# Taylor Series and Asymptotic Expansions

Save this PDF as:

Size: px
Start display at page:

## Transcription

2 Instead of evaluating the derivative directly, we will use a little trick to generate the Taylor series for f(. Recall that r n r rn+ r We just substitute r t to give and f( n n N + t n ( t n + ( t N+ + t ( t n e t ( dt+ t N+ + t e t dt ( n n t n e t dt+( N+ (N+ n ( n n! n +( N+ (N+ n t N+ + t e t dt t N+ + t e t dt since ( t n e t dt n!. To compute the m th derivative, f (m (, we choose N such that (N + > m and apply { d m d n if m n m (n! if m n Applying dm d with m < (N + to ( N+ (N+ t N+ m + t e t dt gives a finite sum with every term containing a factor p with p >. When is set to, every such term is zero. So { d m d f( if m is odd m ( m!m! if m is even So the Taylor series epansion of f is m m! f(m ( m m m even ( m ( m! ( m m!m! m mn ( n n! n The high growth rate of n! makes the radius of convergence of this series zero. For eample, one formula for the radius of convergence of [ n a ]. [ ] n n is lim an+ n When an ( n n!, lim an+ n [ lim (n + ]. Replacing by gives that n n ( n n! n converges if and only if. Nonetheless, the error estimates N f( ( n n! n (N+ t N+ + t e t dt (N+ t N+ e t dt (N +! N+ n shows that if we fi N and make smaller and smaller, N n ( n n! n becomes a better and better approimation to f(. On the other hand, if we fi and let N grow, we see that the error grows dramatically for large N. Here is a graph of y (N+! N+ against N, for several different (fied values of. ( Denote γ n t n e t dt. Then γ e t dt and, by integration by parts with u t n, dv e t dt, du nt n dt and v e t, γ n nγ n for all n IN. So, by induction, γ n n!. c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions n

3 (N +! N N Eample (ii For this eample, f( e. By Taylor s theorem, f( n m m m! +R n( with R n ( e (n+! n+ for some between and. In this case, m m m! has radius of convergence infinity and the error Rn ( n! e n tends to zero both (a when n is fied and tends to zero and (b when is fied and n tends to infinity. Use R n ( n! e n to denote our bound on the error introduced by truncating the series at n n!. Then R n+ ( R n+ n (. So if, for eample, n, then increasing the inde n of R n ( by one reduces the value of R n ( by a factor of at least two. Eample (iii For this eample, f( { e / if if I shall show below that f is infinitely differentiable and f (n ( for every n IN {}. So in this case, the Taylor series is n n and has infinite radius of convergence. When we approimate f( by the Taylor polynomial, n m m, of degree n, the error, R n ( f(, is independent of n. The function f( agrees with its Taylor series only for. Similarly, the function g( { e / if > if agrees with its Taylor series if and only if. Here is the argument that f is infinitely differentiable and f (n ( for every n IN {}. For any and any integer n ( e / + + (! + + n ( n! + n n! Consequently, for any polynomial P(y, say of degree p, there is a constant C such that ( P e / P ( e C p / (p+!c +p (p+! (p+ c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions

4 for all. Hence, for any polynomial P(y, Applying ( with P(y y, we have lim P( e /. ( f f( f( ( lim lim e / f ( Applying ( with P(y y 4, we have f f ( lim ( f ( lim ( e / f ( { if e / if { if ( e / if 6 ( Indeed, for any n, if f (n ( P n e / for all >, then applying ( with P(y yp n (y gives f (n f ( lim (n ( f (n ( lim P n ( e / and hence { if f (n ( [ P ( n ( + P n ] e / if Eample (iv Stirling formula lnn! ( n+ lnn n+ln π actually consists of the first few terms of an asymptotic epansion lnn! ( n+ lnn n+ln π+ n 6 n + If n >, the approimation lnn! ( n+ lnn n+ln π is accurate to within.6% and the eponentiated form n! n n+ πe n+ n is accurate to one part in,. But fiing n and taking many more terms in the epansion will in fact give you a much worse approimation to lnn!. Laplace s Method Stirling s formula may be generated by Laplace s method one of the more common ways of generating asymptotic epansions. Laplace s method provides good approimations to integrals of the form I(s e sf( d when s is very large and the function f takes its minimum value at a unique point, m. The method is based on the following three observations. (i When s is verylargeand m, e sf( e sf(m e s[f( f(m] e sf(m, since f( f( m >. So, for large s, the integral will be dominated by values of near m. (ii For near m f( f( m + f ( m ( m since f ( m. (iii Integrals of the form e a( m d, or more generally e a( m ( m n d, can be computed eactly. Let s implement this strategy for the Γ function, defined in the lemma below. This will give Stirling s formula, because of part (d of the lemma. c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions 4

