dimensional subspace, called the principal subspace. c u 1 x 2 x n x n x 1 9of 31
10 Multiple PCA layers?  linear transforms Principle Component Analysis is a linear transformation (because it is a projection) The composite of two linear transformations is linear Linear transformations M : R m R n are matrices Let S and T be matrices of appropriate dimension such that ST is defined We show the property of additivity c ST(X + X ) = S(T(X + X )) = S(T(X) + T(X )) = S(T(X)) + S(T(X )) = ST(X) + ST(X ) Similarly for multiplication with a scalar 10of 31
11 Multiple PCA layers?  projection Let X T X = UΛU T be the eigenvalue decomposition of the covariance matrix. Define U k to be the matrix formed by the first k columns of U, corresponding to the k largest eigenvalues. Define Λ k similarly Consider the features formed by projecting onto the principal components c Z = XU k We perform PCA a second time, Z T Z = VΛ Z V T. By the definition of Z and X T X, we have Z T Z = (XU k ) T (XU k ) = U T k X T XU k = U T k UΛU T U k Since the rows and columns respectively of U T k U are orthonormal, the right expression is Λ k. Hence Λ Z = Λ k and V is the identity, therefore the second PCA has no effect 11of 31
12 An autoencoder is trained to encode the input x into some representation c(x) so that the input can be reconstructed from that representation the target output of the autoencoder is the autoencoder input itself With one linear hidden layer and the mean squared error criterion, the k hidden units learn to project the input in the span of the first k principal components of the data If the hidden layer is nonlinear, the autoencoder behaves differently from PCA, with the ability to capture multimodal aspects of the input distribution Let f be the decoder. We want to minimise the reconstruction error c N l (x n, f (c(x n ))) n=1 12of 31
13 Cost function Recall: f (c(x)) is the reconstruction produced by the network Minimisation of the negative log likelihood of the reconstruction, given the encoding c(x) RE = log P(x c(x)) c If x c(x) is Gaussian, we recover the familiar squared error If the inputs x i are either binary or considered to be binomial probabilities, then the loss function would be the cross entropy log P(x c(x)) = x i log f i (c(x)) + (1 x i ) log(1 f i (c(x))) where f i ( ) is the i th component of the decoder 13of 31
14 Undercomplete c Consider a small number of hidden units. c(x) is viewed as a lossy compression of x Cannot have small loss for all x, so focus on training examples Hope code c(x) is a distributed representation that captures the main factors of variation in the data 14of 31
15 Stacking autoencoders Let c j and f j be the encoder and corresponding decoder of the j th layer Let z j be the representation after the encoder c j We can define multiple layers of autoencoders recursively. For example, let z 1 = c 1 (x), and z 2 = c 2 (z 1 ), the corresponding decoding is given by f 1 (f 2 (z 2 )) Because of nonlinear activation functions, the latent feature z 2 can capture more complex patterns than z 1. c 15of 31
16 Higher level image features  faces c codingplayground.blogspot.com 16of 31
17 Pretraining supervised neural networks c Latent features z j in layer j can capture high level patterns z j = c j (c j 1 ( c 2 (c 1 (x)) )) These features may be useful for supervised learning tasks. In contrast to the feed forward network, the features z j are constructed in an unsupervised fashion. Discard the decoding layers, and directly use z j with a supervised training method, such as logistic regression. 17of 31
18 Higher dimensional hidden layer c if there is no other constraint, then an autoencoder with ddimensional input and an encoding of dimension at least d could potentially just learn the identity function Perfect reconstruction: small input weights, large output weights Avoid by: Regularisation Early stopping of stochastic gradient descent Add noise in the encoding Sparsity constraint on code c(x). 18of 31
19 Denoising autoencoder c Add noise to input, keeping perfect example as output tries to: 1 preserve information of input 2 undo stochastic corruption process Reconstruction log likelihood log P(x c(ˆx)) where x noise free, ˆx corrupted 19of 31
20 Image denoising Images with Gaussian noise added. c I SML Denoised using Stacked Sparse Denoising Images from Xie et. al. NIPS of 31
21 Inpainting  1 Free a bird c I SML Image from http: //cimg.eu/greycstoration/demonstration.shtml 21of 31
