# Class Overview and General Introduction to Machine Learning

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Class Overview and General Introduction to Machine Learning Piyush Rai CS5350/6350: Machine Learning August 23, 2011 (CS5350/6350) Intro to ML August 23, / 25

2 Course Logistics Class webpage: Class mailing lists (SUBSCRIBE but don t post) (POST but don t subscribe) Requirements and Grading: Six homeworks worth a total of 60% (10% each) Each consisting of some written problems and some programming assignments Programming assignments to be done in MATLAB (or Octave) Homeworks due before class time on the due date Final exam worth 20% Final Class Project worth 20% Textbook: No official textbook required Required reading material provided on the class webpage Some of the material is password-protected (CS5350/6350) Intro to ML August 23, / 25

3 Course Goals By the end of the semester, you should be able to: Understand how various machine learning algorithms work Implement them (and, hopefully, their variants/improvements) on your own Look at a real-world problem and identify if ML is an appropriate solution If so, identify what types of algorithms might be applicable Apply those algorithms Feel inspired to work on and learn more about Machine Learning :-) This class is not about: Introduction to machine learning tools/softwares (CS5350/6350) Intro to ML August 23, / 25

4 What is Machine Learning? Machine Learning: Designing algorithms that can learn patterns from data (and exploit them) Approach: human supplies training examples, the machine learns Example: Show the machine a bunch of spam and legitimate s and let it learn to predict if a new is spam or not Machine Learning primarily uses the statistically motivated approach No hand-crafted rules - subtle pattern nuances are often be difficult to specify Instead, let the machine figure out the rules on its own by looking at data.. by building statistical models of the data The statistical model helps uncover the process which generated the data Desirable Property: Generalization The model shouldn t overfit on the training data It should generalize well on unseen (future) test data (CS5350/6350) Intro to ML August 23, / 25

5 Generalization (Pictorially) Pictures below: The X axis is the input. The Y axis is the response. Which of the four red curves fits the data (blue dots) best? Which curve is expected to generalize the best? Are they both the same? If yes, why? If no, why not? Lesson: Simple models should be preferred over complicated models Simple models can prevent overfitting Caution: Too simple a model can underfit (e.g., M = 0 above) General guideline: Choose a model not-too-simple, yet not-too-complex (CS5350/6350) Intro to ML August 23, / 25

6 Machine Learning in the real-world Broadly applicable in many domains (e.g., finance, robotics, bioinformatics, vision, natural language, etc.). Some applications: Spam filtering Speech/handwriting recognition Object detection/recognition Weather prediction Stock market analysis Search engines (e.g, Google) Ad placement on websites Adaptive website design Credit-card fraud detection Webpage clustering (e.g., Google News) Machine Translation (e.g., Google Translate) Recommendation systems (e.g., Netflix, Amazon) Classifying DNA sequences Automatic vehicle navigation Performance tuning of computer systems Predicting good compilation flags for programs.. and many more 12 IT skills that employers can t say no to (Machine Learning is #1) (CS5350/6350) Intro to ML August 23, / 25

7 Major Machine Learning Paradigms Nomenclature: x denotes an input/example/instance, y denotes a response/output/label/prediction Supervised Learning: learning with a teacher Given: N labeled training examples {(x 1,y 1 ),...,(x N,y N )} Goal: learn mapping f that predicts label y for a test example x Example: Spam classification, webpage categorization Unsupervised Learning: learning without a teacher Given: a set of N unlabeled inputs {x 1,...,x N } Goal: learn some intrinsic structure in the inputs (e.g., groups/clusters) Example: Automatically grouping news stories (Google News) Reinforcement Learning: learning by interacting Given: an agent acting in an environment (having a set of states) Goal: learn a policy (state to action mapping) that maximizes agent s reward Example: Automatic vehicle navigation, (computer) learning to play Chess (CS5350/6350) Intro to ML August 23, / 25

8 Supervised Learning Given: N labeled training examples {(x 1,y 1 ),...,(x N,y N )} Goal: learn a model that predicts the label y for a test example x Assumption: The training and the test examples are drawn from the same data distribution Things to keep in mind: No single learning algorithm is universally good ( no free lunch ) Different learning algorithms work with different assumptions Generalization is particularly important for supervised learning (CS5350/6350) Intro to ML August 23, / 25