5 Lemma. Define, for s >, the Gamma function Γ(s t s e t dt (a Γ( (b Γ ( π. (c For any s >, Γ(s+ sγ(s. (d For any n IN, Γ(n+ n!. Proof: (a is a trivial integration. (b Make the change of variables t, dt d td. This gives Γ ( t e t dt We compute the square of this integral by switching e d e d Γ ( ( ( e d e y dy e ( +y ddy IR to polar coordinates. This standard trick gives Γ ( π dθ dr re r π dθ [ e r] π dθ π (c By by integration by parts with u t s, dv e t dt, du st s dt and v e t Γ(s+ t s e t dt t s ( e t ( e t st s dt s t s e t dt sγ(s (d is obvious by induction, using parts (a and (c. To derive Stirling s formula, using Laplace s method, We first manipulate Γ(s + into the form e sf( d. Γ(s+ t s e t dt s s+ s e s d s s+ e s e s( ln d where t s So f( ln and f (. Consequently f ( < for < and f ( > for >, so that f has a unique minimum at and increases monotonically as gets farther from. The minimum value of f is f(. (We multiplied and divided by e s in the last line above in order to arrange that the minimum value of f be eactly zero. c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions 5

6 If ε > is any fied positive number, e sf( d +ε ε e sf( d will be agoodapproimationfor anysufficiently larges, because, when, f( > and lim s e sf(. We will derive, in an appendi, eplicit bounds on the error introduced by this approimation as well as by the other approimations we make in the course of this development. The remaining couple of steps in the procedure are motivated by the fact that integrals of the form e a( m ( m n d can be computed eactly. If we have chosen ε pretty small, Taylor s formula f( f(+f (( + f( (( +! f( (( + 4! f(4 (( 4 [ [ [ ] ( +! ] ( + ] 4! 4 ( 4 ( ( + 4 ( 4 will give a good approimation for all < ε, so that e sf( d +ε ε e s[ ( ( + 4 ( 4] d +ε ε e s ( e [s ( s 4 ( 4] d (We shall find the first two terms an epansion for Γ(s+. If we wanted to find more terms, we would keep more terms in the Taylor epansion of f(. The net step is to Taylor epand e [s ( s 4 ( 4] about, in order to give integrands of the form e s ( ( n. We could apply Taylor s formula directly, but it is easier to use the known epansion of the eponential. e sf( d +ε ε +ε ε e s ( { + [ s ( s 4 ( 4] + [ s ( s 4 ( 4] } d e s ( { + s ( s 4 ( 4 + s 8 ( 6} d e s ( { + s ( s 4 ( 4 + s 8 ( 6} d e s ( { s 4 ( 4 + s 8 ( 6} d since ( e s ( is odd about and hence integrates to zero. For n an even natural number e s ( ( n d ( s n+ ( s n+ ( s n+ ( s n+ Γ ( n+ e y y n dy where y e y y n dy e t t n dt s ( where t y, dt ydy tdy ( By the lemma at the beginning of this section, Γ ( ( π Γ Γ( ( π Γ 5 Γ( π Γ ( 7 5 Γ( 5 5 c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions 6 π