22 Inpainting  2 Undo text over image c I SML Image from Bach et. al. ICCV tutorial of 31
23 Recall: Basis functions c For fixed basis functions φ(x), we use domain knowledge for encoding features Neural networks use data to learn a set of transformations. φ i (x) is the i th component of the feature vector, and is learned by the network. The transformations φ i ( ) for a particular dataset may no longer be orthogonal, and furthermore may be minor variations of each other. We collect all the transformed features into a matrix Φ. 23of 31
24 Sparse representations Idea: Have many hidden nodes, but only a few active for a particular code c(x). Student t prior on codes l 1 penalty on coefficients α Given bases in matrix Φ, look for codes by choosing α such that input signal x is reconstructed with low l 2 reconstruction error, while w is sparse c min α N n=1 1 2 xn Φαn λ α 1 Φ is overcomplete, no longer orthogonal Sparse small number of nonzero α i. Exact recovery under certain conditions (coherence): l 1 l 0. 24of 31
25 Sparsity  probabilistic view Approximate maximum likelihood training of generative model with latent variables α Joint distribution with observed variables x Recall sum rule: p(x, α) = p(α)p(x α) c log p(x) = log α p(x, α) approximates the sum with a single (highly likely) value of α. Given α, maximise log p(x, α) with the Laplace prior p(α i ) = λ 2 exp( λ α i ) 25of 31
26 The image denoising problem c y = x }{{} orig + }{{} }{{} w measurements original image noise 26of 31
27 Sparsity assumption Only have noisy measurements y = x }{{} orig + }{{} }{{} w measurements original image noise Given Φ R m p, find α such that c α 0 is small for x Φα where 0 is the number of nonzero elements of α. Φ is not necessarily features constructed from training data. Minimise reconstruction error min α N n=1 1 2 x n Φα n λ α 0 27of 31
28 Convex relaxation Want to minimise number of components min α N n=1 but 0 is hard to optimise Relax to a convex norm 1 2 x n Φα n λ α 0 c min α N n=1 where α 1 = n α n. 1 2 x n Φα n λ α 1 When does minimisation with l 1 regularisation give the same solution as minimisation with l 0 regularisation (exact recovery)? 28of 31
29 Mutual coherence c Expect to be ok when columns of Φ not too parallel Assume columns of Φ are normalised to unit norm Let K = ΦΦ T be the Gram matrix, then K(i, j) is the value of the inner product between φ i and φ j. Define the mutual coherence M = M(Φ) = max K(i, j) i j If we have an orthogonal basis, then Φ is an orthogonal matrix, hence K(i, j) = 0 when i j. However, if we have very similar columns, then M 1. 29of 31
30 Exact recovery conditions Consider the convex relaxation 1 min α 2 x i Φα i λ α 1 i If a solution of the true l 0 problem, α satisfies c α 0 < 1 M then it is the unique sparsest solution. If α satisfies the stronger condition α 0 < 1 ( ) 2 M the unique sparsest solution is also the minimum of the above optimisation. 30of 31
31 References c Yoshua Bengio, "Learning Deep Architectures for AI", Foundations and Trends in, autoencoders.html Fuchs, "On Sparse Representations in Arbitrary Redundant Bases", IEEE Trans. Info. Theory, of 31
Machine Learning and Pattern Recognition Logistic Regression
Machine Learning and Pattern Recognition Logistic Regression Course Lecturer:Amos J Storkey Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh Crichton Street,
More informationPart II Redundant Dictionaries and Pursuit Algorithms
Aisenstadt Chair Course CRM September 2009 Part II Redundant Dictionaries and Pursuit Algorithms Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Sparsity in Redundant Dictionaries
More informationPATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION
PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical
More informationChristfried Webers. Canberra February June 2015
c Statistical Group and College of Engineering and Computer Science Canberra February June (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 829 c Part VIII Linear Classification 2 Logistic
More informationStatistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
More informationLinear Models for Classification
Linear Models for Classification Sumeet Agarwal, EEL709 (Most figures from Bishop, PRML) Approaches to classification Discriminant function: Directly assigns each data point x to a particular class Ci
More informationIFT3395/6390. Machine Learning from linear regression to Neural Networks. Machine Learning. Training Set. t (3.5, 2,..., 127, 0,...
