# Hypothesis Testing. Learning Objectives. After completing this module, the student will be able to

Save this PDF as:

Size: px
Start display at page:

Download "Hypothesis Testing. Learning Objectives. After completing this module, the student will be able to"

## Transcription

1 Hypothesis Testing Learning Objectives After completing this module, the student will be able to carry out a statistical test of significance calculate the acceptance and rejection region calculate and interpret the p value of a statistical test calculate and interpret type 1 and type 2 errors calculate the power of a test Knowledge and Skills Concepts: null hypothesis, alternative, test statistic, rejection region, acceptance region, p value, significance level, type 1 error, type 2 error, false positive, false negative, power of a test Resampling method Fisher s exact test Prerequisites binomial distribution hypergeometric distribution Normal distribution Sample average Sample standard deviation macros in Excel Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 1

2 Prologue The problem of decision making is ubiquitous. Almost daily, you can read in the news about studies that lead to recommendations based on statistical evidence. The U.S. Department of Health and Human Services Agency for Healthcare Research and Quality (http://www.ahrq.gov/) provides health care recommendations, for instance, through its U.S. Preventive Services Task Force (http://www.ahrq.gov/clinic/uspstfix.htm), an independent panel of experts in primary care and prevention, which reviews research results and develops recommendations. These recommendations are based on analyses of tens or hundreds of clinical studies, and recommendations may change as new evidence accumulates over time. Frequently, clinical studies are phrased in terms of hypothesis testing. For instance, if a new treatment for a disease is developed, we might wish to know whether it performs better than the current treatment. We set up a clinical trial where patients are randomly assigned to one or the other treatment. We then compare the number of successful treatments in each group. Let s assume that the two groups have the same number of patients. In order to conclude that the new treatment is better than the current treatment, we would need to demonstrate that the number of successful treatments in the new treatment group is larger than the number of successful treatments in the current treatment group. The question is how much larger the number of successful treatments in the new treatment group would need to be to convince other investigators that the new treatment is indeed better. These kinds of questions can be answered within the framework of hypothesis testing. In class Activity 1 Assume the current treatment for a disease is successful in 30% of all cases. A new treatment is being developed and a preliminary clinical trial showed that 5 out of 10 patients were successfully treated. Can you conclude that the new treatment is more successful? If the new treatment was not better than the current treatment, we would hypothesize that the new treatment has probability 0.3 of being successful. Alternatively, if the new treatment is better than the current treatment, we would hypothesize that the new treatment has probability greater than 0.3 of being successful. If the new treatment has the same likelihood of success than the current treatment, namely probability 0.3, then the number of patients in the small clinical trial who are treated successfully under the new treatment is binomially distributed with 10 trials and success probability 0.3. The following table was created in EXCEL using the BINOMDIST function and shows this probability distribution: Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 2

3 x P(X=x) We see that the probability of five or more successes when the success probability is 0.3 is = Thus, it is not unlikely to see 5 (or more) out of 10 patients recover when the success probability of recovery is 0.3. We conclude that there is not enough evidence to conclude that the new treatment is better. Discuss in your group the following questions: 1. Why did we add up the probabilities in the above example? 2. Would you be able to conclude definitively from this study that the new treatment isn t any better? 3. What would be your next step in determining whether the new treatment is better? Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 3

4 In class Activity 2 Suppose you have a coin in your pocket. You want to decide whether the coin is fair or biased. You hypothesize that the coin is fair. To test this hypothesis, you toss the coin 30 times. The number of heads is binomially distributed with the number of trials being 30 and the probability of heads (success) being 0.5. Below is the histogram of the probability distribution. Suppose the experiment resulted in 18 heads and 12 tails. Discuss the following questions in your group: 1. What can you say about the coin? Is it a fair coin or a biased coin? 2. What would your conclusion be if the experiment resulted in 24 heads and 6 tails? 3. What criteria did you use to make the decision in each of the two cases? 4. Can you be sure that your decision is correct? Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 4

