# 9-3.4 Likelihood ratio test. Neyman-Pearson lemma

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 9-3.4 Likelihood ratio test Neyman-Pearson lemma

2 9-1 Hypothesis Testing Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental methods used at the data analysis stage of a comparative experiment, in which the engineer is interested, for example, in comparing the mean of a population to a specified value. Definition

3 9-1 Hypothesis Testing Statistical Hypotheses For example, suppose that we are interested in the burning rate of a solid propellant used to power aircrew escape systems. Now burning rate is a random variable that can be described by a probability distribution. Suppose that our interest focuses on the mean burning rate (a parameter of this distribution). Specifically, we are interested in deciding whether or not the mean burning rate is 50 centimeters per second.

4 9-1 Hypothesis Testing Statistical Hypotheses Two-sided Alternative Hypothesis null hypothesis alternative hypothesis One-sided Alternative Hypotheses

5 9-1 Hypothesis Testing Statistical Hypotheses Test of a Hypothesis A procedure leading to a decision about a particular hypothesis Hypothesis-testing procedures rely on using the information in a random sample from the population of interest. If this information is consistent with the hypothesis, then we will conclude that the hypothesis is true; if this information is inconsistent with the hypothesis, we will conclude that the hypothesis is false.

6 9-1 Hypothesis Testing Tests of Statistical Hypotheses Figure 9-1 Decision criteria for testing H 0 :µ = 50 centimeters per second versus H 1 :µ 50 centimeters per second.

7 9-1 Hypothesis Testing Tests of Statistical Hypotheses Sometimes the type I error probability is called the significance level, or the α-error, or the size of the test.

8 9-1 Hypothesis Testing Tests of Statistical Hypotheses In the propellant burning rate example, a type I error will occur when when the true mean burning rate is µ = 50 centimeters per second. n=10. x < 48.5 or x > 51.5 Suppose that the standard deviation of burning rate is σ = 2.5 centimeters per second and that the burning rate has a normal distribution, so the distribution of the sample mean is normal with mean µ = 50 and standard deviation The probability of making a type I error (or the significance level of our test) is equal to the sum of the areas that have been shaded in the tails of the normal distribution in Fig σn = = 0.79

9 9-1 Hypothesis Testing Tests of Statistical Hypotheses

10 9-1 Hypothesis Testing

11 9-1 Hypothesis Testing Figure 9-3 The probability of type II error when µ = 52 and n = 10.

12 9-1 Hypothesis Testing

13 9-1 Hypothesis Testing Figure 9-4 The probability of type II error when µ = 50.5 and n = 10.

14 9-1 Hypothesis Testing

15 9-1 Hypothesis Testing Figure 9-5 The probability of type II error when µ = 52 and n = 16.

16 9-1 Hypothesis Testing

17 9-1 Hypothesis Testing

18 9-1 Hypothesis Testing 1. The size of the critical region, and consequently the probability of a type I error α, can always be reduced by appropriate selection of the critical values. 2. Type I and type II errors are related. A decrease in the probability of one type of error always results in an increase in the probability of the other, provided that the sample size n does not change. 3. An increase in sample size reduces β, provided that α is held constant. 4. When the null hypothesis is false, β increases as the true value of the parameter approaches the value hypothesized in the null hypothesis. The value of β decreases as the difference between the true mean and the hypothesized value increases.

19 9-1 Hypothesis Testing Definition The power is computed as 1 - β, and power can be interpreted as the probability of correctly rejecting a false null hypothesis. We often compare statistical tests by comparing their power properties. For example, consider the propellant burning rate problem when we are testing H 0 : µ = 50 centimeters per second against H 1 : µ not equal 50 centimeters per second. Suppose that the true value of the mean is µ = 52. When n = 10, we found that β = , so the power of this test is 1 - β = = when µ = 52.

20 9-1 Hypothesis Testing One-Sided and Two-Sided Hypotheses Two-Sided Test: One-Sided Tests: Rejecting H 0 is a strong conclusion.

21 9-1 Hypothesis Testing Example 9-1

22 9-1 Hypothesis Testing P-Values in Hypothesis Tests P-value = P (test statistic will take on a value that is at least as extreme as the observed value when the null hypothesis H 0 is true) Decision rule: If P-value > α, fail to reject H 0 at significance level α; If P-value < α, reject H 0 at significance level α.