IFT3395/6390 Historical perspective: back to 1957 (Prof. Pascal Vincent) (Rosenblatt, Perceptron ) Machine Learning from linear regression to Neural Networks Computer Science Artificial Intelligence Symbolic
More informationThese slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop
Music and Machine Learning (IFT6080 Winter 08) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher
More informationLecture 8 February 4
ICS273A: Machine Learning Winter 2008 Lecture 8 February 4 Scribe: Carlos Agell (Student) Lecturer: Deva Ramanan 8.1 Neural Nets 8.1.1 Logistic Regression Recall the logistic function: g(x) = 1 1 + e θt
More informationSTA 4273H: Statistical Machine Learning
STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct
More informationIntroduction to Support Vector Machines. Colin Campbell, Bristol University
Introduction to Support Vector Machines Colin Campbell, Bristol University 1 Outline of talk. Part 1. An Introduction to SVMs 1.1. SVMs for binary classification. 1.2. Soft margins and multiclass classification.
More informationLinear Threshold Units
Linear Threshold Units w x hx (... w n x n w We assume that each feature x j and each weight w j is a real number (we will relax this later) We will study three different algorithms for learning linear
More informationSupervised Feature Selection & Unsupervised Dimensionality Reduction
Supervised Feature Selection & Unsupervised Dimensionality Reduction Feature Subset Selection Supervised: class labels are given Select a subset of the problem features Why? Redundant features much or
More informationCS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott
More informationNonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., RichardPlouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
More informationPattern Analysis. Logistic Regression. 12. Mai 2009. Joachim Hornegger. Chair of Pattern Recognition Erlangen University
Pattern Analysis Logistic Regression 12. Mai 2009 Joachim Hornegger Chair of Pattern Recognition Erlangen University Pattern Analysis 2 / 43 1 Logistic Regression Posteriors and the Logistic Function Decision
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationMonotonicity Hints. Abstract
Monotonicity Hints Joseph Sill Computation and Neural Systems program California Institute of Technology email: joe@cs.caltech.edu Yaser S. AbuMostafa EE and CS Deptartments California Institute of Technology
More informationIntroduction to Machine Learning CMU10701
Introduction to Machine Learning CMU10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey
More informationLecture Topic: LowRank Approximations
Lecture Topic: LowRank Approximations LowRank Approximations We have seen principal component analysis. The extraction of the first principle eigenvalue could be seen as an approximation of the original
More informationClassspecific Sparse Coding for Learning of Object Representations
Classspecific Sparse Coding for Learning of Object Representations Stephan Hasler, Heiko Wersing, and Edgar Körner Honda Research Institute Europe GmbH CarlLegienStr. 30, 63073 Offenbach am Main, Germany
More informationUniversity of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing Handout 8: MultiLayer Perceptrons
University of Cambridge Engineering Part IIB Module 4F0: Statistical Pattern Processing Handout 8: MultiLayer Perceptrons x y (x) Inputs x 2 y (x) 2 Outputs x d First layer Second Output layer layer y
More informationCS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #18: Dimensionality Reduc7on
CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #18: Dimensionality Reduc7on Dimensionality Reduc=on Assump=on: Data lies on or near a low d dimensional subspace Axes of this subspace
More informationProbabilistic Linear Classification: Logistic Regression. Piyush Rai IIT Kanpur
Probabilistic Linear Classification: Logistic Regression Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 18, 2016 Probabilistic Machine Learning (CS772A) Probabilistic Linear Classification:
More informationSimple and efficient online algorithms for real world applications
Simple and efficient online algorithms for real world applications Università degli Studi di Milano Milano, Italy Talk @ Centro de Visión por Computador Something about me PhD in Robotics at LIRALab,
More informationComponent Ordering in Independent Component Analysis Based on Data Power
Component Ordering in Independent Component Analysis Based on Data Power Anne Hendrikse Raymond Veldhuis University of Twente University of Twente Fac. EEMCS, Signals and Systems Group Fac. EEMCS, Signals