9 Supervised Learning: Problem Settings f : x y Classification: when y is a discrete variable Discrete variable: takes a value from a discrete set y {1,...,K} Example: Category of a webpage (sports, politics, business, science, etc.) Regression: when y is a real-valued variable Example: Price of a stock (CS5350/6350) Intro to ML August 23, / 25

10 Supervised Learning: Classification Problem Types: Binary Classification: y is binary (two classes: 0/1 or -1/+1) Example: Spam Filtering (tell whether this is spam or legitimate) Multi-class Classification: y is discrete with one of K > 2 possible values Example: Predicting your CS5350 grade (e.g., A, A, B+, B, B, other) Multi-label Classification: When y is a vector of discrete variables Each input x has multiple labels Each element of y is one label (individual labels can be binary/multi-class) Example: Image annotation (each image can have multiple labels) Structured Prediction: When y is a vector with a structure Elements of y are not independent but related to each-other Example: Predicting parts-of-speech (POS) tags for a sentence (CS5350/6350) Intro to ML August 23, / 25

11 Supervised Learning: Regression Problem Types: Univariate Regression: y is a single real-valued number Example: Predicting the future price of a stock Multivariate Regression: y is a real-valued vector Each element of y tells the value of one response variable Example: Torque values in multiple joints of a robotic arm Akin to multi-label classification (CS5350/6350) Intro to ML August 23, / 25

12 Supervised Learning: Pictorially Classification is about finding separation boundaries (linear/non-linear): Regression is more like fitting a curve/surface to the data: (CS5350/6350) Intro to ML August 23, / 25

13 Unsupervised Learning Unsupervised Learning: learning without a teacher Given: a set of unlabeled inputs {x 1,...,x N } Goal: learn some intrinsic structure in the data Some Examples: Data Clustering, Dimensionality Reduction Data Clustering Grouping a given set of inputs based on their similarities Example: clustering new stories based on their topics (e.g., Google News) Clustering sometimes is also referred to as (probability) density estimation Dimensionality Reduction Often, real-world data is high dimensional Reducing dimensionality helps in several ways Computational benefits: speeding up learning algorithms Better input representations for supervised learning tasks Used for data visualization by reducing data to smaller dimensions (CS5350/6350) Intro to ML August 23, / 25

14 Unsupervised Learning: Data Clustering (CS5350/6350) Intro to ML August 23, / 25

15 Unsupervised Learning: Dimensionality Reduction Data high-dimensional in ambient space, but intrinsically lower dimensional 2-D data lying close to 1-D space 3-D data living on a manifold, instrinsically 2-D (CS5350/6350) Intro to ML August 23, / 25

16 Reinforcement Learning Unlike supervised/unsupervised learning, RL does not recieve examples Rather, it learns (gathers experience) by interacting with the world Defined by an agent and an environment the agent acts in Agent has a set A of actions, environment has a set S of states Goal: Find a sequence of actions by the agent that maximizes its reward Output: A policy which maps states to actions RL problems always include time as a variable Example problems: Chess, Robot control, autonomous driving In RL, the key trade-off is exploration versus exploitation (CS5350/6350) Intro to ML August 23, / 25

17 Other Paradigms: Semi-supervised Learning Supervised Learning requires labeled data (the more, the better!) Problem 1: Labeling is expensive (usually done by humans) Problem 2: Sometimes labels are really hard to get Speech-analysis: transcribing an hour of speech can take several hundred hours! How can we learn well even with small amounts of labeled data? One answer: Semi-supervised Learning Using small amount of labeled + plenty of (freely available) unlabeled data (CS5350/6350) Intro to ML August 23, / 25

18 Other Paradigms: Semi-supervised Learning Often unlabeled data can give a good idea about class separation One intuition: Class boundary is expected to lie in a low-density region Low density region: region that has very few examples (CS5350/6350) Intro to ML August 23, / 25