7 so that e s( ln d ( s Γ ( ( π s s 5 4( Γ ( 5 s s 8 85 s s π ( + 4s + 5 6s + s 8( s 7 Γ ( and Γ(s+ s ( + s+ e s π + s So we have the first two terms in the asymptotic epansion for Γ. We can obviously get as many as we like by taking more and more terms in the Taylor epansion for f( and e y. So far, we have not attempted to keep track of the errors introduced by the various approimations. It is not hard to do so, but it is messy. So we have relegated the error estimates to the appendi. Summability We have now seen one way in which divergent epansions may be of some use. There is another possibility. Even if we cannot cannot take the sum of the series n in the conventional sense, there may be some more general sense in which the series is summable. We will just briefly take a look at two such generalizations. Suppose that n is a (possibly divergent series. Let S N denote the series partial sum. Then the series is said to converge in the sense of Cesàro if the limit n S S c lim +S + +S N N N+ eists. That is, if the limit of the average of the partial sums eists. The series is said to converge in the sense of Borel if the power series g(t has radius of convergence and the integral S B n n! t n e t g(t dt converges. As the following theorem shows, these two definitions each etends our usual definition of series convergence. Theorem. If the series n converges, then S C and S B both eist and S C S B n Proof that S C n. Write S n and σ N S+S+ +SN N+ and observe that S σ N (S S +(S S + +(S S N N + c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions 7

8 Pick any ε >. Since S lim S n there is an M such that S S m < ε n for all m M. Also since S lim S n, the sequence { } S n is bounded. That is, there is a K such that Sn K for all n. So if n N > ma { MK ε/,m} S σn S S + S S + + S S N N + S S + S S + + S S M + S S M + S S M+ + + S S N N + N + ε ε ε K + K + + K < + N + N + ε + ε ε MK N + Hence lim N σ N S and S C S. Proof that S B n. Write S n n The last step, namely the echange n n! n! + n! n n e t t n dt N M + N + g(t ε { }} { n! t n e t dt n can be justified rigorously. If the radius of convergence of the series n α n is strictly greater than one, the justification is not very hard. But in general it is too involved to give here. That s why Proof is in quotation marks. The converse of this theorem is false of course. Consider, for eample, n ( rn with r. Then, as n, n S n ( r m ( rn+ converges to +r σ N N+ m if r < and diverges if r. But S n n +r + N+ +r r N+ (r+ + N+ As N, this converges to +r g(t n n +r [ N ( r n+] ( r N+ (r+ n N+ +r if r and diverges if r >. And ( r n n! t n e rt e t g(t dt ] [N + ( r ( rn+ +r e (+rt dt +r if r > and diverges otherwise. Collecting together these three results, in the conventional sense if r (, ( r n +r in the sense of Cesàro if r (,] n in the sense of Borel if r (, c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions 8

9 By way of conclusion, let me remark that these generalized modes of summation are not just mathematician s toys. The Fourier series of any continuous function converges in the sense of Cesàro. To get conventional convergence, one needs a certain amount of smoothness in addition of continuity. Also the calculation of the Lamb shift of the hydrogen atom spectrum, which provided (in addition to a Nobel prize spectacular numerical agreement with one of the most accurate measurements in science, consisted of adding up the first few terms of a series. The rigorous status of this series is not known. But umber of similar series (arising in other quantum field theories are known to diverge in the conventional sense but to converge in the sense of Borel. Appendi - Error Terms for Stirling s Formula In this appendi, we will treat the error terms arising in our development of Stirling s formula. A precise statement of that development is Step. Recall that f( ln. Write e sf( d and discard the last two terms. Step. Write +ε ε +ε ε e sf( d e sf( d+ +ε ε ε e sf( d+ e sf( d +ε e s( e s[f( ( ] d Apply e t +t+ t +e c! t with t s [ f( ( ] to give e s[f( ( ] s [ f( ( ] + s[ f( ( ] e c! s[ f( ( ] where c is between and s [ f( ( ]. Discard the last term. Step. Taylor epand f( ( ( + 4 ( 4 5 ( 5 + f(6 (c 6! ( 6 for some c [ ε,+ε], substitute this into s [ f( ( ] + s[ f( ( ] and discard any terms that contain f (6 (c and any terms of the form s m ( n with m n+ 5. (You ll see the reason for this condition shortly. This leaves +ε ε because the terms with n odd integrate to zero. Step 4. Replace +ε ε by The errors introduced in each step are as follows: Step. ε e sf( d and +ε e sf( d e s( { s 4 ( 4 + s 8 ( 6} d Step. +ε ε e s( e c! s[ f( ( ] d Step. A finite number of terms, each of the form umerical constant times an integral +ε ε e s( s m ( n d with m n+ 5. Here we have used that, since c [ ε,+ε], there is a constant M such that f (6 (c M. c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions 9