7 probability close to Looking at the table of probabilities for the outcomes Number of heads is equal to k, we see that if a = 9, we have PX ( 9 or X 21) = = If we choose a larger value for a, the probability would exceed 0.05; a smaller value of a would result in a probability that is smaller than Thus a=9 is the best choice for defining the rejection region if we are interested in moderate evidence against the null hypothesis. We thus reject the null hypothesis if the number of heads in the experiment of tossing the coin thirty times is either less than or equal to 9 or greater than or equal to 21. The complement of the rejection region, called the acceptance region, is the set { 10,11,12,...,17,18,20 }. In the experiment, we observed 18 heads, which is in the acceptance region. We thus do not reject the null hypothesis. Statisticians are careful about phrasing their conclusion. If the outcome of the experiment is unlikely under the null hypothesis, they reject a null hypothesis. If not, they will say that the null hypothesis cannot be rejected. Statisticians do not accept a null hypothesis. There is a big difference between saying we do not reject a null hypothesis and we accept a null hypothesis. Just because the data is consistent with the null hypothesis, does not mean that the null hypothesis is true there could be many other reasons for getting a result that is consistent with the null hypothesis. That is, not rejecting a null hypothesis does not assert its truth. The null hypothesis merely withstood a challenge. As we will see shortly, rejecting a null hypothesis only means that the null hypothesis may not be true. The histogram in the figure below indicates the acceptance region and rejection region. In a two sided test, the rejection region is the union of the two extreme events that are in the two ends of the distribution, which are called the tails of the distribution Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 7

8 Type I Error The probability of the rejection region in our experiment is That is, there is a 4.3% probability that we will reject the null hypothesis even though it is true. Erroneously rejecting the null hypothesis is called committing a type I error. The type I error leads to false positives. Since there is a positive probability that the null hypothesis is erroneously rejected, we can only conclude that the null hypothesis may not be true when we reject the null hypothesis. Type II Error The other possible error is not rejecting the null hypothesis when the alternative is true. This is called a type II error. The type II error leads to false negatives. The type II error can only be calculated if the alternative is sufficiently specified. In our example, we only said that the coin is biased under the alternative. There are infinitely many probability models that satisfy the assumption of the alternative, namely any binomial distribution with p 0.5. For a fixed value of p 0.5, we can calculate the type II error. For instance, let s assume p = 0.7. Then P(10 X 20 p = 0.7) = For larger values of p, this probability will be smaller. For instance, if p = 0.8, then P(10 X 20 p = 0.8) = Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 8

9 This means that the larger (or, by symmetry, the smaller) the probability of heads is, the better we will be able to detect whether a coin is biased. This is quantified by the power of the test, which is defined as 1 type II error. The power of a test is therefore the probability of rejecting the null hypothesis when the alternative is true. The following table lists the power of the test for different values of the probability of heads P(Heads) Power We can plot the power of the test as a function of the probability of heads: Hypothesis Testing trough Resampling In our example of testing whether a coin is fair, we were able to calculate the probability distribution under the null hypothesis exactly. In many applications, the probability distribution under the null Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 9

10 hypothesis is not known and must be simulated. This method is called resampling method. We can illustrate this important method on our example. In the spreadsheet (tab Simulation ), we set up a simulation of 30 independent trials, each with probability 0.5 of success. If we denote a success by a 1 and a failure by a 0, then the syntax to accomplish this in EXCEL is =IF(RAND()<0.5,1,0) (See, for instance, Cell B4.) If you add up the 30 values, you obtain the total number of successes in the 30 trials, which you can find in Cell E4. Write a macro so that you can record the outcomes of 500 such experiments and record the number of heads in each of the 500 runs in column I. If you want the type I error to be 5%, then since the test is two sided, we need to determine the 2.5 th and 97.5 th percentiles of the simulation outcomes to find the acceptance region. Find the acceptance region and the corresponding rejection region. How does this compare to the exact calculations we did earlier? Summary Statistical hypothesis testing involves the following steps: 1. Formulation of a null hypothesis and an alternative. 2. Construction of a test statistic that can discriminate between the null hypothesis and the alternative. Calculate the probability distribution under the null hypothesis. 3. There are two ways to proceed from here. Either one allows us to control the type I error: a. Specification of the type I error and calculation of the rejection and acceptance region followed by data collection and decision of whether to reject or not to reject the null hypothesis based on the data. b. Collection of data and calculation of the corresponding p value followed by decision of whether or not to reject the null hypothesis. The p value is the type I error, that is, it is the probability of erroneously rejecting the null hypothesis based on the data. Worked out Example Problem: A jury pool includes 50% women and 50% men. A jury of 12 people was selected from this pool and included 3 women. A newspaper commented on the biased selection process. (a) Test the hypothesis that the jury selection was fair. (b) Repeat the test assuming now that the jury only included 2 women. Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 10