19 Other Paradigms: Active Learning Similar motivation as semi-supervised learning (saving data labeling cost) Standard supervised learning is passive Learner has no choice for the data it has to learn from Not all labeled examples are really informative Spending labeling efforts on uninformative examples isn t really worth it Active Learning: allows the learner to ask for specific labeled examples.. the ones it considers the most informative Active Learning can lead to several benefits: Less labeled data needed to learn Better classifiers (CS5350/6350) Intro to ML August 23, / 25

20 Other Paradigms: Transfer Learning Let s assume we have two related learning tasks A and B Plenty of labeled training data for A : Can learn A well Little or no labeled data for B : Little or no hope of learning B Transfer Learning: allows B to leverage the data from task A Under suitable task-relatedness assumptions, transfer learning may help Caution: Incorrect/inappropriate assumptions can hurt learning Several variants/names of Transfer Learning Multitask Learning Domain Adaptation Co-variate Shift (CS5350/6350) Intro to ML August 23, / 25

21 Bayesian Learning Not really a different learning paradigm Rather, a way of doing machine learning (can be used for any learning paradigm - supervised, unsupervised, etc.) Most ML algorithms: Provide them data, get a model out of it No way to know how confident your model parameters are No way to know how confident your predictions are But in some problem domains, confidence estimates are important Bayesian Learning gives a way to quantify confidence/uncertainty By maintaining a probability distribution over the parameters/predictions So we also have mean and variance estimates of the parameters/predictions Another advantage: Incorporating prior knowledge about the problem, Bayesian methods can automatically control overfitting (and can learn well with small amounts of data) (CS5350/6350) Intro to ML August 23, / 25

22 Machine Learning vs Statistics Traditionally, Statistics mainly cares about fitting a model over the data Main focus is on explaining the data Issues such as generalization are typically ignored Note: There may be some exceptions ML focuses more on the prediction aspect (generalization is important) Although knowing about the data generating model can help prediction, such modeling can sometimes be expensive. ML therefore often goes easy on the modeling aspect and focuses directly on the prediction task Statistics traditionally does not focus much on computational issues Most ML algorithms nowadays consider the computational issues For some discussion, see: (CS5350/6350) Intro to ML August 23, / 25

23 Data Representation Data has form: {(x 1,y 1 ),...,(x N,y N )} (labeled), or {x 1,...,x N } (unlabeled) What the label y looks like is task-specific (as we saw) What about x which denotes a real-world object (e.g., image or text document)? Each example x is a set of (numeric) features/attributes/dimensions Features encode properties of the object which x represents x is commonly represented as a D 1 vector Representing a image: x can be a vector of pixel values Representing a text document: x can be a vector of word-counts of words appearing in that document For some problems, non-vectorial representations may be more appropriate (CS5350/6350) Intro to ML August 23, / 25

24 Some Notations R D denotes the set of all D 1 real-valued column vectors x R D denotes a D 1 real-valued column vector x T denotes the transpose of x, a 1 D row vector R N D denotes the set of all N D real-valued matrices X R N D denotes an N D real-valued matrix Supervised Learning: Often, we write {(x 1,y 1 ),...,(x N,y N )} as (X,Y) X is an N D matrix Each row of X denotes an example, each column denotes a feature x ij denotes the j-th feature of the i-th example Y is an N 1 vector. Row i denotes the label of the i-th example X = x 1.. x N Y = = y 1.. y N x 11 x 1D x N1 x ND (CS5350/6350) Intro to ML August 23, / 25

25 Next class.. Two supervised learning algorithms K-Nearest Neighbors Decision Trees Both based more on intuition and less on maths :) (CS5350/6350) Intro to ML August 23, / 25

### Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction Logistics Prerequisites: basics concepts needed in probability and statistics

### 203.4770: Introduction to Machine Learning Dr. Rita Osadchy

203.4770: Introduction to Machine Learning Dr. Rita Osadchy 1 Outline 1. About the Course 2. What is Machine Learning? 3. Types of problems and Situations 4. ML Example 2 About the course Course Homepage:

### Introduction to Statistical Machine Learning

CHAPTER Introduction to Statistical Machine Learning We start with a gentle introduction to statistical machine learning. Readers familiar with machine learning may wish to skip directly to Section 2,