More informationEM Clustering Approach for MultiDimensional Analysis of Big Data Set
EM Clustering Approach for MultiDimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin
More informationTensor Methods for Machine Learning, Computer Vision, and Computer Graphics
Tensor Methods for Machine Learning, Computer Vision, and Computer Graphics Part I: Factorizations and Statistical Modeling/Inference Amnon Shashua School of Computer Science & Eng. The Hebrew University
More informationNeural Networks for Machine Learning. Lecture 13a The ups and downs of backpropagation
Neural Networks for Machine Learning Lecture 13a The ups and downs of backpropagation Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdelrahman Mohamed A brief history of backpropagation
More informationLogistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression
Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max
More informationBag of Pursuits and Neural Gas for Improved Sparse Coding
Bag of Pursuits and Neural Gas for Improved Sparse Coding Kai Labusch, Erhardt Barth, and Thomas Martinetz University of Lübec Institute for Neuro and Bioinformatics Ratzeburger Allee 6 23562 Lübec, Germany
More informationWavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)
Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2πperiodic squareintegrable function is generated by a superposition
More informationAUTOMATION OF ENERGY DEMAND FORECASTING. Sanzad Siddique, B.S.
AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree
More informationGaussian Process Latent Variable Models for Visualisation of High Dimensional Data
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data Neil D. Lawrence Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield,
More informationForecasting Trade Direction and Size of Future Contracts Using Deep Belief Network
Forecasting Trade Direction and Size of Future Contracts Using Deep Belief Network Anthony Lai (aslai), MK Li (lilemon), Foon Wang Pong (ppong) Abstract Algorithmic trading, high frequency trading (HFT)
More informationRecall that two vectors in are perpendicular or orthogonal provided that their dot
Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal
More informationLecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
More informationArtificial Neural Networks and Support Vector Machines. CS 486/686: Introduction to Artificial Intelligence
Artificial Neural Networks and Support Vector Machines CS 486/686: Introduction to Artificial Intelligence 1 Outline What is a Neural Network?  Perceptron learners  Multilayer networks What is a Support
More informationGaussian Processes in Machine Learning
Gaussian Processes in Machine Learning Carl Edward Rasmussen Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany carl@tuebingen.mpg.de WWW home page: http://www.tuebingen.mpg.de/ carl
More informationPredict Influencers in the Social Network
Predict Influencers in the Social Network Ruishan Liu, Yang Zhao and Liuyu Zhou Email: rliu2, yzhao2, lyzhou@stanford.edu Department of Electrical Engineering, Stanford University Abstract Given two persons
More informationVisualization by Linear Projections as Information Retrieval
Visualization by Linear Projections as Information Retrieval Jaakko Peltonen Helsinki University of Technology, Department of Information and Computer Science, P. O. Box 5400, FI0015 TKK, Finland jaakko.peltonen@tkk.fi
More informationAn Introduction to Machine Learning
An Introduction to Machine Learning L5: Novelty Detection and Regression Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia Alex.Smola@nicta.com.au Tata Institute, Pune,
More informationAPPM4720/5720: Fast algorithms for big data. Gunnar Martinsson The University of Colorado at Boulder
APPM4720/5720: Fast algorithms for big data Gunnar Martinsson The University of Colorado at Boulder Course objectives: The purpose of this course is to teach efficient algorithms for processing very large
More informationVisualizing HigherLayer Features of a Deep Network
Visualizing HigherLayer Features of a Deep Network Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent Dept. IRO, Université de Montréal P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7,
More informationNeural Network Addin
Neural Network Addin Version 1.5 Software User s Guide Contents Overview... 2 Getting Started... 2 Working with Datasets... 2 Open a Dataset... 3 Save a Dataset... 3 Data Preprocessing... 3 Lagging...
More informationProbabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014
Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about
More informationAccurate and robust image superresolution by neural processing of local image representations
Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica
More informationBig Data  Lecture 1 Optimization reminders
Big Data  Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Big Data  Lecture 1 Optimization reminders S. Gadat Toulouse, Octobre 2014 Schedule Introduction Major issues Examples Mathematics
More informationNonnegative Matrix Factorization (NMF) in Semisupervised Learning Reducing Dimension and Maintaining Meaning
Nonnegative Matrix Factorization (NMF) in Semisupervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step
More informationProgramming Exercise 3: Multiclass Classification and Neural Networks
Programming Exercise 3: Multiclass Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement onevsall logistic regression and neural networks
More informationMaking Sense of the Mayhem: Machine Learning and March Madness
Making Sense of the Mayhem: Machine Learning and March Madness Alex Tran and Adam Ginzberg Stanford University atran3@stanford.edu ginzberg@stanford.edu I. Introduction III. Model The goal of our research
More informationSTUDY OF MUTUAL INFORMATION IN PERCEPTUAL CODING WITH APPLICATION FOR LOW BITRATE COMPRESSION
STUDY OF MUTUAL INFORMATION IN PERCEPTUAL CODING WITH APPLICATION FOR LOW BITRATE COMPRESSION Adiel BenShalom, Michael Werman School of Computer Science Hebrew University Jerusalem, Israel. {chopin,werman}@cs.huji.ac.il
More information( ) which must be a vector
MATH 37 Linear Transformations from Rn to Rm Dr. Neal, WKU Let T : R n R m be a function which maps vectors from R n to R m. Then T is called a linear transformation if the following two properties are
More informationLinear Classification. Volker Tresp Summer 2015
Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong
More informationIntroduction: Overview of Kernel Methods
Introduction: Overview of Kernel Methods Statistical Data Analysis with Positive Definite Kernels Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department of Statistical Science, Graduate University
More informationManifold Learning with Variational Autoencoder for Medical Image Analysis
Manifold Learning with Variational Autoencoder for Medical Image Analysis Eunbyung Park Department of Computer Science University of North Carolina at Chapel Hill eunbyung@cs.unc.edu Abstract Manifold
More informationLogistic Regression for Spam Filtering
Logistic Regression for Spam Filtering Nikhila Arkalgud February 14, 28 Abstract The goal of the spam filtering problem is to identify an email as a spam or not spam. One of the classic techniques used
More informationLecture 8: Signal Detection and Noise Assumption
ECE 83 Fall Statistical Signal Processing instructor: R. Nowak, scribe: Feng Ju Lecture 8: Signal Detection and Noise Assumption Signal Detection : X = W H : X = S + W where W N(, σ I n n and S = [s, s,...,
More informationMachine Learning Logistic Regression
Machine Learning Logistic Regression Jeff Howbert Introduction to Machine Learning Winter 2012 1 Logistic regression Name is somewhat misleading. Really a technique for classification, not regression.
More informationCS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen
CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major
More informationFactor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
More informationImplementation of Neural Networks with Theano. http://deeplearning.net/tutorial/
Implementation of Neural Networks with Theano http://deeplearning.net/tutorial/ Feed Forward Neural Network (MLP) Hidden Layer Object Hidden Layer Object Hidden Layer Object Logistic Regression Object
More informationCS 688 Pattern Recognition Lecture 4. Linear Models for Classification
CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(
More informationTHREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC TERISTICS
THREE DIMENSIONAL REPRESENTATION OF AMINO ACID CHARAC TERISTICS O.U. Sezerman 1, R. Islamaj 2, E. Alpaydin 2 1 Laborotory of Computational Biology, Sabancı University, Istanbul, Turkey. 2 Computer Engineering
More informationMethods and Applications for Distance Based ANN Training
Methods and Applications for Distance Based ANN Training Christoph Lassner, Rainer Lienhart Multimedia Computing and Computer Vision Lab Augsburg University, Universitätsstr. 6a, 86159 Augsburg, Germany
More informationIncremental PCA: An Alternative Approach for Novelty Detection
Incremental PCA: An Alternative Approach for Detection Hugo Vieira Neto and Ulrich Nehmzow Department of Computer Science University of Essex Wivenhoe Park Colchester CO4 3SQ {hvieir, udfn}@essex.ac.uk
More informationSupervised Learning (Big Data Analytics)
Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used
More informationLatent variable and deep modeling with Gaussian processes; application to system identification. Andreas Damianou
Latent variable and deep modeling with Gaussian processes; application to system identification Andreas Damianou Department of Computer Science, University of Sheffield, UK Brown University, 17 Feb. 2016
More informationStatistical machine learning, high dimension and big data
Statistical machine learning, high dimension and big data S. Gaïffas 1 14 mars 2014 1 CMAP  Ecole Polytechnique Agenda for today Divide and Conquer principle for collaborative filtering Graphical modelling,
More informationClassification Problems
Classification Read Chapter 4 in the text by Bishop, except omit Sections 4.1.6, 4.1.7, 4.2.4, 4.3.3, 4.3.5, 4.3.6, 4.4, and 4.5. Also, review sections 1.5.1, 1.5.2, 1.5.3, and 1.5.4. Classification Problems
More informationWhen is missing data recoverable?
When is missing data recoverable? Yin Zhang CAAM Technical Report TR0615 Department of Computational and Applied Mathematics Rice University, Houston, TX 77005 October, 2006 Abstract Suppose a nonrandom
More informationMachine learning challenges for big data
Machine learning challenges for big data Francis Bach SIERRA Projectteam, INRIA  Ecole Normale Supérieure Joint work with R. Jenatton, J. Mairal, G. Obozinski, N. Le Roux, M. Schmidt  December 2012
More informationCyberSecurity Analysis of State Estimators in Power Systems
CyberSecurity Analysis of State Estimators in Electric Power Systems André Teixeira 1, Saurabh Amin 2, Henrik Sandberg 1, Karl H. Johansson 1, and Shankar Sastry 2 ACCESS Linnaeus Centre, KTHRoyal Institute
More informationTwo Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering
Two Topics in Parametric Integration Applied to Stochastic Simulation in Industrial Engineering Department of Industrial Engineering and Management Sciences Northwestern University September 15th, 2014
More informationEvolutionary denoising based on an estimation of Hölder exponents with oscillations.
Evolutionary denoising based on an estimation of Hölder exponents with oscillations. Pierrick Legrand,, Evelyne Lutton and Gustavo Olague CICESE, Research Center, Applied Physics Division Centro de Investigación
More informationUnsupervised and supervised dimension reduction: Algorithms and connections
Unsupervised and supervised dimension reduction: Algorithms and connections Jieping Ye Department of Computer Science and Engineering Evolutionary Functional Genomics Center The Biodesign Institute Arizona
More informationLearning Deep Architectures for AI. Contents
Foundations and Trends R in Machine Learning Vol. 2, No. 1 (2009) 1 127 c 2009 Y. Bengio DOI: 10.1561/2200000006 Learning Deep Architectures for AI By Yoshua Bengio Contents 1 Introduction 2 1.1 How do
More informationSUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK
SUCCESSFUL PREDICTION OF HORSE RACING RESULTS USING A NEURAL NETWORK N M Allinson and D Merritt 1 Introduction This contribution has two main sections. The first discusses some aspects of multilayer perceptrons,
More information3. INNER PRODUCT SPACES
. INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.
More informationIntroduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk
Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trakovski trakovski@nyus.edu.mk Neural Networks 2 Neural Networks Analogy to biological neural systems, the most robust learning systems
More informationLearning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu
Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of
More informationSubspace Analysis and Optimization for AAM Based Face Alignment
Subspace Analysis and Optimization for AAM Based Face Alignment Ming Zhao Chun Chen College of Computer Science Zhejiang University Hangzhou, 310027, P.R.China zhaoming1999@zju.edu.cn Stan Z. Li Microsoft
More informationIntroduction to Learning & Decision Trees
Artificial Intelligence: Representation and Problem Solving 538 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning?  more than just memorizing
More informationDeep Learning for Multivariate Financial Time Series. Gilberto BatresEstrada
Deep Learning for Multivariate Financial Time Series Gilberto BatresEstrada June 4, 2015 Abstract Deep learning is a framework for training and modelling neural networks which recently have surpassed
More informationGaussian Process Training with Input Noise
Gaussian Process Training with Input Noise Andrew McHutchon Department of Engineering Cambridge University Cambridge, CB PZ ajm57@cam.ac.uk Carl Edward Rasmussen Department of Engineering Cambridge University
More informationGroup Sparse Coding. Fernando Pereira Google Mountain View, CA pereira@google.com. Dennis Strelow Google Mountain View, CA strelow@google.
Group Sparse Coding Samy Bengio Google Mountain View, CA bengio@google.com Fernando Pereira Google Mountain View, CA pereira@google.com Yoram Singer Google Mountain View, CA singer@google.com Dennis Strelow
More informationPrinciple Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression
Principle Component Analysis and Partial Least Squares: Two Dimension Reduction Techniques for Regression Saikat Maitra and Jun Yan Abstract: Dimension reduction is one of the major tasks for multivariate
More informationCSCI567 Machine Learning (Fall 2014)
CSCI567 Machine Learning (Fall 2014) Drs. Sha & Liu {feisha,yanliu.cs}@usc.edu September 22, 2014 Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) September 22, 2014 1 /
More informationBayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com
Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian
More informationModern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh
Modern Optimization Methods for Big Data Problems MATH11146 The University of Edinburgh Peter Richtárik Week 3 Randomized Coordinate Descent With Arbitrary Sampling January 27, 2016 1 / 30 The Problem
More informationNew Work Item for ISO 35345 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 35345 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
More informationWhy Does Unsupervised Pretraining Help Deep Learning?
Journal of Machine Learning Research 11 (2010) 625660 Submitted 8/09; Published 2/10 Why Does Unsupervised Pretraining Help Deep Learning? Dumitru Erhan Yoshua Bengio Aaron Courville PierreAntoine Manzagol
More informationLinear Codes. Chapter 3. 3.1 Basics
Chapter 3 Linear Codes In order to define codes that we can encode and decode efficiently, we add more structure to the codespace. We shall be mainly interested in linear codes. A linear code of length
More informationCITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
More informationStable Signal Recovery from Incomplete and Inaccurate Measurements
Stable Signal Recovery from Incomplete and Inaccurate Measurements Emmanuel Candes, Justin Romberg, and Terence Tao Applied and Computational Mathematics, Caltech, Pasadena, CA 91125 Department of Mathematics,
More informationText Analytics (Text Mining)
CSE 6242 / CX 4242 Apr 3, 2014 Text Analytics (Text Mining) LSI (uses SVD), Visualization Duen Horng (Polo) Chau Georgia Tech Some lectures are partly based on materials by Professors Guy Lebanon, Jeffrey
More informationLecture 6. Artificial Neural Networks
Lecture 6 Artificial Neural Networks 1 1 Artificial Neural Networks In this note we provide an overview of the key concepts that have led to the emergence of Artificial Neural Networks as a major paradigm
More informationFeedForward mapping networks KAIST 바이오및뇌공학과 정재승
FeedForward mapping networks KAIST 바이오및뇌공학과 정재승 How much energy do we need for brain functions? Information processing: Tradeoff between energy consumption and wiring cost Tradeoff between energy consumption
More informationChapter 4: Artificial Neural Networks
Chapter 4: Artificial Neural Networks CS 536: Machine Learning Littman (Wu, TA) Administration icml03: instructional Conference on Machine Learning http://www.cs.rutgers.edu/~mlittman/courses/ml03/icml03/
More informationPa8ern Recogni6on. and Machine Learning. Chapter 4: Linear Models for Classiﬁca6on
Pa8ern Recogni6on and Machine Learning Chapter 4: Linear Models for Classiﬁca6on Represen'ng the target values for classifica'on If there are only two classes, we typically use a single real valued output
More information