11 Solution: The first part of the solution applies to both (a) and (b). The null hypothesis is that the jury selection was fair, that is, the proportion of women is 0.5. The alternative is that the selection process was biased against women. We thus choose for the alternative that the proportion of women is less than 0.5: H0 : p= 0.5 H : p< The next step is to find a test statistic and to calculate the probability distribution of the test statistic under the null hypothesis. We can choose as the test statistic the number of women in the jury pool. We denote the test statistic by X. The test statistic is binomially distributed with n, the number of trial, equal to 12, and p, the probability of success being 0.5. The EXCEL function =BINOMDIST(k, n, p, FALSE) calculates the probability distribution of a binomial distribution of k successes in n trials with success probability p. The last entry FALSE indicates that it calculates the probability mass function. To calculate the cumulative probability distribution, replace FALSE by TRUE. With n = 12, and p = 0.5, we obtain the following table: k P(X=k) (a) In this part of the problem, three women were on the jury. To calculate the p value, we compute the probability of the event three or fewer women : PX ( 3) = = Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 11

12 Since the p value is about 0.073, we conclude that there is not enough evidence to reject the null hypothesis. In about 7.3% of jury selections from this pool, we would expect to see three or fewer women. The result is not statistically significant. (b) The situation is different if only two women had been selected. The probability of two or fewer women on the jury is PX ( 2) = = Now, the p value is only about 2%, which is statistically significant. We would now reject the null hypothesis. Homework 1. A student committee composed of 20 upper division and lower division students needs to be assembled. One third of the student population is upper division students. The committee ends up having an equal number of upper division and lower division students. The lower division students, expecting a higher number of them on the committee, made the accusation that the selection process was biased against them. Test the hypothesis that the selection process was fair against the alternative that the selection process was biased against the lower division students. 2. In a cross between heterozygous plants of genotype Cc, we expect that 50% of the offspring are heterozygous (i.e., genotype Cc) and 50% are homozygous (i.e., either of genotype CC or of genotype cc). Among 14 plants, we find that 3 plants are homozygous and 11 plants are heterozygous. Test the hypothesis that the ratio of homozygous to heterozygous plants is 1:1 against the alternative that the ratio is different from 1:1. 3. Assume that the population distribution is normal with mean μ and standard deviation σ. We take a sample of size n from this population and calculate the sample average X n 1 n n i = 1 = X i We know that the distribution of X n is then again normal with mean μ and standard deviation σ / n. We can define a new random variable X n μ Z = σ / n Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 12

14 study. The main outcome measure was complete resolution of the wart being studied. Patients were randomized to receive either cryotherapy (liquid nitrogen applied to the wart every two three weeks) or application of duct tape for a maximum of two months. Of the 51 patients, 26 were treated with duct tape and 25 with cryotherapy. In the duct tape group, 22 had complete resolution of the wart; in the cryotherapy group, 15 patients had complete resolution of the wart. Here is the data in table form summarizing the outcome of the study: Duct Tape Cryotherapy SUM No Resolution Resolution SUM (a) What percentage of patients completing the study were treated with duct tape, and what percentage were treated with cryotherapy? (b) To test whether duct tape is at more effective than cryotherapy, we design a statistical test. The null hypothesis states that the two treatments are equally effective. The alternative is that duct tape therapy is more effective than cryotherapy. Under the null hypothesis, the two treatments are equally effective. Under this assumption, we can develop a probability model to calculate the probability of 22 patients in the duct tape group that saw complete resolution. This is how: We have a group of 51 patients, which is the population. 37 patients saw successful resolution, which is the group of successes in the population. 26 patients are randomly assigned to the duct tape group, which is the sample size. The number of successes in the sample is 22. This is to the following urn problem that we can solve using basic probability theory: An urn has a total of 51 balls, 37 of which are blue, the remainder is green. We take a sample of 26 balls at random from the urn, what is the likelihood that 22 balls are blue? If we denote the number of successes in the sample by X, we can calculate the probability of this event using the hypergeometric distribution: PX ( = 22) = Excel has a function that will calculate this probability: =HYPGEOMDIST(22,26,37,51). To calculate the p value, we need to determine the probability of at least 22 complete resolutions in a sample of size 26 when the population size is 51 and the number of successes in the population is 37. Find this probability. What can you conclude? (The statistical test in this problem is called Fisher s exact test.) Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 14

15 7. In 2006, another study on the efficacy of duct tape in treating warts was done to address some of the shortcomings of the first study, in particular the small sample size and the lack of a placebo group. The study by de Haen et al. (2006) on the efficacy of duct tale vs placebo in the treatment of Verruca vulgaris (warts) in primary school children (Arch. Pediatr. Adolesc. Med. 2006; 106: ) had 103 participants who completed treatment; 51 patients were treated with duct tape and the remaining 52 patients received a placebo treatment. After 6 weeks, the wart had disappeared in 8 of the children in the duct tape group and 3 of the children in the placebo group. Test whether the duct tape treatment is more effective. Funding: This work was partially supported by a HHMI Professors grant from the Howard Hughes Medical Institute. Page 15

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### Chapter 4. Probability and Probability Distributions

Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

### Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

### Non-Inferiority Tests for Two Proportions

Chapter 0 Non-Inferiority Tests for Two Proportions Introduction This module provides power analysis and sample size calculation for non-inferiority and superiority tests in twosample designs in which

### Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

### Testing: is my coin fair?

Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible

### Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

### Tests for Two Proportions

Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

### MAT X Hypothesis Testing - Part I

MAT 2379 3X Hypothesis Testing - Part I Definition : A hypothesis is a conjecture concerning a value of a population parameter (or the shape of the population). The hypothesis will be tested by evaluating

### WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

### 9.1 Basic Principles of Hypothesis Testing

9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the

### STAT 35A HW2 Solutions

STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

### Chi Square for Contingency Tables

2 x 2 Case Chi Square for Contingency Tables A test for p 1 = p 2 We have learned a confidence interval for p 1 p 2, the difference in the population proportions. We want a hypothesis testing procedure

### , for x = 0, 1, 2, 3,... (4.1) (1 + 1/n) n = 2.71828... b x /x! = e b, x=0

Chapter 4 The Poisson Distribution 4.1 The Fish Distribution? The Poisson distribution is named after Simeon-Denis Poisson (1781 1840). In addition, poisson is French for fish. In this chapter we will

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### Testing Hypotheses About Proportions

Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine

### MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

### TRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing.

This is Dr. Chumney. The focus of this lecture is hypothesis testing both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 In this lecture, we will talk about both theoretical

### 2 GENETIC DATA ANALYSIS

2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

### HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

### Sampling Distribution of the Mean & Hypothesis Testing

Sampling Distribution of the Mean & Hypothesis Testing Let s first review what we know about sampling distributions of the mean (Central Limit Theorem): 1. The mean of the sampling distribution will be

### Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm.

Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm. Political Science 15 Lecture 12: Hypothesis Testing Sampling

### Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams

Review for Final Chapter 2: Data quantifiers: sample mean, sample variance, sample standard deviation Quartiles, percentiles, median, interquartile range Dot diagrams Histogram Boxplots Chapter 3: Set

### 1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST.

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### November 08, 2010. 155S8.6_3 Testing a Claim About a Standard Deviation or Variance

Chapter 8 Hypothesis Testing 8 1 Review and Preview 8 2 Basics of Hypothesis Testing 8 3 Testing a Claim about a Proportion 8 4 Testing a Claim About a Mean: σ Known 8 5 Testing a Claim About a Mean: σ

### Basic Statistics Self Assessment Test

Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A soda-dispensing machine fills 12-ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation

### Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540

Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540 1. Assume you are tossing a coin 11 times. The following distribution gives the likelihoods of getting a particular number of

### Homework 5 Solutions

Math 130 Assignment Chapter 18: 6, 10, 38 Chapter 19: 4, 6, 8, 10, 14, 16, 40 Chapter 20: 2, 4, 9 Chapter 18 Homework 5 Solutions 18.6] M&M s. The candy company claims that 10% of the M&M s it produces

### Math 3C Homework 3 Solutions

Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard

### Test of proportion = 0.5 N Sample prop 95% CI z- value p- value (0.400, 0.466)

STATISTICS FOR THE SOCIAL AND BEHAVIORAL SCIENCES Recitation #10 Answer Key PROBABILITY, HYPOTHESIS TESTING, CONFIDENCE INTERVALS Hypothesis tests 2 When a recent GSS asked, would you be willing to pay