### K-nearest-neighbor: an introduction to machine learning

K-nearest-neighbor: an introduction to machine learning Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison slide 1 Outline Types of learning Classification:

### Data, Measurements, Features

Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are

### Machine Learning. CUNY Graduate Center, Spring 2013. Professor Liang Huang. huang@cs.qc.cuny.edu

Machine Learning CUNY Graduate Center, Spring 2013 Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning Logistics Lectures M 9:30-11:30 am Room 4419 Personnel

### CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016

Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00

10-601 Machine Learning http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html Course data All up-to-date info is on the course web page: http://www.cs.cmu.edu/afs/cs/academic/class/10601-f10/index.html

### An Introduction to Data Mining. Big Data World. Related Fields and Disciplines. What is Data Mining? 2/12/2015

An Introduction to Data Mining for Wind Power Management Spring 2015 Big Data World Every minute: Google receives over 4 million search queries Facebook users share almost 2.5 million pieces of content

### Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer

Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next

### Introduction to Machine Learning Using Python. Vikram Kamath

Introduction to Machine Learning Using Python Vikram Kamath Contents: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Introduction/Definition Where and Why ML is used Types of Learning Supervised Learning Linear Regression

### CS 2750 Machine Learning. Lecture 1. Machine Learning. CS 2750 Machine Learning.

Lecture 1 Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x-5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### Introduction to Machine Learning

Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Instructor: Erik Sudderth Graduate TAs: Dae Il Kim & Ben Swanson Head Undergraduate TA: William Allen Undergraduate TAs: Soravit

### Attribution. Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley)

Machine Learning 1 Attribution Modified from Stuart Russell s slides (Berkeley) Parts of the slides are inspired by Dan Klein s lecture material for CS 188 (Berkeley) 2 Outline Inductive learning Decision

### Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu

Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill

### Introduction to Machine Learning. Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011

Introduction to Machine Learning Speaker: Harry Chao Advisor: J.J. Ding Date: 1/27/2011 1 Outline 1. What is machine learning? 2. The basic of machine learning 3. Principles and effects of machine learning

### Machine Learning: Overview

Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave

### CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015

CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions

### Supervised and unsupervised learning - 1

Chapter 3 Supervised and unsupervised learning - 1 3.1 Introduction The science of learning plays a key role in the field of statistics, data mining, artificial intelligence, intersecting with areas in

### Machine Learning. 01 - Introduction

Machine Learning 01 - Introduction Machine learning course One lecture (Wednesday, 9:30, 346) and one exercise (Monday, 17:15, 203). Oral exam, 20 minutes, 5 credit points. Some basic mathematical knowledge

### Concepts in Machine Learning, Unsupervised Learning & Astronomy Applications

Data Mining In Modern Astronomy Sky Surveys: Concepts in Machine Learning, Unsupervised Learning & Astronomy Applications Ching-Wa Yip cwyip@pha.jhu.edu; Bloomberg 518 Human are Great Pattern Recognizers

### Big Data Analytics CSCI 4030

High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

### Learning is a very general term denoting the way in which agents:

What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);

### Maschinelles Lernen mit MATLAB

Maschinelles Lernen mit MATLAB Jérémy Huard Applikationsingenieur The MathWorks GmbH 2015 The MathWorks, Inc. 1 Machine Learning is Everywhere Image Recognition Speech Recognition Stock Prediction Medical

### Machine Learning and Data Mining. Fundamentals, robotics, recognition

Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,

### Introduction to Machine Learning

Introduction to Machine Learning Prof. Alexander Ihler Prof. Max Welling icamp Tutorial July 22 What is machine learning? The ability of a machine to improve its performance based on previous results:

1 1 Introduction Lecturer: Prof. Aude Billard (aude.billard@epfl.ch) Teaching Assistants: Guillaume de Chambrier, Nadia Figueroa, Denys Lamotte, Nicola Sommer 2 2 Course Format Alternate between: Lectures

### Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

### MACHINE LEARNING IN HIGH ENERGY PHYSICS

MACHINE LEARNING IN HIGH ENERGY PHYSICS LECTURE #1 Alex Rogozhnikov, 2015 INTRO NOTES 4 days two lectures, two practice seminars every day this is introductory track to machine learning kaggle competition!