23 9-1 Hypothesis Testing P-Values in Hypothesis Tests

24 9-1 Hypothesis Testing P-Values in Hypothesis Tests

25 9-1 Hypothesis Testing Connection between Hypothesis Tests and Confidence Intervals

26 9-1 Hypothesis Testing General Procedure for Hypothesis Tests 1. From the problem context, identify the parameter of interest. 2. State the null hypothesis, H Specify an appropriate alternative hypothesis, H Choose a significance level, α. 5. Determine an appropriate test statistic. 6. State the rejection region for the statistic. 7. Compute any necessary sample quantities, substitute these into the equation for the test statistic, and compute that value. 8. Decide whether or not H 0 should be rejected and report that in the problem context.

27 9-2 Tests on the Mean of a Normal Distribution, Variance Known Hypothesis Tests on the Mean We wish to test: The test statistic is:

28 9-2 Tests on the Mean of a Normal Distribution, Variance Known Hypothesis Tests on the Mean Reject H 0 if the observed value of the test statistic z 0 is either: Fail to reject H 0 if z 0 > z α/2 or z 0 < -z α/2 -z α/2 < z 0 < z α/2

29 9-2 Tests on the Mean of a Normal Distribution, Variance Known

30 9-2 Tests on the Mean of a Normal Distribution, Variance Known Example 9-2

31 9-2 Tests on the Mean of a Normal Distribution, Variance Known Example 9-2

32 9-2 Tests on the Mean of a Normal Distribution, Variance Known Example 9-2

33 9-2 Tests on the Mean of a Normal Distribution, Variance Known Hypothesis Tests on the Mean

34 9-2 Tests on the Mean of a Normal Distribution, Variance Known Hypothesis Tests on the Mean (Continued)

35 9-2 Tests on the Mean of a Normal Distribution, Variance Known Hypothesis Tests on the Mean (Continued) The notation on p. 307 includes n-1, which is wrong.

36 9-2 Tests on the Mean of a Normal Distribution, Variance Known P-Values in Hypothesis Tests

37 9-2 Tests on the Mean of a Normal Distribution, Variance Known Type II Error and Choice of Sample Size Finding the Probability of Type II Error β

38 9-2 Tests on the Mean of a Normal Distribution, Variance Known Type II Error and Choice of Sample Size Finding the Probability of Type II Error β β = P(type II error) = P(failing to reject H 0 when it is false)

39 9-2 Tests on the Mean of a Normal Distribution, Variance Known Type II Error and Choice of Sample Size Finding the Probability of Type II Error β Figure 9-7 The distribution of Z 0 under H 0 and H 1

40 9-2 Tests on the Mean of a Normal Distribution, Variance Known Type II Error and Choice of Sample Size Sample Size Formulas For a two-sided alternative hypothesis: For a one-sided alternative hypothesis:

41 9-2 Tests on the Mean of a Normal Distribution, Variance Known Example 9-3

42 9-2 Tests on the Mean of a Normal Distribution, Variance Known Type II Error and Choice of Sample Size Using Operating Characteristic Curves

43 9-2 Tests on the Mean of a Normal Distribution, Variance Known Type II Error and Choice of Sample Size Using Operating Characteristic Curves

44 9-2 Tests on the Mean of a Normal Distribution, Variance Known Example 9-4

45 9-2 Tests on the Mean of a Normal Distribution, Variance Known Large Sample Test

46 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Hypothesis Tests on the Mean One-Sample t-test

47 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Hypothesis Tests on the Mean Figure 9-9 The reference distribution for H 0 : µ = µ 0 with critical region for (a) H 1 : µ µ 0, (b) H 1 : µ > µ 0, and (c) H 1 : µ < µ 0.

48 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Example 9-6

49 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Example 9-6

50 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Example 9-6 Figure 9-10 Normal probability plot of the coefficient of restitution data from Example 9-6.

51 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Example 9-6

52 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown P-value for a t-test The P-value for a t-test is just the smallest level of significance at which the null hypothesis would be rejected. Notice that t 0 = 2.72 in Example 9-6, and that this is between two tabulated values, and Therefore, the P-value must be between 0.01 and These are effectively the upper and lower bounds on the P-value.

53 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Type II Error and Choice of Sample Size The type II error of the two-sided alternative (for example) would be where T 0 denotes a noncentral t random variable.

54 9-3 Tests on the Mean of a Normal Distribution, Variance Unknown Example 9-7

55 9-3.4 Likelihood Ratio Test (extra!)

56 9-3.4 Likelihood Ratio Test (extra!)

57 9-3.4 Likelihood Ratio Test (extra!) Neyman-Pearson Lemma: Likelihood-ratio test is the most powerful test of a specified value α when testing two simple hypotheses.# simple hypotheses # H 0 : θ=θ 0 and H 1 : θ=θ 1

58 9-3.4 Likelihood Ratio Test (extra!)

59 9-3.4 Likelihood Ratio Test (extra!)

60 9-3.4 Likelihood Ratio Test (extra!)

61 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Hypothesis Test on the Variance

62 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Hypothesis Test on the Variance

63 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Hypothesis Test on the Variance

64 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Hypothesis Test on the Variance

65 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Example 9-8

66 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Example 9-8

67 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Type II Error and Choice of Sample Size Operating characteristic curves are provided in Charts VII(i) and VII(j) for the two-sided alternative Charts VII(k) and VII(l) for the upper tail alternative Charts VII(m) and VII(n) for the lower tail alternative

68 9-4 Hypothesis Tests on the Variance and Standard Deviation of a Normal Distribution Example 9-9

69 9-5 Tests on a Population Proportion Large-Sample Tests on a Proportion Many engineering decision problems include hypothesis testing about p. An appropriate test statistic is

70 9-5 Tests on a Population Proportion Example 9-10

71 9-5 Tests on a Population Proportion Example 9-10

72 9-5 Tests on a Population Proportion Another form of the test statistic Z 0 is or Think about: What are the distribution of Z 0 under H 0 and H 1?

73 9-5 Tests on a Population Proportion Type II Error and Choice of Sample Size For a two-sided alternative If the alternative is p < p 0 If the alternative is p > p 0

74 9-5 Tests on a Population Proportion Type II Error and Choice of Sample Size For a two-sided alternative For a one-sided alternative

75 9-5 Tests on a Population Proportion Example 9-11

76 9-5 Tests on a Population Proportion Example 9-11

77 9-7 Testing for Goodness of Fit The test is based on the chi-square distribution. Assume there is a sample of size n from a population whose probability distribution is unknown. Arrange n observations in a frequency histogram. Let O i be the observed frequency in the ith class interval. Let E i be the expected frequency in the ith class interval. The test statistic is which has approximately chi-square distribution with df=k-p-1.

78 9-7 Testing for Goodness of Fit Example 9-12

79 9-7 Testing for Goodness of Fit Example 9-12

80 9-7 Testing for Goodness of Fit Example 9-12

81 9-7 Testing for Goodness of Fit Example 9-12

82 9-7 Testing for Goodness of Fit Example 9-12

83 9-7 Testing for Goodness of Fit Example 9-12

84 9-8 Contingency Table Tests Many times, the n elements of a sample from a population may be classified according to two different criteria. It is then of interest to know whether the two methods of classification are statistically independent;

85 9-8 Contingency Table Tests

86 9-8 Contingency Table Tests

87 9-8 Contingency Table Tests Example 9-14

88 9-8 Contingency Table Tests Example 9-14

89 9-8 Contingency Table Tests Example 9-14

90 9-8 Contingency Table Tests Example 9-14

### 9Tests of Hypotheses. for a Single Sample CHAPTER OUTLINE

9Tests of Hypotheses for a Single Sample CHAPTER OUTLINE 9-1 HYPOTHESIS TESTING 9-1.1 Statistical Hypotheses 9-1.2 Tests of Statistical Hypotheses 9-1.3 One-Sided and Two-Sided Hypotheses 9-1.4 General

### Chapter 8 Introduction to Hypothesis Testing

Chapter 8 Student Lecture Notes 8-1 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate

### HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

### [Chapter 10. Hypothesis Testing]

[Chapter 10. Hypothesis Testing] 10.1 Introduction 10.2 Elements of a Statistical Test 10.3 Common Large-Sample Tests 10.4 Calculating Type II Error Probabilities and Finding the Sample Size for Z Tests

### Chapter 9, Part A Hypothesis Tests. Learning objectives

Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population

### 3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

### Hypothesis Testing or How to Decide to Decide Edpsy 580

Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Hypothesis Testing or How to Decide to Decide

### BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

### Basic concepts and introduction to statistical inference

Basic concepts and introduction to statistical inference Anna Helga Jonsdottir Gunnar Stefansson Sigrun Helga Lund University of Iceland (UI) Basic concepts 1 / 19 A review of concepts Basic concepts Confidence

### Section 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities

Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and

### Hypothesis testing. Power of a test. Alternative is greater than Null. Probability

Probability February 14, 2013 Debdeep Pati Hypothesis testing Power of a test 1. Assuming standard deviation is known. Calculate power based on one-sample z test. A new drug is proposed for people with

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

### Chapter 7 Part 2. Hypothesis testing Power

Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship

### Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

### Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

### Null Hypothesis H 0. The null hypothesis (denoted by H 0

Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property

### Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

### Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

### 7 Hypothesis testing - one sample tests

7 Hypothesis testing - one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X

### Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

### Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

### Hypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...

Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................

### Lecture Notes Module 1

Lecture Notes Module 1 Study Populations A study population is a clearly defined collection of people, animals, plants, or objects. In psychological research, a study population usually consists of a specific

### Hypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam

Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

### How to Conduct a Hypothesis Test

How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some

### Testing a claim about a population mean

Introductory Statistics Lectures Testing a claim about a population mean One sample hypothesis test of the mean Department of Mathematics Pima Community College Redistribution of this material is prohibited

### Chapter 8. Hypothesis Testing

Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing

### 15.0 More Hypothesis Testing

15.0 More Hypothesis Testing 1 Answer Questions Type I and Type II Error Power Calculation Bayesian Hypothesis Testing 15.1 Type I and Type II Error In the philosophy of hypothesis testing, the null hypothesis

### Lecture 13 More on hypothesis testing

Lecture 13 More on hypothesis testing Thais Paiva STA 111 - Summer 2013 Term II July 22, 2013 1 / 27 Thais Paiva STA 111 - Summer 2013 Term II Lecture 13, 07/22/2013 Lecture Plan 1 Type I and type II error

Chapter 8 Hypothesis Tests Chapter Table of Contents Introduction...157 One-Sample t-test...158 Paired t-test...164 Two-Sample Test for Proportions...169 Two-Sample Test for Variances...172 Discussion

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

### Confidence Intervals for One Standard Deviation Using Standard Deviation

Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from

### Confidence Intervals for the Difference Between Two Means

Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

### HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

### Chapter 4 Statistical Inference in Quality Control and Improvement. Statistical Quality Control (D. C. Montgomery)

Chapter 4 Statistical Inference in Quality Control and Improvement 許 湘 伶 Statistical Quality Control (D. C. Montgomery) Sampling distribution I a random sample of size n: if it is selected so that the

### Sampling and Hypothesis Testing

Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus

### Chris Slaughter, DrPH. GI Research Conference June 19, 2008

Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING

CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized

### Math 62 Statistics Sample Exam Questions

Math 62 Statistics Sample Exam Questions 1. (10) Explain the difference between the distribution of a population and the sampling distribution of a statistic, such as the mean, of a sample randomly selected

### Null Hypothesis Significance Testing Signifcance Level, Power, t-tests. 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Null Hypothesis Significance Testing Signifcance Level, Power, t-tests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is

### Practice problems for Homework 12 - confidence intervals and hypothesis testing. Open the Homework Assignment 12 and solve the problems.

Practice problems for Homework 1 - confidence intervals and hypothesis testing. Read sections 10..3 and 10.3 of the text. Solve the practice problems below. Open the Homework Assignment 1 and solve the

### HypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the

### Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

Chapter 12 Sample Size and Power Calculations Chapter Table of Contents Introduction...253 Hypothesis Testing...255 Confidence Intervals...260 Equivalence Tests...264 One-Way ANOVA...269 Power Computation

### Test of Hypotheses. Since the Neyman-Pearson approach involves two statistical hypotheses, one has to decide which one

Test of Hypotheses Hypothesis, Test Statistic, and Rejection Region Imagine that you play a repeated Bernoulli game: you win \$1 if head and lose \$1 if tail. After 10 plays, you lost \$2 in net (4 heads

### 1 SAMPLE SIGN TEST. Non-Parametric Univariate Tests: 1 Sample Sign Test 1. A non-parametric equivalent of the 1 SAMPLE T-TEST.

Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

### Hypothesis Testing. April 21, 2009

Hypothesis Testing April 21, 2009 Your Claim is Just a Hypothesis I ve never made a mistake. Once I thought I did, but I was wrong. Your Claim is Just a Hypothesis Confidence intervals quantify how sure

### The alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.

Section 8.2-8.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the

### Hypothesis Testing. Hypothesis Testing CS 700

Hypothesis Testing CS 700 1 Hypothesis Testing! Purpose: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if

### Lecture Outline. Hypothesis Testing. Simple vs. Composite Testing. Stat 111. Hypothesis Testing Framework

Stat 111 Lecture Outline Lecture 14: Intro to Hypothesis Testing Sections 9.1-9.3 in DeGroot 1 Hypothesis Testing Consider a statistical problem involving a parameter θ whose value is unknown but must

### 12.5: CHI-SQUARE GOODNESS OF FIT TESTS

125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

### An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

### 3. Nonparametric methods

3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

### 8-2 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis

8-2 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative

### Non-Inferiority Tests for Two Means using Differences

Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous

### MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample

MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of

### THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Chapter 16 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 16 Multiple Choice Questions (The answers are provided after the last question.) 1. Which of the following symbols represents a population parameter? a. SD b. σ c. r d. 0 2. If you drew all possible

### Confidence Intervals for Cp

Chapter 296 Confidence Intervals for Cp Introduction This routine calculates the sample size needed to obtain a specified width of a Cp confidence interval at a stated confidence level. Cp is a process

### Chapter Additional: Standard Deviation and Chi- Square

Chapter Additional: Standard Deviation and Chi- Square Chapter Outline: 6.4 Confidence Intervals for the Standard Deviation 7.5 Hypothesis testing for Standard Deviation Section 6.4 Objectives Interpret

### Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

### Lecture 8 Hypothesis Testing

Lecture 8 Hypothesis Testing Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Midterm 1 Score 46 students Highest score: 98 Lowest

### Statistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013

Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.1-1.6) Objectives

### Opgaven Onderzoeksmethoden, Onderdeel Statistiek

Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### Chapter Five: Paired Samples Methods 1/38

Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery

### Hypothesis Testing Introduction

Hypothesis Testing Introduction Hypothesis: A conjecture about the distribution of some random variables. For example, a claim about the value of a parameter of the statistical model. A hypothesis can

### Chi-Square Test. Contingency Tables. Contingency Tables. Chi-Square Test for Independence. Chi-Square Tests for Goodnessof-Fit

Chi-Square Tests 15 Chapter Chi-Square Test for Independence Chi-Square Tests for Goodness Uniform Goodness- Poisson Goodness- Goodness Test ECDF Tests (Optional) McGraw-Hill/Irwin Copyright 2009 by The

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections 9.1 Problems of Testing Hypotheses Skip: 9.2 Testing Simple Hypotheses Skip: 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.6 Comparing the

### Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

### PASS Sample Size Software

Chapter 250 Introduction The Chi-square test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial

### Confidence Intervals for Cpk

Chapter 297 Confidence Intervals for Cpk Introduction This routine calculates the sample size needed to obtain a specified width of a Cpk confidence interval at a stated confidence level. Cpk is a process

### Chapter 1 Hypothesis Testing

Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,

### Chapter 9: Hypothesis Testing Sections

Chapter 9: Hypothesis Testing Sections - we are still here Skip: 9.2 Testing Simple Hypotheses Skip: 9.3 Uniformly Most Powerful Tests Skip: 9.4 Two-Sided Alternatives 9.5 The t Test 9.6 Comparing the

### Probability & Statistics

Probability & Statistics BITS Pilani K K Birla Goa Campus Dr. Jajati Keshari Sahoo Department of Mathematics TEST OF HYPOTHESIS There are many problems in which, rather then estimating the value of a parameter,

### Introduction. Hypothesis Testing. Hypothesis Testing. Significance Testing

Introduction Hypothesis Testing Mark Lunt Arthritis Research UK Centre for Ecellence in Epidemiology University of Manchester 13/10/2015 We saw last week that we can never know the population parameters

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Non-Inferiority Tests for One Mean

Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random

### Basic Statistics Self Assessment Test

Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A soda-dispensing machine fills 12-ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation

### Tests for Two Proportions

Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

### Statistics 641 - EXAM II - 1999 through 2003

Statistics 641 - EXAM II - 1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

### C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### Homework 6 Solutions

Math 17, Section 2 Spring 2011 Assignment Chapter 20: 12, 14, 20, 24, 34 Chapter 21: 2, 8, 14, 16, 18 Chapter 20 20.12] Got Milk? The student made a number of mistakes here: Homework 6 Solutions 1. Null