10 Step 4. A finite number of terms, each of the form umerical constant times an integral ε e s( s m ( n d. To treat these error terms, we use the following information about f( ln. (F f increases monotonically as increases. (F We have fied some small ε >. There is a δ > such that f( δ( for all +ε. To see that this is the case, we first observe that if δ ( d d f( δ( δ. So it suffices to pick δ sufficiently small that +ε δ The latter is always possible just because f(+ε >. (F For each [ ε,+ε] there is a c [ ε,+ε] such that Hence, there is a constant M such that f( (! f( (c ( f( ( M for all [ ε,+ε]. (F4 If [ ε,+ε] with ε small enough that εm 4, f( ( M 4 ( We can now get upper bounds on each of the error terms. For step, we have ε e sf( d F e sf( ε ε d e sf( ε and that f(+ε δε. and For step, we have +ε e sf( d F +ε e sδ( d δs e δεs +ε ε For step, we have e s( e c! s f( ( d F4 +ε ε e s ( s m n d! s +ε ε e s ( e s 4 ( f( ( d F +ε! M s e s 4 ( 9 d ε! M s e s 4 ( 9 d! M s ( s 4 5Γ(5 M s as in ( e s ( s m n d n+ s m( s M s 5 Γ ( n+ as in ( c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions

11 if m n+ 5. For step 4, we have e s ( s m n d ε ε e 4 ε s e 4 ε s e s 4 ( e s 4 ( s m n d ε e 4 εs s m( s 4 n+ M s m n+ e 4 ε s e s 4 ( s m n d e s 4 ( s m n d Γ ( n+ as in ( As promised these error terms all decay faster than πs ( + s as s. In particular, error terms introduced in Steps and 4, by ignoring contributions for ε, decay eponentially as s. Error terms introduced in Steps and, by dropping part of the Taylor series approimation, decay like s p for some p, depending on how much of the Taylor series we discarded. In particular, error terms introduced in Step decay like s 5, because of the condition m n+ 5. c Joel Feldman. 8. All rights reserved. February 8, 8 Taylor Series and Asymptotic Epansions

### EXERCISES FOR CHAPTER 6: Taylor and Maclaurin Series

EXERCISES FOR CHAPTER 6: Taylor and Maclaurin Series. Find the first 4 terms of the Taylor series for the following functions: (a) ln centered at a=, (b) centered at a=, (c) sin centered at a = 4. (a)

About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### Stirling s formula, n-spheres and the Gamma Function

Stirling s formula, n-spheres and the Gamma Function We start by noticing that and hence x n e x dx lim a 1 ( 1 n n a n n! e ax dx lim a 1 ( 1 n n a n a 1 x n e x dx (1 Let us make a remark in passing.

### 10.2 Series and Convergence

10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

### n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

### 6.8 Taylor and Maclaurin s Series

6.8. TAYLOR AND MACLAURIN S SERIES 357 6.8 Taylor and Maclaurin s Series 6.8.1 Introduction The previous section showed us how to find the series representation of some functions by using the series representation

### ANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series

ANALYTICAL MATHEMATICS FOR APPLICATIONS 206 LECTURE NOTES 8 ISSUED 24 APRIL 206 A series is a formal sum. Series a + a 2 + a 3 + + + where { } is a sequence of real numbers. Here formal means that we don

### S = k=1 k. ( 1) k+1 N S N S N

Alternating Series Last time we talked about convergence of series. Our two most important tests, the integral test and the (limit) comparison test, both required that the terms of the series were (eventually)

### Chapter 2 Limits Functions and Sequences sequence sequence Example

Chapter Limits In the net few chapters we shall investigate several concepts from calculus, all of which are based on the notion of a limit. In the normal sequence of mathematics courses that students

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

### Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

### Power Series. Chapter Introduction

Chapter 10 Power Series In discussing power series it is good to recall a nursery rhyme: There was a little girl Who had a little curl Right in the middle of her forehead When she was good She was very,

### sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2

. Problem Show that using an ɛ δ proof. sin() lim = 0 Solution: One can see that the following inequalities are true for values close to zero, both positive and negative. This in turn implies that On the

### CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often

7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.

### 2 n = n=1 a n is convergent and we let. i=1

Lecture 4 : Series So far our definition of a sum of numbers applies only to adding a finite set of numbers. We can extend this to a definition of a sum of an infinite set of numbers in much the same way

### Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

### Infinite series, improper integrals, and Taylor series

Chapter Infinite series, improper integrals, and Taylor series. Introduction This chapter has several important and challenging goals. The first of these is to understand how concepts that were discussed

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

### Contents. 6 Graph Sketching 87. 6.1 Increasing Functions and Decreasing Functions... 87. 6.2 Intervals Monotonically Increasing or Decreasing...

Contents 6 Graph Sketching 87 6.1 Increasing Functions and Decreasing Functions.......................... 87 6.2 Intervals Monotonically Increasing or Decreasing....................... 88 6.3 Etrema Maima

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

### Double Sequences and Double Series

Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine E-mail: habil@iugaza.edu Abstract This research considers two traditional important questions,

### Sequences and Series

Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

### LIMITS AND CONTINUITY

LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

### Representation of functions as power series

Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions

### Parabolic Equations. Chapter 5. Contents. 5.1.2 Well-Posed Initial-Boundary Value Problem. 5.1.3 Time Irreversibility of the Heat Equation

7 5.1 Definitions Properties Chapter 5 Parabolic Equations Note that we require the solution u(, t bounded in R n for all t. In particular we assume that the boundedness of the smooth function u at infinity

### 1 Error in Euler s Method

1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

### Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

### Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

### Moving Least Squares Approximation

Chapter 7 Moving Least Squares Approimation An alternative to radial basis function interpolation and approimation is the so-called moving least squares method. As we will see below, in this method the

### MATH 2300 review problems for Exam 3 ANSWERS

MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

### The Geometric Series

The Geometric Series Professor Jeff Stuart Pacific Lutheran University c 8 The Geometric Series Finite Number of Summands The geometric series is a sum in which each summand is obtained as a common multiple

### 6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

### THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION

THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it

### MATH 461: Fourier Series and Boundary Value Problems

MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 fasshauer@iit.edu MATH 461 Chapter

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

### Homework 2 Solutions

Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to

### Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

### Prime Numbers. Chapter Primes and Composites

Chapter 2 Prime Numbers The term factoring or factorization refers to the process of expressing an integer as the product of two or more integers in a nontrivial way, e.g., 42 = 6 7. Prime numbers are

### Real Numbers and Monotone Sequences

Real Numbers and Monotone Sequences. Introduction. Real numbers. Mathematical analysis depends on the properties of the set R of real numbers, so we should begin by saying something about it. There are

### 16.1. Sequences and Series. Introduction. Prerequisites. Learning Outcomes. Learning Style

Sequences and Series 16.1 Introduction In this block we develop the ground work for later blocks on infinite series and on power series. We begin with simple sequences of numbers and with finite series

### Math212a1010 Lebesgue measure.

Math212a1010 Lebesgue measure. October 19, 2010 Today s lecture will be devoted to Lebesgue measure, a creation of Henri Lebesgue, in his thesis, one of the most famous theses in the history of mathematics.

### RAMANUJAN S HARMONIC NUMBER EXPANSION INTO NEGATIVE POWERS OF A TRIANGULAR NUMBER

Volume 9 (008), Issue 3, Article 89, pp. RAMANUJAN S HARMONIC NUMBER EXPANSION INTO NEGATIVE POWERS OF A TRIANGULAR NUMBER MARK B. VILLARINO DEPTO. DE MATEMÁTICA, UNIVERSIDAD DE COSTA RICA, 060 SAN JOSÉ,