### An introduction to machine learning

An introduction to machine learning Pierre Lison, Language Technology Group (LTG) Department of Informatics HiOA, October 3 2012 Outline Motivation Machine learning approaches My own research Conclusion

### C19 Machine Learning

C9 Machine Learning 8 Lectures Hilary Term 25 2 Tutorial Sheets A. Zisserman Overview: Supervised classification perceptron, support vector machine, loss functions, kernels, random forests, neural networks

### Introduction to Pattern Recognition

Introduction to Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

### Machine learning for algo trading

Machine learning for algo trading An introduction for nonmathematicians Dr. Aly Kassam Overview High level introduction to machine learning A machine learning bestiary What has all this got to do with

### Unsupervised Learning: Clustering with DBSCAN Mat Kallada

Unsupervised Learning: Clustering with DBSCAN Mat Kallada STAT 2450 - Introduction to Data Mining Supervised Data Mining: Predicting a column called the label The domain of data mining focused on prediction:

### Azure Machine Learning, SQL Data Mining and R

Azure Machine Learning, SQL Data Mining and R Day-by-day Agenda Prerequisites No formal prerequisites. Basic knowledge of SQL Server Data Tools, Excel and any analytical experience helps. Best of all:

### Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

### CLASSIFICATION AND CLUSTERING. Anveshi Charuvaka

CLASSIFICATION AND CLUSTERING Anveshi Charuvaka Learning from Data Classification Regression Clustering Anomaly Detection Contrast Set Mining Classification: Definition Given a collection of records (training

### Introduction to Learning & Decision Trees

Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

### INTRODUCTION TO MACHINE LEARNING

Why are you here? What is Machine Learning? Why are you taking this course? INTRODUCTION TO MACHINE LEARNING David Kauchak CS 451 Fall 2013 What topics would you like to see covered? Machine Learning is

### STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

### Search Taxonomy. Web Search. Search Engine Optimization. Information Retrieval

Information Retrieval INFO 4300 / CS 4300! Retrieval models Older models» Boolean retrieval» Vector Space model Probabilistic Models» BM25» Language models Web search» Learning to Rank Search Taxonomy!

### Machine Learning Overview

Machine Learning Overview Sargur N. Srihari University at Buffalo, State University of New York USA 1 Outline 1. What is Machine Learning (ML)? 1. As a scientific Discipline 2. As an area of Computer Science/AI

### The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23

(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, high-dimensional

### Question 2 Naïve Bayes (16 points)

Question 2 Naïve Bayes (16 points) About 2/3 of your email is spam so you downloaded an open source spam filter based on word occurrences that uses the Naive Bayes classifier. Assume you collected the

### An Introduction to Data Mining

An Introduction to Intel Beijing wei.heng@intel.com January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### CSE 517A MACHINE LEARNING INTRODUCTION

CSE 517A MACHINE LEARNING INTRODUCTION Spring 2016 Marion Neumann Contents in these slides may be subject to copyright. Some materials are adopted from Killian Weinberger. Thanks, Killian! Machine Learning

### Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

### Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

### LCs for Binary Classification

Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

### Practical Data Science with Azure Machine Learning, SQL Data Mining, and R

Practical Data Science with Azure Machine Learning, SQL Data Mining, and R Overview This 4-day class is the first of the two data science courses taught by Rafal Lukawiecki. Some of the topics will be

### Machine Learning for NLP

Natural Language Processing SoSe 2015 Machine Learning for NLP Dr. Mariana Neves May 4th, 2015 (based on the slides of Dr. Saeedeh Momtazi) Introduction Field of study that gives computers the ability

### Course 395: Machine Learning

Course 395: Machine Learning Lecturers: Maja Pantic (maja@doc.ic.ac.uk) Stavros Petridis (sp104@doc.ic.ac.uk) Goal (Lectures): To present basic theoretical concepts and key algorithms that form the core

### Introduction to machine learning and pattern recognition Lecture 1 Coryn Bailer-Jones

Introduction to machine learning and pattern recognition Lecture 1 Coryn Bailer-Jones http://www.mpia.de/homes/calj/mlpr_mpia2008.html 1 1 What is machine learning? Data description and interpretation

