(2) f(x) = o(g(x)) as x ( little o ) if lim. f(x)

Size: px
Start display at page:

Download "(2) f(x) = o(g(x)) as x ( little o ) if lim. f(x)"

Transcription

1 1. Introduction To perturbation Theory & Asymptotic Expansions Example Consider x = ε coshx (1.1) For ε 0 we cannot solve this in closed form. (Note: ε = 0 x = ) The equation defines a function x : ( ε, ε) R (some range of ε either side of 0) We might look for a solution of the form x = x 0 +εx 1 +ε x + and by subsititung this into equation (1.1) we have x 0 + εx 1 + ε x + = ε cosh(x 0 + εx 1 + ) Now for ε = 0, x 0 = and so for a suitably small ε + εx 1 ε cosh( + εx 1 + ) x 1 cosh() x(ε) = + ε cosh(ε) + For example, if we set ε = 10 we get x = where the exact solution is x = Landau or Order Notation. Definition Let f and g be real functions defined on some open set containing zero, ie: 0 D R. We say: (1) f(x) = O(g(x)) as x ( Big O ) if K > 0 and ε > 0 such that( ε, ε) D and x ( ε, ε) f(x) < K g(x) f(x) () f(x) = o(g(x)) as x ( little o ) if lim x 0 g(x) = 0 (3) f(x) g(x) as x (asymptotically equivalent) if lim x 0 f(x) g(x) = 1 Remark (1) Could define these for x x 0 or x () Abuse of notation: for say, sin x = x + O(x ), O(x ) should be an equivalence class, ie: sin x x O(x ) f(x) Lemma If lim m < then f(x) = O(g(x)) x 0 g(x) Proof. Suppose f(x) g(x) m < ε and x < δ then f(x) g(x) m f(x) < ε g(x) < m + ε f(x) < ( m + ε) g(x) But this is just the definition of O with m + ε for K Example (i) x = o(x) as x since x x 0 as x (ii) 3x = O(x ) since 3x 5x 0 as x 0 1

2 (iii) x = o( x 1 ) as x 0 x (iv) 1 + x = o(1) since x/(1 + x ) 0 as x 0 1 x (v) 1 + x = O(x) sin x x cosx 1 (vi) sinx = x + o(x) as x 0 since lim = lim = 0 x 0 x x 0 1 (vii) sinx = x + O(x 3 sin x x cos x 1 ) since lim x 0 x = lim 3 x 0 3x sin x cos x = lim x 0 6x = lim x 0 6 = 1 6 (viii) sinx x x3 3! since lim = 1 (ix) sinx = x x3 3! + O(x4 ) sin x x 0 x x3 3! The definition of f (x) in o notation is: f(x + h) = f(x) + f (x)h + o(h) as h 0 The Taylor series for f(x + h) is given by f(x + h) = f(x) + f (x)h + + f(n) (x)h n n! + o(h) If the Taylor series is a convergent power series then o(h n ) can be replaced by O(h n+1 ). N N Any convergent power series a n x n = a n x n + O(x n+1 ) n=0 Examples: 1 + x = ( x) + 1 ( 1 )( x)! + O(x 3 ) = 1 x x + O(x3 ) ln(1 + x) = x x + O(x3 ) x sin( 1 x ) = O(x ) It is important to note that this is big O with no limit as x sin( 1 x ) 1 x though x sin( 1 x ) x n=0 = sin( 1 x ), and this has no limit. 1.. The Fundamental Theorem of Perturbation Theory. Theorem If A 0 +A 1 ε+ +A N ε N = O(ε N+1 ) then A 0 = A 1 = A N = 0 Proof. Suppose A 0 + A 1 ε + + A N ε N = O(ε N+1 ) but not all A k are zero. Let A M be the first non-zero. Consider A M ε M + A M+1 ε M A N ε N+1 ε N+1 = A M + A M+1 ε + + as ε ε N+1 M Then we have a contradiction with big O.

3 Perturbation Theory of Algebraic Equations. Example Consider x 3x++ε = 0. Assume the roots have the following expansion: x 0 + εx 1 + ε x + O(ε 3 ) then by substitution we get (x 0 + εx 1 + ε x + ) 3(x 0 + εx 1 + ε x + ) + ε + = O(ε 3 ) = (x 0 + 3x 0 + ) + ε(x 0 x 1 3x 1 + 1) + ε (x 1 + x 0 x 1 3x ) = O(ε 3 ) Terms in ε 0 : x 0 3x 0 + = 0 x 0 = 1 or x 0 = Terms in ε 1 : x 0 x 1 3x = 0 if x 0 = 1 then x 1 = 1 otherwise if x 0 = then x 1 = 1 Terms in ε : x 1 = x 0x 3x = 0 if x 0 = 1 then x 1 = 1, and so x = 1 otherwise if x 0 = then x 1 = 1, and so x = 1 x = 1 + ε + ε + O(ε 3 ) or x = ε ε + O(ε 3 ) We can solve x 3x + + ε = 0 directly to get x = 3 ± 1 4ε Now 1 4ε = 1 ε ε +O(x 3 ) and substituting this into 3 ± 1 4ε we get x = 3 ± (1 ε ε ) which is the same answer as above. Example 1.3. (Singular Perturbation).. Consider εx x+1 = 0 and again assume there is an expansion x 0 +εx 1 +ε x + O(ε 3 ). We get for terms in ε 0 : x = 0 x 0 = 1 terms in ε 1 x 0 x 1 = 0 x 1 = 1 8 terms in ε x 0 x 1 x = 6 x = 1 8 and so we have x = 1 + ε 8 + ε 8 and this gives us one of the roots, but where is the second? The exact solution is given by: and the other root should be x = 1 ± 1 ε ε x = ε 1 + O(ε)