### 6.4 Normal Distribution

Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

### Quantitative Biology Lecture 5 (Hypothesis Testing)

15 th Oct 2015 Quantitative Biology Lecture 5 (Hypothesis Testing) Gurinder Singh Mickey Atwal Center for Quantitative Biology Summary Classification Errors Statistical significance T-tests Q-values (Traditional)

### Introduction to Hypothesis Testing

Introduction to Hypothesis Testing A Hypothesis Test for Heuristic Hypothesis testing works a lot like our legal system. In the legal system, the accused is innocent until proven guilty. After examining

### Hypothesis Testing. Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University

Hypothesis Testing Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University 1 AMU / Bon-Tech, LLC, Journi-Tech Corporation Copyright 2015 Learning Objectives Upon successful

### Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

### Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### H + T = 1. p(h + T) = p(h) x p(t)

Probability and Statistics Random Chance A tossed penny can land either heads up or tails up. These are mutually exclusive events, i.e. if the coin lands heads up, it cannot also land tails up on the same

### reductio ad absurdum null hypothesis, alternate hypothesis

Chapter 10 s Using a Single Sample 10.1: Hypotheses & Test Procedures Basics: In statistics, a hypothesis is a statement about a population characteristic. s are based on an reductio ad absurdum form of

### Chapter 9: Hypothesis Testing GBS221, Class April 15, 2013 Notes Compiled by Nicolas C. Rouse, Instructor, Phoenix College

Chapter Objectives 1. Learn how to formulate and test hypotheses about a population mean and a population proportion. 2. Be able to use an Excel worksheet to conduct hypothesis tests about population means

### The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

### Section 5 Part 2. Probability Distributions for Discrete Random Variables

Section 5 Part 2 Probability Distributions for Discrete Random Variables Review and Overview So far we ve covered the following probability and probability distribution topics Probability rules Probability

### Chi-Square Tests. In This Chapter BONUS CHAPTER

BONUS CHAPTER Chi-Square Tests In the previous chapters, we explored the wonderful world of hypothesis testing as we compared means and proportions of one, two, three, and more populations, making an educated

### Section 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities

Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and

### Confidence Interval: pˆ = E = Indicated decision: < p <

Hypothesis (Significance) Tests About a Proportion Example 1 The standard treatment for a disease works in 0.675 of all patients. A new treatment is proposed. Is it better? (The scientists who created

### Tests for One Proportion

Chapter 100 Tests for One Proportion Introduction The One-Sample Proportion Test is used to assess whether a population proportion (P1) is significantly different from a hypothesized value (P0). This is

### MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo. 3 MT426 Notebook 3 3. 3.1 Definitions... 3. 3.2 Joint Discrete Distributions...

MT426 Notebook 3 Fall 2012 prepared by Professor Jenny Baglivo c Copyright 2004-2012 by Jenny A. Baglivo. All Rights Reserved. Contents 3 MT426 Notebook 3 3 3.1 Definitions............................................

### Unit 21 Student s t Distribution in Hypotheses Testing

Unit 21 Student s t Distribution in Hypotheses Testing Objectives: To understand the difference between the standard normal distribution and the Student's t distributions To understand the difference between

### Topic 6: Conditional Probability and Independence

Topic 6: September 15-20, 2011 One of the most important concepts in the theory of probability is based on the question: How do we modify the probability of an event in light of the fact that something

### 8-1 8-2 8-3 8-4 8-5 8-6

8-1 Review and Preview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-4 Testing a Claim About a Mean: s Known 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing a Claim

### LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### Statistics 2014 Scoring Guidelines

AP Statistics 2014 Scoring Guidelines College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online home

### Hypothesis tests, confidence intervals, and bootstrapping

Hypothesis tests, confidence intervals, and bootstrapping Business Statistics 41000 Fall 2015 1 Topics 1. Hypothesis tests Testing a mean: H0 : µ = µ 0 Testing a proportion: H0 : p = p 0 Testing a difference

### Bivariate Statistics Session 2: Measuring Associations Chi-Square Test

Bivariate Statistics Session 2: Measuring Associations Chi-Square Test Features Of The Chi-Square Statistic The chi-square test is non-parametric. That is, it makes no assumptions about the distribution

### Chapter 1 Hypothesis Testing

Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,

### Hypothesis Testing for Two Variances

Hypothesis Testing for Two Variances The standard version of the two-sample t test is used when the variances of the underlying populations are either known or assumed to be equal In other situations,

### AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### Solutions to Homework 7 Statistics 302 Professor Larget

s to Homework 7 Statistics 30 Professor Larget Textbook Exercises.56 Housing Units in the US (Graded for Accurateness According to the 00 US Census, 65% of housing units in the US are owner-occupied while

### People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models

### 8-2 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis

8-2 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative

### Introduction to Hypothesis Testing

Introduction to Hypothesis Testing A Hypothesis Test for μ Heuristic Hypothesis testing works a lot like our legal system. In the legal system, the accused is innocent until proven guilty. After examining

### Module 7: Hypothesis Testing I Statistics (OA3102)

Module 7: Hypothesis Testing I Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 10.1-10.5 Revision: 2-12 1 Goals for this Module

### 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

9-3.4 Likelihood ratio test Neyman-Pearson lemma 9-1 Hypothesis Testing 9-1.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental

### Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### Statistical Inference: Hypothesis Testing

Statistical Inference: Hypothesis Testing Scott Evans, Ph.D. 1 The Big Picture Populations and Samples Sample / Statistics x, s, s 2 Population Parameters μ, σ, σ 2 Scott Evans, Ph.D. 2 Statistical Inference

### ACTM State Exam-Statistics

ACTM State Exam-Statistics For the 25 multiple-choice questions, make your answer choice and record it on the answer sheet provided. Once you have completed that section of the test, proceed to the tie-breaker

### Testing Research and Statistical Hypotheses

Testing Research and Statistical Hypotheses Introduction In the last lab we analyzed metric artifact attributes such as thickness or width/thickness ratio. Those were continuous variables, which as you

### 1. Comparing Two Means: Dependent Samples

1. Comparing Two Means: ependent Samples In the preceding lectures we've considered how to test a difference of two means for independent samples. Now we look at how to do the same thing with dependent

### Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

### Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### Chapter 6: Probability

Chapter 6: Probability In a more mathematically oriented statistics course, you would spend a lot of time talking about colored balls in urns. We will skip over such detailed examinations of probability,

### PROBABILITIES AND PROBABILITY DISTRIBUTIONS

Published in "Random Walks in Biology", 1983, Princeton University Press PROBABILITIES AND PROBABILITY DISTRIBUTIONS Howard C. Berg Table of Contents PROBABILITIES PROBABILITY DISTRIBUTIONS THE BINOMIAL

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### Solutions: Problems for Chapter 3. Solutions: Problems for Chapter 3

Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind? experiment: choose 5 cards at random from a standard deck Ω = {5-combinations of

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1342 (Elementary Statistics) Test 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the indicated probability. 1) If you flip a coin

### 9.1 Hypothesis Testing

9.1 Hypothesis Testing Define: 1. Null Hypothesis 2. Alternative Hypothesis Null Hypothesis: H 0, statement that the population proportion, or population mean is EQUAL TO a number population proportion

### AP Statistics 1998 Scoring Guidelines

AP Statistics 1998 Scoring Guidelines These materials are intended for non-commercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement

### Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

### Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 8.1 Homework Answers

Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 8.1 Homework Answers 8.1 In each of the following circumstances state whether you would use the large sample confidence interval,

### Chapter 8. Hypothesis Testing

Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

### Chapter 15 Binomial Distribution Properties

Chapter 15 Binomial Distribution Properties Two possible outcomes (success and failure) A fixed number of experiments (trials) The probability of success, denoted by p, is the same on every trial The trials

### Statistical inference provides methods for drawing conclusions about a population from sample data.

Chapter 15 Tests of Significance: The Basics Statistical inference provides methods for drawing conclusions about a population from sample data. Two of the most common types of statistical inference: 1)

### Normal Probability Distribution

Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

### MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS

MATHEMATICS FOR ENGINEERS STATISTICS TUTORIAL 4 PROBABILITY DISTRIBUTIONS CONTENTS Sample Space Accumulative Probability Probability Distributions Binomial Distribution Normal Distribution Poisson Distribution

### STATISTICS 151 SECTION 1 FINAL EXAM MAY

STATISTICS 151 SECTION 1 FINAL EXAM MAY 2 2009 This is an open book exam. Course text, personal notes and calculator are permitted. You have 3 hours to complete the test. Personal computers and cellphones

### Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### Normal distribution. ) 2 /2σ. 2π σ

Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

### Models for Discrete Variables

Probability Models for Discrete Variables Our study of probability begins much as any data analysis does: What is the distribution of the data? Histograms, boxplots, percentiles, means, standard deviations

### Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.