### Learning Example. Machine learning and our focus. Another Example. An example: data (loan application) The data and the goal

Learning Example Chapter 18: Learning from Examples 22c:145 An emergency room in a hospital measures 17 variables (e.g., blood pressure, age, etc) of newly admitted patients. A decision is needed: whether

### CS 688 Pattern Recognition Lecture 4. Linear Models for Classification

CS 688 Pattern Recognition Lecture 4 Linear Models for Classification Probabilistic generative models Probabilistic discriminative models 1 Generative Approach ( x ) p C k p( C k ) Ck p ( ) ( x Ck ) p(

### Programming Exercise 3: Multi-class Classification and Neural Networks

Programming Exercise 3: Multi-class Classification and Neural Networks Machine Learning November 4, 2011 Introduction In this exercise, you will implement one-vs-all logistic regression and neural networks

### Advice for applying Machine Learning

Advice for applying Machine Learning Andrew Ng Stanford University Today s Lecture Advice on how getting learning algorithms to different applications. Most of today s material is not very mathematical.

### Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler

Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error

### 8/29/2015. Data Mining and Machine Learning. Erich Seamon University of Idaho

Data Mining and Machine Learning Erich Seamon University of Idaho www.webpages.uidaho.edu/erichs erichs@uidaho.edu 1 I am NOMAD 2 1 Data Mining and Machine Learning Outline Outlining the data mining and

### Data Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 6: Models and Patterns Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Models vs. Patterns Models A model is a high level, global description of a

### CS 207 - Data Science and Visualization Spring 2016

CS 207 - Data Science and Visualization Spring 2016 Professor: Sorelle Friedler sorelle@cs.haverford.edu An introduction to techniques for the automated and human-assisted analysis of data sets. These

### 1 What is Machine Learning?

COS 511: Theoretical Machine Learning Lecturer: Rob Schapire Lecture #1 Scribe: Rob Schapire February 4, 2008 1 What is Machine Learning? Machine learning studies computer algorithms for learning to do

### Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

### Machine Learning Logistic Regression

Machine Learning Logistic Regression Jeff Howbert Introduction to Machine Learning Winter 2012 1 Logistic regression Name is somewhat misleading. Really a technique for classification, not regression.

### Quiz 1 for Name: Good luck! 20% 20% 20% 20% Quiz page 1 of 16

Quiz 1 for 6.034 Name: 20% 20% 20% 20% Good luck! 6.034 Quiz page 1 of 16 Question #1 30 points 1. Figure 1 illustrates decision boundaries for two nearest-neighbour classifiers. Determine which one of

### Learning. Artificial Intelligence. Learning. Types of Learning. Inductive Learning Method. Inductive Learning. Learning.

Learning Learning is essential for unknown environments, i.e., when designer lacks omniscience Artificial Intelligence Learning Chapter 8 Learning is useful as a system construction method, i.e., expose

### Machine Learning Introduction

Machine Learning Introduction Ingmar Schuster Patrick Jähnichen Institut für Informatik This lecture covers Machine Learning Overview Example applications of Machine Learning Distinction Supervised vs.

### Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning SAMSI 10 May 2013 Outline Introduction to NMF Applications Motivations NMF as a middle step

### Applications of Deep Learning to the GEOINT mission. June 2015

Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics

### Machine Learning using MapReduce

Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

### MA2823: Foundations of Machine Learning

MA2823: Foundations of Machine Learning École Centrale Paris Fall 2015 Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr TAs: Jiaqian Yu jiaqian.yu@centralesupelec.fr

### CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

### Data Mining Part 5. Prediction

Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

### Part III: Machine Learning. CS 188: Artificial Intelligence. Machine Learning This Set of Slides. Parameter Estimation. Estimation: Smoothing

CS 188: Artificial Intelligence Lecture 20: Dynamic Bayes Nets, Naïve Bayes Pieter Abbeel UC Berkeley Slides adapted from Dan Klein. Part III: Machine Learning Up until now: how to reason in a model and

Collaborative Filtering Radek Pelánek 2015 Collaborative Filtering assumption: users with similar taste in past will have similar taste in future requires only matrix of ratings applicable in many domains