4 4 Last time in example 1.3. we did not find the other root of εx x + 1 = 0 using the expansion of form x 0 + εx 1 + ε x + O(ε 3 ). If instead we try ω = εx, then ω ε = w ε + 1 = 0 ω ω + ε = 0 this, we can assume in the usual way has an expansion of the form: ω 0 + εω 1 + ε ω O(ε 3 ), and: Terms in ε 0 : ω0 ω 0 = 0 ω 0 = 0 or Terms in ε 1 : ω ε = x = { 1 + O(ε) ε 1 + O(ε) ω 0 ω 1 ω = 0 ω 1 = 1 or 1 Example (Non Regular Expansions). Consider x x( + ε) + 1 = 0. assume x = x 0 + εx 1 + ε x + O(ε 3 ) ε 0 : x 0 x = 0 x 0 = 1 twice ε 1 : (1+ε) (1+εx 1 )(+ε)+1 = O(ε ) εx 1 εx 1 +1 = O(ε ) 1 = O(ε ) This contradicts the assumption that there was a regular expansion. The exact roots are: x = +ε± 4ε ε = 1 ( + ε ± ε 4 ε) = 1 ( + ε ± ε 4 ε) = 1 ± ε 1 + O(ε) Try x = x 0 + ε 1 x1 + ε x + ε 0 : x 0 = 1 as before. ε 1 : (1 + ε 1 x 1 ) (1 + ε 1 )( + ε) + 1 = O(ε 3 ) ε 1 x 1 ε 1 x 1 = O(ε) 0 = 0 ε 1 : (1 + ε 1 x 1 + ε(x ) (1 + ε 1 x 1 + εx )( + ε) + 1 = O(ε 3 ) which gives x 1 = 1 x 1 = ±1 so x = 1 ± ε 1 + O(ε 3 ) 1.4. Perturbation Theory of Odes. Example (Regular Problem). Consider the following ODE: ẋ + x = εx, x(0) = 1 We try an expansion of the form: x(t) = x 0 (t) + εx 1 (t) + O(ε ) which leads to: ε 0 : { ẋ0 + x 0 = 0 x x 0 (0) = 1 0 (t) = e t ε 1 : and so { ẋ1 + x 1 = x 0 = e t x 1 (0) = 0 (no ε in x(0) = 1) x 1(t) = e t e t x = e t + ε(e t e t + O(ε )

5 5 For t [0, ] the constants in O definition can be independent of t Sometimes we want only ε > 0 versions of o, O with one sided limits lim We use a series 1, ε 1 3, ε, ε or in general: ϕ0 (ε), ϕ 1 (ε)... ϕ1 +1(ε) = (ε)) is what is needed. o(ϕ1 Example 1.4. (Singular Model Equation). Consider εẋ + x = 1, x(0) = 0, and suppose x = x 0 + εx 1 O(ε ) Then ε(ẋ 0 + εx 1 ) + x 0 + εx 1 = 1 + O(ε ) ε o +. ε 0 : x 0 = 1 but x(0) = 0 cannot solve the initial condition. We can rescale time, ie: t = ετ which gives τ = t dt ε and dε = ε, dx dτ = dx dt dt dτ = εẋ dx + x = 1, x(0) = 0 dτ Now use x = x 0 + εx 1 O(ε ) ε 0 : dx 0 dτ + x 0 = 1, x 0 (0) = 0 x 0 = 1 e τ = 1 e t ε ε 1 : dx 1 dτ + x 1 = 1, x 1 (0) = 0 x 1 = 0 (similarly for ε, ε 3 etc...) Therefore the solution is: x = 1 e tε Example ( Singular In The Domain ). Consider ẋ + εx = 1, x(0) = o, t > 0 and assume x = x 0 + εx 1 + ε x O(ε ) ε 0 : ẋ 0 = 1, x 0 (0) = 0 x 0 = t ε 1 : (t + εx 1 ) + ε(t + εx 1 ) = 1 + O(ε ) 1 + εẋ 1 + ε(t + εtx 1 ) = 1 + O(ε ) εẋ 1 + εt = O(ε ) ẋ 1 + t = 0 x 1 = t3 3 (If we carry on we find the ε term t 5 ) The solution is: This is not regular for t [0, ) x = t ε t3 3 + O(ε3 ) Example (Damped Harmonic Motion with Small Damping (ε > 0)). Consider ẍ + εẋ+x = 0, x(0) = 0, ẋ(0) = 1 and assume x = x 0 + εx 1 + ε x O(ε 3 ) ε 0 : ẍ 0 + x 0 = 0, x 0 (0) = 0, ẋ 0 = 1 x 0 = sin t ε 1 : ẍ 1 + ẋ 0 + x 1 = 0 ẍ 1 + x 1 = cost, x 1 (0) = 0, ẋ 1 (0) = 0 and we should get: x 1 = t sin t whereby the solution is: x = sint 1 εt sin t

6 6 This again is not uniform for t [0, ) The exact solution is: x = e ε t sin( 1 = ε 4 )t, the expansion above is only good for small t Asymptotic Expansions. Definition A sequence of functions {ϕ n }, n = 0, 1,,... is called an asymptotic series as x x 0 if (ie: ϕ n+1 (x) = o(ϕ n (x))) ϕ n+1 (x) lim = 0 x x 0 ϕ n (x) Note: We could have x 0 = or a one-sided limit x x + 0 Examples: (i) x 1,1, x,x, 1 x 3,... x 0 + (ii) 1, 1 x, 1 x ln(x), 1, x x 3 ln(x) (iii) tanx, (x π), (sin x) 3, x π Taylor s Theorem: f(x) = N f (n) (x)(x x 0 ) n + n! n=0 remainder { }} { R N (x), f C N+1 [x 0 r, x 0 + r], r > 0 There are remainder formulas to bound R N (x), for example, Cauchy: R N (x) M Nr N+1 (n + 1)!, M N > 0, R N = O((x x 0 ) N+1 ) as x x 0. It is important to remember that Taylor R N 0 as N In fact we know N plenty of power series that do not converge, eg: ( 1) n n!x n diverges for all x. n=0 Another famous non-convergent series is Stirling s formula for n!: lnn! = n lnn + 1 ln(πn) n n 3 + O( 1 n 4 ) Definition Let {ϕ n } be an asymptotic sequence as x x 0. N The sum a n ϕ n (x) is called an asymptotic expansion of f with N terms if f(x) n=0 N a n ϕ n (x) = o(ϕ N (x)). n=0 The coefficients a n are called the coefficients of the asymptotic expansion. is called an asymptotic series. Note: Some people use the stronger definition: O(ϕ N (x)) Notation f(x) a n ϕ n (x) as x x 0 n=0 a n ϕ n (x) n=0

7 7 Clearly any Taylor series is an asymptotic series. Example: Find an asymptotic expansion for f(x) = (1 + xt) 1 = 1 xt + x t + f(x) = Now, it can be shown that 0 0 t n e t dt = n! and hence 0 e t 1 + xt dt (1 xt + x t + )e t dt f(x) = 1 x +!x 3!x 3 + n!x n which diverges by the ratio test = n x x 0. (n 1)!x n 1 It could still be be an asymptotic expansion however; we d need to check N f(x) ( 1) n n!x n = o(x N ) This is a special case of: n=0 Lemma (Watson s Lemma). Let f be a function with convergent power series and radius of convergence R, and f(t) = O(e αt ) as t (for some α > 0) then: 0 In last example we had f(x) = e au du (looks like Watson s) u + u 0 e at f(t)dt 0 n=0 Example (Incomplete Gamma Function).. γ(a, x) = = x 0 N ( 1) n n=0 n! f n (o) a n+1 e t 1 + x dt as x 0+ let xt = u, a = 1/x, then t a 1 e e t dt = x 0 t n+a 1 dt = x 0 N t a 1 ( t) n dt n! N n=0 n=0 ( 1) n n!(n + a) xn+a Note: Power series under integral is convergent, hence uniformly convergent. We have a convergent power series for γ(a, x)in x Example E i (x) = x e t t dt (exponential integral)

8 8 E 1 (x) = e tx 1 0 t dt (Cauchy principal value), it turns out that E 1 (x) = E i ( x) E i (x) = γ + ln(x) + x + x! + x3 3 3! + O(x4 ) ( N where γ = e x 1 ) ln(x)dx = lim n k ln(n) k=0. ODEs In The Plane We consider systems of ODEs of the form: { ẋ = u(x, y) ẏ = v(x, y) where x(0) = x 0, y(0) = y 0. (Note: A nd order ODE can be expressed as a coupled system of 1 st order ODEs since if ẍ + f(x)ẋ + g(x) = 0 then if we say ẋ = y it follows that ẏ = ẍ so we get { ẋ = y ẏ = f(x) g(x) Where in this case it turns out that u(x, y) = y, v(x, y) = f(x) g(x)).1. Linear Plane autonomous Systems. { ẋ = ax + by the 1D case is easy: ẋ = ax, x(t) = x(0)eat ẏ = cx + dy Example { ẋ = y Consider 3x = y ( x If we say x = then we can write y) x = We solve these two ODEs to get ( ) 3 0 x 0 x(t) = x(0)e 3t, y(t) = y(0)e t (which may be written as) ( ) ( ) e 3t 0 x(0) x(t) = 0 e t y(0) We can construct a Phase plot with solutions being curves in the plane called trajectories or orbits. We could eliminate t as follows: ( x ) 3 y = y(0), x(0) 0 x(0) y x Figure.1.1:

9 9 Example.1.. { ẋ = x Similar to the above example consider ẏ = y We solve in both cases to get x(t) = x(0)e t, y(t) = y(0)e t and eliminate t such that: Noting that x = ( x ) 1 y = y(0) x(0) ( ) 1 0 x we end up with a phase plot which looks like this 0 1 Figure.1.: Example.1.3 (Simple Harmonic Motion: ẍ + ẋ = 0). { ( ) ẋ = y 0 1 x = x ẏ = x 1 0 x(t) = Acost + B sin t, x(0) = A ẋ(t) = Asin t + B cost, ẋ(0) = B ( ) ( ) ( ) x(0)cos t + y(0)sint cost sin t x(0) ẋ = = x(0)sin t + y(0)cost sint cost y(0) } {{ } rotation matrix The orbits are circles. y x Figure.1.3: Example.1.4 (Damped Harmonic Motion: ẍ + bẋ + x = 0). { ( ) ẋ = y 0 1 ẋ = x ẏ = x by 1 b Try x(t) = e λt giving the characteristic polynomial λ + bλ + 1 λ = b b ± 4 1

10 10 If b is small then b 4 and so y 1 < 0 such that λ = b ± i 1 b 4 = α + iβ x(t) = e αt (Acos(βt) + B sin(βt)) y x x Figure.1.4: Theorem.1.5. Let A R be a real matrix with eigenvalues λ 1, λ then: (i) If λ 1 λ are real then there exists an invertible matrix P such that ( ) P 1 λ1 0 AP = 0 λ (ii) If λ 1 = λ then either A is diagonal, A = λi or A is not diagonal and there is a P such that ( ) P 1 λ 1 AP = 0 λ (iii) If λ 1 = α + iβ, λ = α iβ, β 0 then there is a P such that ( ) P 1 α β AP = β α How does this help? Put x = A x and let y = P 1 x then x = P y, y = P 1 x, P x = PA x and so y = P 1 AP y This allows us to generalise the work we did above. Example.1.6. For case 1 in the theorem, consider u = P 1 AP u then u 1 = λ 1 u 1, u = λ u (since P 1 AP u is just a matrix of eigenvectors acting on u) Then u i (t) = u i (0)e λit and so ( ) ( ) e λ 1t 0 u1 (0) u(t) = 0 e λt u (0) ( )( ) ( e λ 1t 0 u1 (0) e λ 1t 0 Now x = P u so x(t) = P 0 e λt = P u (0) 0 e λt u 1 and u are related by eliminating t: ( u 1 (t) = u 1 (0)e λ1t u1 u 1 (0) ) 1 λ 1 = e t, then u = u (0)( u1 u 1 (0) ) ) λ λ 1. ( ) P 1 x1 (0) x (0)

11 11 y x λ 1 > λ > 0 λ 1 < λ < 0 Figure.1.5: For λ 1 λ, distinct eigenvectors v 1, v, A v i = λ i v i Half lines through the origin in eigen-directions are trajectories. y eigen directions x e.g. λ 1 > 0 > λ Figure.1.6:

12 1.. Phase Space Plots.. Eigenvalues real, different, same sign Eigenvalues real, different, same sign Node: Source Eigenvalues real, different, opposite sign Node: Sink Eigenvalues real, equal, λ > 0, A = λi Saddle Eigenvalues real, equal λ < 0, A = λi Node: Source Eigenvalues real, equal λ > 0, A λi Node: Sink Eigenvalues real, equal λ < 0, A λi Degenerate Source Eigenvalues complex, λ 1 = α+iβ, λ = α - iβ α < 0, β 0 Degenerate Sink Eigenvalues complex, λ 1 = α+iβ, λ = α - iβ α > 0, β 0 Stable Spiral Eigenvalues purely imaginary, λ 1 = iβ, λ - iβ, β 0 Unstable Spiral Figure..1: Ellipse

13 13 { ẋ = 3x + y Example..1. consider ẏ = x y ( 0 The critical points of this system are at, and the Jacobian is given by 0) ( ) 3 1 ( ) 3 λ 1 we find the eigenvalues by setting A I = = 0, ie: λ λ + 5λ + 4 = 0 λ = 4, 1 this corresponds to a node (sink) As for the associated eigenvectors; ( ) ( A 4I = v = is in the null space (hence an eigenvector) ) ( ) ( 1 1 A I = v = is the other eigenvector 1 ) We can get further information to help in curve sketching by considering isoclines: ẏ ẋ = dy x y = dx 3x + y Figure..:.3. Linear Systems. A linear system for which the eigenvalues are wholly imaginary (λ = ±β) is called called a centre. The characteristic equation, in general of A R = λ (trace A)λ + deta. In this case (for λ imaginary), λ + β = 0, trace A = 0, deta > 0. Consider a simple case: { ẋ = y ẏ = cx eliminate t to get ẏ ẋ = dy dx = cx y y dy = cxdx y + cx = const This is the equation for an ellipse. To determine (ẋ ) the direction of the arrows, set y = 0 then on x axis ẋ = 0, ẏ = cx and is a vector in the direction of solutions, and we that for x positive ẋ is ẏ positive.

14 14 The Oscillatory nature of these graphs don t reflect any real life situations. x(t) Figure.3.1:.4. Linear Approximations.. Consider ẋ = u(x, y), ẏ = v(x, y), Critical points occur when u = v = 0. Let (x 0, y 0 ) be critical points, put ξ = x x 0, η = y y 0 and Taylor expand about (x 0, y 0 ) to get (near equilibrium point) u(x, y) = u(x 0, y 0 ) + ξ u x +η u (x0, y 0) y (x0, y +O(ξ + η ) as (ξ, η) (0, 0) 0) v(x, y) = v(x 0, y 0 ) + ξ v x +η v (x0, y 0) y (x0, y +O(ξ + η ) as (ξ, η) (0, 0) 0) and so ( u u = x v) v x y(t) u ( y ξ v + O(ξ η) + η ) y We can now make the approximation ( ) u u ) ξ = x y ξ η v v + O(ξ η (x0, y x y 0)( + η ) which is a linear system. Example.4.1 (Preditor-Prey).. We wish to model the dynamics between predators and prey. Without considering external & environmental variables, as the number of predators increases, we expect the population growth rate of the prey should lessen; this then, should result in a slow down in the growth rate of predators (as there is more competition for fewer prey). let x be a population of prey (eg: rabbits), y be a population of predators (eg: foxes) with x, y > 0 (note: this model relies on large x and y such that we are able to talk about derivatives etc... (since x, y are integers!) { ẋ = x(a αy) A simple model is (a, c, α, γ > 0). ẏ = y( c + γx) Then u(x, y) = x(a αy), v(x, y) = y( c + γx) and so for an equilibrium, u = v = 0, x(a αy), y( c + γx) = 0 so for u = 0, either x = 0 or a αy = 0 (y = a α )

15 15 for v = 0, either y = 0 or c + γx = 0 (x = c γ ) Therefore the criticals are at (0, 0), ( c γ, a α ) More specifically if we put a = 1, α = 1, c = 3 4, γ = 1 4 { then: ẋ = x(1 y ) ẏ = y( x 4 ) with critical points at (0, 0), (3, 0) Near (0, 0): ( ) ( ( ) ξ 1 0 ξ = η 0 4) 3 η The corresponding eigenvalues being: ( 1 λ 1 = 1, v 1 =, λ 0) = 3 ( 0 4, v = 1) This is a saddle. Near (3, ): ( ) ξ = η with eigenvalues: λ 1, = ±i ( ) ( ξ 1 0 η) 3 ie: ξ + η = const, so ellipses. Now dy dx = y( x ) x(1 y ) 3 4 lnx + lny y x 4 = const. It is possible, albeit tricky to show this is a closed curve. x(t) y(t) Figure.4.1: Example.4. (Circular Pendulum).. We consider a circular pendulum given by non-dimensional units { }} { ẍ + sin x = 0 where x is an angle. x m mg Figure.4.: Note that for small angles x, x sin x and so we get ẍ + x = 0 (simple harmonic

16 16 motion) We shall solve ẍ + sin x = 0 qualititively since it can t easily be solved analytically. Let ẋ = y = u, ẏ = sin x = v The critical points are at ẋ = ẏ = 0 y = 0, x = nπ, n Z u u ( ) x y 0 1 v v = ( 1) n at y = 0, x = nπ 0 x y ( ) 0 1 ξ Near the critical point we consider ( 1) 0)( n+1 η The characteristic equation is λ 1 ( 1) n+1 λ = 0 = λ + ( 1) n = 0 If n even λ + 1 = 0 λ = ±i, if n odd λ 1 = 0 λ = ±1 ( ( ) 1 1 For n odd we get eigen-vectors v 1 =, v 1) = which is a saddle. 1 For n even we get a centre. The centres correspond to small swings The saddles correspond to swings just large enough that they stop at the top Everywhere else corresponds to big swings, where with no damping, the pendulem doesn t stop. Figure.4.3:.5. Non-Linear Operators.. ẍ+x = 0 represents simple harmonic motion (SHM) with solution x(t) = Acos(t)+ B sin(t), a centre. Consider ẍ + βẋ + x = 0 making the substitution ẋ = y. The system of ODEs is { ẋ = y given by, and the roots of the resulting char poly are ẏ = β x λ = β ± i 1 β and so for 0 < β < 1 we get a stable spiral Example.5.1 (Stiff Spring System).. In a simple spring, force and hence acceleration is proportional to the extension of the spring (Hooke s Law), instead we think of a stiff spring with force proportional to x + βx 3. For small x this behaves like x, for large x, like x 3. { ẋ = y ẍ + x + βx 3 = 0, ẏ = x βx 3, u = y, v = x βx 3 The critical points are at u = v = 0 y = 0, x + βx 3 = 0 x = 0 or 1 + βx = 0 (no real solutions).

17 17 The only critical is at (0, 0) u u ( ) x y 0 1 v v = 1 3βx = 0 x y This is a centre λ = ±i ( ) 0 1 evaluated at (0, 0) 1 0 Example.5. (Soft Spring).. We could change the sign before β and simulate a soft spring ie: ẍ + x βx 3 = 0 The critical points in this case lie at (0, 0), ( ±1 β, 0) and the jacobian is given by ( ) βx 0 for x close to ±1 β we have a source; which, in physical terms, means we are actually adding energy to the system. 3. Limit Cycles Orbits, that is, trajectories of a system of ODEs cannot cross. x(0) x(0) = x(t) x(t) Figure 3.0.1: ( ) x(t) If x = and x(0) = x(t) (for T 0) then y(t) x(0) = x(t). when this happens we have a periodic orbit, eg a clock, oscillator, cycle in the economy, biology etc... Suppposing we have such a cycle what can be said about what happens around it? It could be the case that both outside and inside the orbit we spiral towards it; but then again, something else could happen instead. The equilibrium point at the centre doesn t give us this information. Figure 3.0.: Example (Cooked up). Consider a system of the contrived form: { ẋ = y x(x + y 1) 1 ẏ = x y(x + y 1)

18 18 we see that by construction, when x, y satisfy x +y = 1 we obtain simple harmonic motion. There is only one equilibriums point and that occurs at (0,0). The Jacobian at this point is given by f x g x f y g y (x,y)=(0,0) = ( ) The characteristic equation is λ λ + = 0 which has roots λ = 1 ± i. This is an unstable spiral. If instead however, we look at this in polar coordinates Differentiating implicitely we get: r = x + y, tan θ = y x rṙ = xẋ + yẏ, θ = xẏ yẋ x + y If we multiply (1) and () by x & y respectively we get; xẋ = x( y x(x + y 1)), yẏ = y(x y(x + y 1)) xẋ + yẏ = (x + y )(r 1) rṙ = r (r 1) ṙ = r(r 1) This reveals that there is also an equilibrium point at r = 1 (ie; for r = 1 we stay on the circle). Furthermore for r > 1, ṙ < 0 which is a stable spiral, whilst for r < 1, ṙ > 0 which is the unstable spiral we found above. r < 0 r > 0 Figure 3.0.3: Now if we multiply (1) and () by y & x respectively and subtract we get: xẏ yẋ = x xy(r 1) + y + xy(r 1) = x + y = r θ = r r = 1 The equilibrium point correctly told us that locally we have an unstable spiral but it failed to illuminate the behaviour as we move further out. We shall establish a couple of results that allow us determine when & where there there exist no closed orbits. First recall Theorem (Divergence Theorem/Divergence theorem in the plane). Let C be a closed curve, let A R be the region it encloses, and u, v be functions with continuous derivatives. Then A u x + v dx dy = y C u dy v dy = where (x(s), y(s)) is a parameterisation of C C u dy ds vdx ds ds ds

19 Theorem (Bendixon s Negative criterion). Consider the system with u and v continuously differentiable. Let A R be a region of the plane for which u x + v y Then there is no closed orbit contained within A. 19 { ẋ = u(x, y) ẏ = v(x, y) does not change sign. Proof. Suppose for contradiction there exists a closed orbit in A. Then this orbit forms a closed curve C in A. A A x(0)= x(t) Figure 3.0.4: Let A A be the region enclosed by C (ie A = C). Then by the divergence theorem T 0 (xẏ yẋ)dt = T 0 u dy dt vdx dt dt dt = but u x + v y is either > 0 or < 0 x, y A hence C u dy v dy = Example (returned to cooked example).. { ẋ = u = y x(x + y 1) ẏ = v = x y(x + y 1) u x = 3x y + 1, v y = x 3y + 1 and so u x + v y = 4x 4y + = 4(x + y ) + A u x + v y dxdy = 0 A 0 For values of x, y such that x + y > 1 this fails to be always positive or always negative; and so we cannot say there exists no closed orbit. (Though we can be confident there is no such orbit for x + y = r < 1 ) Bendixon s Criterion is not much use for answering the question Is there a closed orbit between r = 1 or r = 1? Example (Damped Harmonic Motion).. For ẍ + βẋ + x = 0 we have ẋ = u = y, ẏ = v = βy x This is a stable spiral at (0,0) and u x + v = 0 β which is constant y Hence there is no sign change for u x + v y and so no closed orbits.

20 0 Example (General Damped Oscillator).. This system is characterised by ẍ+f(x)ẋ +g(x) = 0 which with the usual substitution ẋ = y yields } {{ } damping f(x)>0 { ẋ = y ẏ = f(x)y g(x) Now u x + v = 0 f(x) is always negative and so general damped systems of this y form have no closed orbits Theorem (Poincaré-Bendixon Theorem). Given a region A R and an orbit of a system of ODEs C which remains in A t 0 then C must approach either a limit cycle or equilibrium. Remark (1) orbit = trajectory = solution curve () limit cycle = closed orbit that nearby orbits approach (3) We can use this result with time running backwards, ie: orbits come from unstable equilibrium or closed orbits. 3.. energy (brief).. { ẋ = y consider an oscillator of the form characterising ẍ + f(x) = 0 ẏ = f(x) Since there is no damping we expect energy to be conserved. Consider ε = ẋ y ẋ + F(x) = + F(x) where can be considered kinetic energy, F(x) the potential energy. Then dε(x, y) dt = yẏ + f (x) = (ẍ + F (x))ẋ Set F = f then dε = 0 along solution curves. dt So ε is constant on a solution (x(t), y(t)). we call this a first integral Example 3..1 (Duffing s Equation).. This is the hard spring system we met earlier ẍ + ω x + εx 3 = 0 f(x) = ω x + εx 3 F(x) = ω x + εx4 + some constant we need not worry 4 about in this context of constant solution curves. Then ε(x, y) = y + ω x + εx4 4 for ε > 0. As ε(x, y) is constant then the solutions are bounded for all t (closed curves). We can say that x + y max(, ω) (y + ω x + εx4 4 ) = max(, )ε. Ie; ω solutions stay in the circle. For constant ε we can check that for y 0 there are two solutions for x.

21 1 4. Lindstedt s Method Example 4.0. (Duffing s Equation). ẍ + ω x + εx 3 = 0, 0 < ε << 1 We know the solutions are periodic for y(0) = ẋ(0) 0. The solutions will resemble slightly square ellipses. Figure 4.0.1: consider a straight-forward expansion x = x 0 + εx 1 + ε x O(ε 3 ) Terms in ε 0 : ẍ 0 + ω x 0 = 0 x 0 = a cosωt We may suppose without loss of generality that the initial conditions for this system are x(0) = a, and ẋ(0) = 0 since we are just picking out a particular solution curve; we still get all of them. Terms in ε 1 : ẍ 1 + ω x 1 + x 3 0 = 0 ẍ 1 + ω x 1 = a 3 cos 3 (ωt) To deal with cos 3 (ωt) we use the identity that cos 3 (ωt) = 3cos(ωt) 4 + cos(3ωt) 4 and so ẍ 1 + ω x 1 = a 3( 3cos(ωt) + cos(3ωt) ) 4 4 since cos(ωt) appears in the homogeneous solution we would need to introduce a t sin(ωt) term (secular term), and this is at odds with what we already know about this system; that it is bounded as t The trick to get rid of the secular term is to introduce another series: τ = Ωt where Ω = Ω 0 + εω 1 + Example (Lindstedt s Method). We try again with Duffings equation (prefixing ε with a minus sign this time) using the above idea and expecting to see a solution that has periodic orbits for ε small enough. Without loss of generality, we rescale time (setting ω = 1) such that we try to solve ẍ + x εx 3 = 0 We define τ = Ωt where Ω = Ω 0 + εω 1 + and so x(t) becomes x(τ). coupling this with the standard expansion we use for x we have x(τ) = x 0 ((Ω 0 + εω 1 )t) + εx 1 ((Ω 0 + εω 1 )t) We want x i (τ) = x i (τ + π) (ie; period of π for i = 1,, 3,...). For ε = 0 we have Ω 0 = 1 (had we not set ω = 1 earlier then we d have instead

22 Ω 0 = ω; actually we could choose what we want for Ω 0 and depending on how difficult we wnat to make things, this choice determines Ω 1 later. It makes sense to keep things simple and choose Ω 0 such that for ε = 0 we have x(τ) = x(ωt)) Now dτ dx = Ω so dt dt = dx dτ dτ dt = Ωdx dτ (so ẋ = Ωx ) and d x dt = Ω d x dτ and so returning to the ODE we have Ω x εx 3 = 0 ( =Ω0 1 +εω 1 + ) (x 0 + εx 1 + ) + (x 0 + εx 1 + ) ε(x 0 + εx 1 + ) 3 = 0 Terms in ε 0 : x 0 + x 0 = 0 As before we will assume initial conditions x(0) = a, ẋ(0) = 0 to pick a critical point on some curve. We know there exists a solution with these properties by assuming ellipsoidal shaped orbits; and by varying a we get all the curves. Since there is no ε in initial conditions we get Then the solution for x 0 is Terms in ε 1 : x 0 (0) = a, x 1 (0) = 0, x 0(0) = x 1(0) = 0 x 0 = a cosτ x 1 + Ω 1x 0 + x 1 x 3 0 = 0 x 1 + x 1 = Ω 1 ( a cos(τ)) + (a cos(τ)) 3 = 0 x 1 + x 1 = (Ω 1 a a3 )cos(τ) a3 cos(3τ) The whole point of doing this was to eliminate the cos(τ) term which would have introduced a secular term and so we set Ω 1 a a = 0 so it now remains to solve Ω 1 = 3 8 a3 x 1 + x 1 = 1 4 a3 cos(3τ) We try x 1 = Acos(3τ) 9Acos(3τ) + Acos(3τ) = 1 4 a3 cos(3τ) A = a3 3 The general solution for x 1 before applying boundary conditions is x 1 = α cos(τ) + β sin(τ) a3 3 cos(3τ) Now x 1 (0) = 0 α = a3 3 and x 1 (0) = 0 β = 0 giving Thus x 1 = a3 a3 cos(τ) 3 3 cos(3τ) x(t) = a cos(ωt) + a3 (cos(ωt) cos(3ωt)) 3 Where Ω = a +

23 3 5. Method of Multiple scales In the last section we used Lindstedt s method to take account of varying frequencies; now we develop a more general method for situations with two time scales. An example of where this is relevant is the damped circular pendulem ẍ + βẋ + sinx = 0 There are two things going on here; there is an oscillation which is captured by one time scale; and a slow loss of energy due to the damping term captured by another time scale. By considering two scales we are able to capture different features of the system. t T Figure 5.0.: Consider small oscillations and small energy ẍ + εẋ + sin x = 0 (D.H.M) If we did a standard expansion we d end up with a solution x(t, ε) = sin t + ε t sin t + and this is not a uniform expansion for the solution. The exact solution for this system is: 1 ) x = e εt sin (t 1 ε 4 where x(0) = 1 ẋ(0) = 0 1 ε The Method.. (1) Introduce a new variable T = εt, and think of t as fast time, and T as slow time. () Treat t and T as independent variables for the function x(t, t, ε). Using the chain rule we have dx dt = x t t t + x T T t + x ε ε t = x t + ε x T d x dt = d ( x dt t + ε x ) = ( x T t t + ε x ) 1 + ( x T T t + ε x ) ε T = x t + ε x x + ε t T T (3) Try an expansion x = x 0 (t, T) + εx 1 (t, T) + where of course T = εt =0

24 4 (4) Use the extra freedom of x depending on T to kill off any secular terms. 5.. Application of Multiple scales to D.H.M. Example we consider ẍ + εẋ + x = 0 with boundary conditions x(0) = 0, ẋ(0) = 1, this becomes x t + ε x t T + ε x ( x T + ε t + ε x ) + x = 0 T Now let X = x 0 + εx 1 + ε x + to get ( ) ( +ε +ε t t T T (x 0 +εx 1 +ε x + )+ε t +ε T Terms in ε 0 : this is a PDE with solution +x 0 + εx 1 + ε x + = 0 x 0 t + x 0 = 0 x 0 = A 0 (T)cost + B 0 (T)sint ) (x 0 +εx 1 +ε x + ) where A 0 (T), B 0 (T) are some functions of T (as opposed to just constants) Using boundary conditions x(0) = 0, ẋ(0) = 1 then Terms in ε 1 : x 0 (0) = A 0 (T)cost + B 0 (T)sin t = 0 A 0 (0) = 0 ẋ 0 (0) = A 0 (T)sint + B 0 (T)cost = 1 B 0 (0) = 1 x 1 t + x 0 t T + x 0 t + x 1 = 0 Now x 0 = A 0 (T)sin t + B 0 (T)cost and x 0 t t T = da 0(T) sin t + db 0(T) cost dt dt and so it remains to solve x ( 1 t + x 1 = da 0(T) sin t + db ) 0(T) cost + A 0 (T)sint B 0 (T)cost dt dt The RHS contains terms in sin(t), cos(t) which will induce secular terms. we therefore choose A 0 (T) and B 0 (T) such that they go away. In other words: and so da 0 dt + A 0 = 0 A 0 = A 0 (0)e 1 T = 0 db 0 dt + B 0 = 0 B 0 = B 0 (0)e 1 T = e 1 T x 0 (t) = e 1 T sin t = e εt sint to get the x 1 term we would need higher order terms to fully specify it. Notice that with the exception of constants, the first order part captures most of the features of the exact solution. In general we would have multiple time scales: T 0 = t, T 1 = εt,...,t n = ε n t If we consider a series x 0 (T 0, T 1,...,T n ) + εx 1 (T 0, T 1,...,T n ) +... then d dt = t=t 0 + ε T 1 + ε T +

25 5 Example 5.. (Van Der Pol s Equation). Consider ẍ + ε(x 1)ẋ + x = 0 Immediately we see that if x > 1 we have damping, x < 1 we have negative damping; so it would seem there is a tendency to head towards x = 1. Perhaps we could use energy methods; anyhow... ( ) + ε t t T + (x 0 + εx 1 + ) ( +ε((x 0 + 1) + ε ) (x 0 + εx 1 + ) + x 0 + εx 1 + = 0 T Terms in ε 0 : x 0 t + x 0 = 0 x 0 = A(T)cost + B(T)sint We can write this in complex form x 0 = A 0 (T)e it + A 0 (T)e it (noting that z + z = Re(z)) We can justify this step since in general, if z = a + ib then (a + ib)e it + (a ib)e it = a(e it + e it ) + ib(e it e it ) = a cost b sint Terms in ε 1 : x 1 t + x 1 + x 0 t T + (x 0 1) x 0 t x 1 t + x 1 + (A ie it A ie it ) + = 0 [ (Ae it + Ae it ) 1 ] (iae it iae it ) = 0 where A = A (T) = A T If we wish to find A(T) as opposed to x 1 we need only consider secular terms. So we need to equate coefficients of e it (and e t ) to zero and kill them off. considering terms in e it we have: ia ia ia A + ia A = 0 A A + A A = 0 Similarly, if we consider e it we get the conjugate of this expression; ie; whatever A kills off the e it terms also kills off the e it terms. We should now use the polar form of A, as A A = A 3, and if we write A = A e iϕ with ϕ = arg(a) and A = 1 a then Now da dt = 1 da dt eiϕ + 1 dϕ aie iϕ dt which dividing through by e iϕ gives x 0 = a cos(t + ϕ) and we now wish to find a and so it remains to solve a e iϕ + iae iϕ ϕ 1 aeiϕ + a 4 eiϕ a e iϕ = 0 a = 1 a a3 iaϕ = 0 We now equate real and imaginary parts: ϕ = 0 ϕ is constant

The Phase Plane. Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations

The Phase Plane. Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations The Phase Plane Phase portraits; type and stability classifications of equilibrium solutions of systems of differential equations Phase Portraits of Linear Systems Consider a systems of linear differential

More information

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series

Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series 1 Problem 1 (10 pts) Find the radius of convergence and interval of convergence of the series a n n=1 n(x + 2) n 5 n 1. n(x + 2)n Solution: Do the ratio test for the absolute convergence. Let a n =. Then,

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5 1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

More information

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

4 Linear Dierential Equations

4 Linear Dierential Equations Dierential Equations (part 2): Linear Dierential Equations (by Evan Dummit, 2012, v. 1.00) Contents 4 Linear Dierential Equations 1 4.1 Terminology.................................................. 1 4.2

More information

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) = Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Example 1: Competing Species

Example 1: Competing Species Local Linear Analysis of Nonlinear Autonomous DEs Local linear analysis is the process by which we analyze a nonlinear system of differential equations about its equilibrium solutions (also known as critical

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 6 Eigenvalues and Eigenvectors 6. Introduction to Eigenvalues Linear equations Ax D b come from steady state problems. Eigenvalues have their greatest importance in dynamic problems. The solution

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

System of First Order Differential Equations

System of First Order Differential Equations CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions

More information

Exam 1 Sample Question SOLUTIONS. y = 2x

Exam 1 Sample Question SOLUTIONS. y = 2x Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

More information

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

More information

Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 126 Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

More information

1. First-order Ordinary Differential Equations

1. First-order Ordinary Differential Equations Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

More information

1 3 4 = 8i + 20j 13k. x + w. y + w

1 3 4 = 8i + 20j 13k. x + w. y + w ) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

More information

Second-Order Linear Differential Equations

Second-Order Linear Differential Equations Second-Order Linear Differential Equations A second-order linear differential equation has the form 1 Px d 2 y dx 2 dy Qx dx Rxy Gx where P, Q, R, and G are continuous functions. We saw in Section 7.1

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

More information

Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

More information

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4.

MATH SOLUTIONS TO PRACTICE FINAL EXAM. (x 2)(x + 2) (x 2)(x 3) = x + 2. x 2 x 2 5x + 6 = = 4. MATH 55 SOLUTIONS TO PRACTICE FINAL EXAM x 2 4.Compute x 2 x 2 5x + 6. When x 2, So x 2 4 x 2 5x + 6 = (x 2)(x + 2) (x 2)(x 3) = x + 2 x 3. x 2 4 x 2 x 2 5x + 6 = 2 + 2 2 3 = 4. x 2 9 2. Compute x + sin

More information

Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

More information

Examination paper for Solutions to Matematikk 4M and 4N

Examination paper for Solutions to Matematikk 4M and 4N Department of Mathematical Sciences Examination paper for Solutions to Matematikk 4M and 4N Academic contact during examination: Trygve K. Karper Phone: 99 63 9 5 Examination date:. mai 04 Examination

More information

Math 2280 - Assignment 6

Math 2280 - Assignment 6 Math 2280 - Assignment 6 Dylan Zwick Spring 2014 Section 3.8-1, 3, 5, 8, 13 Section 4.1-1, 2, 13, 15, 22 Section 4.2-1, 10, 19, 28 1 Section 3.8 - Endpoint Problems and Eigenvalues 3.8.1 For the eigenvalue

More information

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable

4. Complex integration: Cauchy integral theorem and Cauchy integral formulas. Definite integral of a complex-valued function of a real variable 4. Complex integration: Cauchy integral theorem and Cauchy integral formulas Definite integral of a complex-valued function of a real variable Consider a complex valued function f(t) of a real variable

More information

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate.

An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate. Chapter 10 Series and Approximations An important theme in this book is to give constructive definitions of mathematical objects. Thus, for instance, if you needed to evaluate 1 0 e x2 dx, you could set

More information

299ReviewProblemSolutions.nb 1. Review Problems. Final Exam: Wednesday, 12/16/2009 1:30PM. Mathematica 6.0 Initializations

299ReviewProblemSolutions.nb 1. Review Problems. Final Exam: Wednesday, 12/16/2009 1:30PM. Mathematica 6.0 Initializations 99ReviewProblemSolutions.nb Review Problems Final Exam: Wednesday, /6/009 :30PM Mathematica 6.0 Initializations R.) Put x@td = t - and y@td = t -. Sketch on the axes below the curve traced out by 8x@tD,

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

WASSCE / WAEC ELECTIVE / FURTHER MATHEMATICS SYLLABUS

WASSCE / WAEC ELECTIVE / FURTHER MATHEMATICS SYLLABUS Visit this link to read the introductory text for this syllabus. 1. Circular Measure Lengths of Arcs of circles and Radians Perimeters of Sectors and Segments measure in radians 2. Trigonometry (i) Sine,

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

Math 201 Lecture 23: Power Series Method for Equations with Polynomial

Math 201 Lecture 23: Power Series Method for Equations with Polynomial Math 201 Lecture 23: Power Series Method for Equations with Polynomial Coefficients Mar. 07, 2012 Many examples here are taken from the textbook. The first number in () refers to the problem number in

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices

Linear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two

More information

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved

A First Course in Elementary Differential Equations. Marcel B. Finan Arkansas Tech University c All Rights Reserved A First Course in Elementary Differential Equations Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 1 Basic Terminology 4 2 Qualitative Analysis: Direction Field of y = f(t, y)

More information

tegrals as General & Particular Solutions

tegrals as General & Particular Solutions tegrals as General & Particular Solutions dy dx = f(x) General Solution: y(x) = f(x) dx + C Particular Solution: dy dx = f(x), y(x 0) = y 0 Examples: 1) dy dx = (x 2)2 ;y(2) = 1; 2) dy ;y(0) = 0; 3) dx

More information

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

More information

Section 10.7 Parametric Equations

Section 10.7 Parametric Equations 299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

More information

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Chapter 1 Vectors, lines, and planes

Chapter 1 Vectors, lines, and planes Simplify the following vector expressions: 1. a (a + b). (a + b) (a b) 3. (a b) (a + b) Chapter 1 Vectors, lines, planes 1. Recall that cross product distributes over addition, so a (a + b) = a a + a b.

More information

Practice Problems for Midterm 2

Practice Problems for Midterm 2 Practice Problems for Midterm () For each of the following, find and sketch the domain, find the range (unless otherwise indicated), and evaluate the function at the given point P : (a) f(x, y) = + 4 y,

More information

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better! The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 1: Initial value problems in ODEs Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical

More information

G.A. Pavliotis. Department of Mathematics. Imperial College London

G.A. Pavliotis. Department of Mathematics. Imperial College London EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

Matrix Methods for Linear Systems of Differential Equations

Matrix Methods for Linear Systems of Differential Equations Matrix Methods for Linear Systems of Differential Equations We now present an application of matrix methods to linear systems of differential equations. We shall follow the development given in Chapter

More information

FINAL EXAM SOLUTIONS Math 21a, Spring 03

FINAL EXAM SOLUTIONS Math 21a, Spring 03 INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

Approximating functions by Taylor Polynomials.

Approximating functions by Taylor Polynomials. Chapter 4 Approximating functions by Taylor Polynomials. 4.1 Linear Approximations We have already seen how to approximate a function using its tangent line. This was the key idea in Euler s method. If

More information

MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 425, PRACTICE FINAL EXAM SOLUTIONS. MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

More information

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

More information

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane

NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

More information

15 Limit sets. Lyapunov functions

15 Limit sets. Lyapunov functions 15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Introduction to Partial Differential Equations. John Douglas Moore

Introduction to Partial Differential Equations. John Douglas Moore Introduction to Partial Differential Equations John Douglas Moore May 2, 2003 Preface Partial differential equations are often used to construct models of the most basic theories underlying physics and

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

Nonlinear Systems of Ordinary Differential Equations

Nonlinear Systems of Ordinary Differential Equations Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally

More information

Lecture 5 Rational functions and partial fraction expansion

Lecture 5 Rational functions and partial fraction expansion S. Boyd EE102 Lecture 5 Rational functions and partial fraction expansion (review of) polynomials rational functions pole-zero plots partial fraction expansion repeated poles nonproper rational functions

More information

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics

Course Notes for Math 162: Mathematical Statistics Approximation Methods in Statistics Course Notes for Math 16: Mathematical Statistics Approximation Methods in Statistics Adam Merberg and Steven J. Miller August 18, 6 Abstract We introduce some of the approximation methods commonly used

More information

1 Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

More information

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2 DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

Understanding Poles and Zeros

Understanding Poles and Zeros MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

Techniques of Integration

Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions

College of the Holy Cross, Spring 2009 Math 373, Partial Differential Equations Midterm 1 Practice Questions College of the Holy Cross, Spring 29 Math 373, Partial Differential Equations Midterm 1 Practice Questions 1. (a) Find a solution of u x + u y + u = xy. Hint: Try a polynomial of degree 2. Solution. Use

More information

DRAFT. Further mathematics. GCE AS and A level subject content

DRAFT. Further mathematics. GCE AS and A level subject content Further mathematics GCE AS and A level subject content July 2014 s Introduction Purpose Aims and objectives Subject content Structure Background knowledge Overarching themes Use of technology Detailed

More information

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015

Parametric Curves. (Com S 477/577 Notes) Yan-Bin Jia. Oct 8, 2015 Parametric Curves (Com S 477/577 Notes) Yan-Bin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point

More information

Eigenvalues and eigenvectors of a matrix

Eigenvalues and eigenvectors of a matrix Eigenvalues and eigenvectors of a matrix Definition: If A is an n n matrix and there exists a real number λ and a non-zero column vector V such that AV = λv then λ is called an eigenvalue of A and V is

More information

Nonhomogeneous Linear Equations

Nonhomogeneous Linear Equations Nonhomogeneous Linear Equations In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form ay by cy G x where

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula:

Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: Chapter 7 Div, grad, and curl 7.1 The operator and the gradient: Recall that the gradient of a differentiable scalar field ϕ on an open set D in R n is given by the formula: ( ϕ ϕ =, ϕ,..., ϕ. (7.1 x 1

More information

MATHEMATICS (CLASSES XI XII)

MATHEMATICS (CLASSES XI XII) MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)

More information

Complex Numbers and the Complex Exponential

Complex Numbers and the Complex Exponential Complex Numbers and the Complex Exponential Frank R. Kschischang The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto September 5, 2005 Numbers and Equations

More information

To differentiate logarithmic functions with bases other than e, use

To differentiate logarithmic functions with bases other than e, use To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

More information

LINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3

LINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3 LINE INTEGRALS OF VETOR FUNTIONS: GREEN S THEOREM ontents 1. A differential criterion for conservative vector fields 1 2. Green s Theorem 3 1. A differential criterion for conservative vector fields We

More information

Math 53 Worksheet Solutions- Minmax and Lagrange

Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

More information

Facts About Eigenvalues

Facts About Eigenvalues Facts About Eigenvalues By Dr David Butler Definitions Suppose A is an n n matrix An eigenvalue of A is a number λ such that Av = λv for some nonzero vector v An eigenvector of A is a nonzero vector v

More information

Student name: Earlham College. Fall 2011 December 15, 2011

Student name: Earlham College. Fall 2011 December 15, 2011 Student name: Earlham College MATH 320: Differential Equations Final exam - In class part Fall 2011 December 15, 2011 Instructions: This is a regular closed-book test, and is to be taken without the use

More information

Reducibility of Second Order Differential Operators with Rational Coefficients

Reducibility of Second Order Differential Operators with Rational Coefficients Reducibility of Second Order Differential Operators with Rational Coefficients Joseph Geisbauer University of Arkansas-Fort Smith Advisor: Dr. Jill Guerra May 10, 2007 1. INTRODUCTION In this paper we

More information

Reaction diffusion systems and pattern formation

Reaction diffusion systems and pattern formation Chapter 5 Reaction diffusion systems and pattern formation 5.1 Reaction diffusion systems from biology In ecological problems, different species interact with each other, and in chemical reactions, different

More information