### Stanford Math Circle: Sunday, May 9, 2010 Square-Triangular Numbers, Pell s Equation, and Continued Fractions

Stanford Math Circle: Sunday, May 9, 00 Square-Triangular Numbers, Pell s Equation, and Continued Fractions Recall that triangular numbers are numbers of the form T m = numbers that can be arranged in

### Getting on For all the preceding functions, discuss, whenever possible, whether local min and max are global.

Problems Warming up Find the domain of the following functions, establish in which set they are differentiable, then compute critical points. Apply 2nd order sufficient conditions to qualify them as local

### CHAPTER 3. Sequences. 1. Basic Properties

CHAPTER 3 Sequences We begin our study of analysis with sequences. There are several reasons for starting here. First, sequences are the simplest way to introduce limits, the central idea of calculus.

### Sequences and Series

Contents 6 Sequences and Series 6. Sequences and Series 6. Infinite Series 3 6.3 The Binomial Series 6 6.4 Power Series 3 6.5 Maclaurin and Taylor Series 40 Learning outcomes In this Workbook you will

### Triangle deletion. Ernie Croot. February 3, 2010

Triangle deletion Ernie Croot February 3, 2010 1 Introduction The purpose of this note is to give an intuitive outline of the triangle deletion theorem of Ruzsa and Szemerédi, which says that if G = (V,

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### Fourier Series, Integrals, and Transforms

Chap. Sec.. Fourier Series, Integrals, and Transforms Fourier Series Content: Fourier series (5) and their coefficients (6) Calculation of Fourier coefficients by integration (Example ) Reason hy (6) gives

### 1 Gaussian Elimination

Contents 1 Gaussian Elimination 1.1 Elementary Row Operations 1.2 Some matrices whose associated system of equations are easy to solve 1.3 Gaussian Elimination 1.4 Gauss-Jordan reduction and the Reduced

### A simple criterion on degree sequences of graphs

Discrete Applied Mathematics 156 (2008) 3513 3517 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Note A simple criterion on degree

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform

MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish

### Series. Chapter Convergence of series

Chapter 4 Series Divergent series are the devil, and it is a shame to base on them any demonstration whatsoever. Niels Henrik Abel, 826 This series is divergent, therefore we may be able to do something

### The Alternating Series Test

The Alternating Series Test So far we have considered mostly series all of whose terms are positive. If the signs of the terms alternate, then testing convergence is a much simpler matter. On the other

### Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks

Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results

### 6.2 Properties of Logarithms

6. Properties of Logarithms 437 6. Properties of Logarithms In Section 6., we introduced the logarithmic functions as inverses of eponential functions and discussed a few of their functional properties

### Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

### MTH 3005 - Calculus I Week 8: Limits at Infinity and Curve Sketching

MTH 35 - Calculus I Week 8: Limits at Infinity and Curve Sketching Adam Gilbert Northeastern University January 2, 24 Objectives. After reviewing these notes the successful student will be prepared to

### 61. REARRANGEMENTS 119

61. REARRANGEMENTS 119 61. Rearrangements Here the difference between conditionally and absolutely convergent series is further refined through the concept of rearrangement. Definition 15. (Rearrangement)

### Series Convergence Tests Math 122 Calculus III D Joyce, Fall 2012

Some series converge, some diverge. Series Convergence Tests Math 22 Calculus III D Joyce, Fall 202 Geometric series. We ve already looked at these. We know when a geometric series converges and what it

### Taylor Polynomials. for each dollar that you invest, giving you an 11% profit.

Taylor Polynomials Question A broker offers you bonds at 90% of their face value. When you cash them in later at their full face value, what percentage profit will you make? Answer The answer is not 0%.

### Engineering Mathematics II

PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...

### 10.3 GEOMETRIC AND HARMONIC SERIES

10.3 Geometric and Harmonic Series Contemporary Calculus 1 10.3 GEOMETRIC AND HARMONIC SERIES This section uses ideas from Section 10.2 about series and their convergence to investigate some special types

### TOPIC 3: CONTINUITY OF FUNCTIONS

TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let

### Note on some explicit formulae for twin prime counting function

Notes on Number Theory and Discrete Mathematics Vol. 9, 03, No., 43 48 Note on some explicit formulae for twin prime counting function Mladen Vassilev-Missana 5 V. Hugo Str., 4 Sofia, Bulgaria e-mail:

### Math 2250 Exam #1 Practice Problem Solutions. g(x) = x., h(x) =

Math 50 Eam # Practice Problem Solutions. Find the vertical asymptotes (if any) of the functions g() = + 4, h() = 4. Answer: The only number not in the domain of g is = 0, so the only place where g could

### Lecture 24: Series finale

Lecture 24: Series finale Nathan Pflueger 2 November 20 Introduction This lecture will discuss one final convergence test and error bound for series, which concerns alternating series. A general summary

### AP Calculus BC 2008 Scoring Guidelines

AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

### f x a 0 n 1 a 0 a 1 cos x a 2 cos 2x a 3 cos 3x b 1 sin x b 2 sin 2x b 3 sin 3x a n cos nx b n sin nx n 1 f x dx y

Fourier Series When the French mathematician Joseph Fourier (768 83) was tring to solve a problem in heat conduction, he needed to epress a function f as an infinite series of sine and cosine functions:

### Student Performance Q&A:

Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

### MATH 105: PRACTICE PROBLEMS FOR SERIES: SPRING Problems

MATH 05: PRACTICE PROBLEMS FOR SERIES: SPRING 20 INSTRUCTOR: STEVEN MILLER (SJM@WILLIAMS.EDU).. Sequences and Series.. Problems Question : Let a n =. Does the series +n+n 2 n= a n converge or diverge?

### Math 317 HW #5 Solutions

Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show

### MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS

1 CHAPTER 6. MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 Introduction Recurrence

### An Introduction to Partial Differential Equations in the Undergraduate Curriculum

An Introduction to Partial Differential Equations in the Undergraduate Curriculum J. Tolosa & M. Vajiac LECTURE 11 Laplace s Equation in a Disk 11.1. Outline of Lecture The Laplacian in Polar Coordinates

### FourierSeries. In 1807, the French mathematician and physicist Joseph Fourier submitted a paper C H A P T E R

C H A P T E R FourierSeries In 87, the French mathematician and physicist Joseph Fourier submitted a paper on heat conduction to the Academy of Sciences of Paris. In this paper Fourier made the claim that

### Mathematical Induction. Lecture 10-11

Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

### Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 28 Fourier Series (Contd.) Welcome back to the lecture on Fourier

### A power series about x = a is the series of the form

POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

### 3.1. Sequences and Their Limits Definition (3.1.1). A sequence of real numbers (or a sequence in R) is a function from N into R.

CHAPTER 3 Sequences and Series 3.. Sequences and Their Limits Definition (3..). A sequence of real numbers (or a sequence in R) is a function from N into R. Notation. () The values of X : N! R are denoted

### Objectives. Materials

Activity 5 Exploring Infinite Series Objectives Identify a geometric series Determine convergence and sum of geometric series Identify a series that satisfies the alternating series test Use a graphing

### 7.1 Convergence of series: integral test and alternating series

7 Infinite series This topic is addressed in Chapter 10 of the textbook, which has ten sections and gets about four weeks in Math 104. That s because it is an important foundation for differential equations,

### Mathematical Induction

Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How

### GROUPS SUBGROUPS. Definition 1: An operation on a set G is a function : G G G.

Definition 1: GROUPS An operation on a set G is a function : G G G. Definition 2: A group is a set G which is equipped with an operation and a special element e G, called the identity, such that (i) the

### Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum

Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic

### Section 3 Sequences and Limits

Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the n-th term of the sequence.

### LIMIT COMPUTATION: FORMULAS AND TECHNIQUES, INCLUDING L HÔPITAL S RULE

LIMIT COMPUTATION: FORMULAS AND TECHNIQUES, INCLUDING L HÔPITAL S RULE MATH 153, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Sections 11.4, 11.5, 11.6. What students should already know:

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

### Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

### CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE

CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify

### Chapters 1 and 5.2 of GT

Subject 2 Spring 2014 Growth of Functions and Recurrence Relations Handouts 3 and 4 contain more examples;the Formulae Collection handout might also help. Chapters 1 and 5.2 of GT Disclaimer: These abbreviated