### Machine Learning. CS 188: Artificial Intelligence Naïve Bayes. Example: Digit Recognition. Other Classification Tasks

CS 188: Artificial Intelligence Naïve Bayes Machine Learning Up until now: how use a model to make optimal decisions Machine learning: how to acquire a model from data / experience Learning parameters

### Data Mining Practical Machine Learning Tools and Techniques. Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank

Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 7 of Data Mining by I. H. Witten and E. Frank Engineering the input and output Attribute selection Scheme independent, scheme

### BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376

Course Director: Dr. Kayvan Najarian (DCM&B, kayvan@umich.edu) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.

### Machine Learning for Data Science (CS4786) Lecture 1

Machine Learning for Data Science (CS4786) Lecture 1 Tu-Th 10:10 to 11:25 AM Hollister B14 Instructors : Lillian Lee and Karthik Sridharan ROUGH DETAILS ABOUT THE COURSE Diagnostic assignment 0 is out:

### Lecture - 32 Regression Modelling Using SPSS

Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 32 Regression Modelling Using SPSS (Refer

### MACHINE LEARNING. Introduction. Alessandro Moschitti

MACHINE LEARNING Introduction Alessandro Moschitti Department of Computer Science and Information Engineering University of Trento Email: moschitti@disi.unitn.it Course Schedule Lectures Tuesday, 14:00-16:00

### COLLEGE OF SCIENCE. John D. Hromi Center for Quality and Applied Statistics

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE: COS-STAT-747 Principles of Statistical Data Mining

### Defending Networks with Incomplete Information: A Machine Learning Approach. Alexandre Pinto alexcp@mlsecproject.org @alexcpsec @MLSecProject

Defending Networks with Incomplete Information: A Machine Learning Approach Alexandre Pinto alexcp@mlsecproject.org @alexcpsec @MLSecProject Agenda Security Monitoring: We are doing it wrong Machine Learning

### Classifying Chess Positions

Classifying Chess Positions Christopher De Sa December 14, 2012 Chess was one of the first problems studied by the AI community. While currently, chessplaying programs perform very well using primarily

### ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)

ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications

### Social Media Mining. Data Mining Essentials

Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

### INTRODUCTION TO NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS Pictures are taken from http://www.cs.cmu.edu/~tom/mlbook-chapter-slides.html http://research.microsoft.com/~cmbishop/prml/index.htm By Nobel Khandaker Neural Networks An

### Bayes and Naïve Bayes. cs534-machine Learning

Bayes and aïve Bayes cs534-machine Learning Bayes Classifier Generative model learns Prediction is made by and where This is often referred to as the Bayes Classifier, because of the use of the Bayes rule

### Machine Learning. Mausam (based on slides by Tom Mitchell, Oren Etzioni and Pedro Domingos)

Machine Learning Mausam (based on slides by Tom Mitchell, Oren Etzioni and Pedro Domingos) What Is Machine Learning? A computer program is said to learn from experience E with respect to some class of

### COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection.

COMP 551 Applied Machine Learning Lecture 6: Performance evaluation. Model assessment and selection. Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise

### Knowledge-based systems and the need for learning

Knowledge-based systems and the need for learning The implementation of a knowledge-based system can be quite difficult. Furthermore, the process of reasoning with that knowledge can be quite slow. This

### Fast Analytics on Big Data with H20

Fast Analytics on Big Data with H20 0xdata.com, h2o.ai Tomas Nykodym, Petr Maj Team About H2O and 0xdata H2O is a platform for distributed in memory predictive analytics and machine learning Pure Java,

### L10: Probability, statistics, and estimation theory

L10: Probability, statistics, and estimation theory Review of probability theory Bayes theorem Statistics and the Normal distribution Least Squares Error estimation Maximum Likelihood estimation Bayesian

### Email Spam Detection A Machine Learning Approach

Email Spam Detection A Machine Learning Approach Ge Song, Lauren Steimle ABSTRACT Machine learning is a branch of artificial intelligence concerned with the creation and study of systems that can learn

### HT2015: SC4 Statistical Data Mining and Machine Learning

HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric

### Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com

Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University caizhua@gmail.com 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian