Atomic Theory. Unit 3 Development of the Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Atomic Theory. Unit 3 Development of the Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School"

Transcription

1 Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? In the nucleus 2. What is located in the nucleus? Neutrons and protons 3. What is the negative particle that orbits the nucleus? electrons 4. What is the sum of the protons and neutrons called? Mass number 5. With a neutral atom, what two items are equal in number? Protons and electrons 6. What is the term for any charged particle? ion 7. What is the term for the positively charged ion? cation 8. What is the term for the negatively charged ion? anion 9. What type of ion is formed when electrons are gained? anion 10. What type of ion is formed when electrons are lost? cation 11. How does atomic theory today differ from Dalton s theory? Today we know about ions and isotopes 12. Which model of the atom is based on the solution to the Schrodinger equation? Quantum mechanical model How is this different from the planetary model? Electrons are not in fixed orbitals Match each term from the experiments of J.J. Thomson with the correct description. 13. anode d a. an electrode with a negative charge 14. cathode a b. a glowing beam between electrodes 15. cathode ray b c. an electrode with a positive charge 16. electron d d. a negatively charged particle 17. The diagram shows electrons moving from left to right in a cathode-ray tube. Draw an arrow showing how the path of the electrons will be affected by the placement of the negatively and positively charged electrodes. H. Cannon, C. Clapper and T. Guillot Klein High School

2 18. Indicate the letter of each sentence that is true about atoms, matter and electric charge. a. All atoms have an electric charge. b. Electric charges are carried by particles of matter. c. Atoms always lose or gain charges in whole-number multiples of a single basic unit. d. When a given number of positively charged particles combine with an equal number of negatively charged particles, an electrically neutral particle is formed. 19. Indicate the letter next to the number of units of positive charge that remain if a hydrogen atom loses an electron. a. 0 b. 1 c. 2 d The positively charged subatomic particle that remains when a hydrogen atom loses an electron is called a(n) _proton. 21. What charge does a neutron carry? neutral 22. Indicate the letter of each sentence that is true about the nuclear theory of atoms suggested by Rutherford s experimental results. a. An atom is mostly empty space. b. All the positive charge of an atom is concentrated in a small central region called the nucleus. c. The nucleus is composed of protons and neutrons. d. The nucleus is large compared with the atom as a whole. e. Nearly all the mass of an atom is in its nucleus. 23. According to Bohr, electrons cannot reside at in the figure below a. point A c. point c b. point b d. point d 24. According to the quantum mechanical model, point D in the above figure represents (a) th e fixed position of an electron (b) the farthest position from the nucleus that an electron can be found (c)a position where an electron probably exists (d) a position where an electron cannot exist 25. What does the atomic number of an atom represent? Number of protons 3-2

3 Unit 4 Electron s in the atom Select the best possible response. 1.The type of charge on the nucleus is a. negative b. neutral c. positive 2. The number of protons in a neutral atom having 18 electrons is_ How many neutrons are in the isotope P-29? 14 A neutral atom of bromine has a mass number of It has_35_ protons. 5. It has_35_ electrons. 6. It has_45_ neutrons. 7. Its nuclear composition is_35 protons and 45 neutrons. One isotope of hydrogen has a mass of How many protons does it have? 1 9. How many neutrons does it have? 2 An atom with a +1 charge has atomic number 19 and mass number It has_19 protons. 11. It has 18 electrons. The anion of oxygen has a -2 charge. 12. How many electrons does it have?

4 An atom has a charge of +1 and has 10 neutrons with a mass number of What is its atomic number? How many electrons does it have? 10 An atom has 10 protons, 8 neutrons, and 12 electrons. 16. What is its charge? What is its mass number? In forming this ion, the neutral atom gained what? 2 electrons An atom has 15 protons, 16 neutrons, and 16 electrons. 19. What is its mass number? What is the overall charge on this ion? 1- A neutral atom has a mass number of 24 and 11 protons. 21. How many protons does it have? How many neutrons does it have? 13 An atom with a -2 charge has atomic number 16 and mass number It has_16 protons. 24. It has_18 electrons. 25. It has 16 neutrons. Calculate the following: 26. There are 4 isotopes of sulfur, S-32, %; S-33, 0.76%; S-34, 4.22%; and S-36, 0.014%. What is the average amu of sulfur? 32.1 amu 4-4

5 27. There are three common isotopes of chromium, Cr-50, 4.345% abundance; Cr-52, % ; Cr-53, 9.50% abundance; what is the average amu of chromium? 50.8 amu 28. Calculate the wavelength of the yellow light emitted by a sodium lamp if the frequency of the radiation is 5.10 x Hz (5.10 x s -1 ). 588 nm 29. What frequency is radiation with a wavelength of 5.00 x 10-6 cm? In what region of the electromagnetic spectrum is the radiation? 6.00 x Hz 30. What is the energy of a photon of green light with a frequency of 5.80 x s -1? 3.84 x Suppose your favorite AM radio station broadcasts at a frequency of 1150 khz. What is the wavelength in cm of the radiation from the station? cm Atomic Structure Practice Element/Isotope Atomic Mass Protons Neutrons Electrons number number 1) Zinc ) Aluminum ) Calcium ) Sulfur ) Bromine ) Gold ) Silver ) Platinum ) Uranium ) Plutonium ) Potassium ) Mercury ) Titanium ) Titanium Atomic Structure Exercise I. Use the periodic table to compute the number of electrons. Neutrons and protons in the following: 4-5

6 A. Cr 24p, 24e, 28n B. Cl 17p, 17e, 18n C. Mg 12p, 12e, 12n D. Ir 77p, 77e, 115n E. Si 14p, 14e, 14n F. Ne 10p, 10e, 10n II. Moseley used x rays to determine the atomic numbers of the e lements identify each of the following elements by name. A. 1 Proton H B. 4 Protons B e C. Protons D. 12 Protons Mg E. 20 Protons C a F. 30 Pro tons Zn III. How many protons are in the nucleus of each of the follo wing elements A. Uranium B. Selen ium C. H elium D. Magn esium IV. Give the number of neutrons in each of the following isotopes A. Titanium-46 B. Nitrogen -15 C. S 16 D. 85 Cu The Spectra of Elements Everybody knows that a few drops of soup or milk spilled onto a gas burner will change the blue gas flame into a mixture of colors, predominantly yellow. These colors can be used to identify the elements present in the substance dropped into the flame. We will observe the colors produced by several known substances. The color observed in the flame is the result of atoms of the element absorbing energy from the flame then reemitting it. The energy absorbed has an energy and wavelength in the visible region of the electromagnetic spectrum. What your senses detect as light is actually radiation that is part of a continuum that makes up the electromagnetic spectrum. The electromagnetic spectrum is a continuum of energies ranging from the high-energy gamma and x-rays to low-energy radio and microwaves. Radiation includes any energy emitted in all directions from a single source, not just nuclear decay. Light is one form of energy that can be radiated; - the sun constantly radiates energy into space as its matter is converted into energy. We see this light in a variety of colors, depending on the wavelength of the energy when it reaches us. The waves of light with the longest wavelength (red) are refracted (bent) to a lesser degree than the shorter waves (indigo and violet) as they pass through the atmosphere. The visible range of the spectrum is from about 400 nm to 700 nm. The wavelength () is the distance between successive peaks of a wave. The number of waves that pass a given point in space per second is the frequency (f). The unit is inverse time, sec -1 and is also 4-6

7 called hertz (Hz). All light moves through a vacuum at the same rate of speed, about 3 X 10 8 m/s (the speed of light c). Frequency and wavelength are inversely related to each other, as the product of the two equals the speed of light: c = f. Since the electrons of an atom can only absorb certain amounts of energy, the wavelength of the energy emitted after excitement of the atoms is characteristic of the element. When viewed through a spectroscope, the spectrum of energy emitted by a sample of a particular element can be observed. 1. Use the spectroscope to view each of the gas tubes set up in the back of the lab. Each colored band corresponds to a different amount of energy (a different wavelength) of light emitted by an electron in the element. Each element has a unique spectrum based on the amount of energy emitted by its electrons 2. Record the details of the colored lines formed on the scale of your spectroscope and the wavelength of each line. Using the equations we have discussed in class, solve for the frequency and energy of each of the gases observed. If a substance has multiple lined, calculate frequency and energy for each line. Express each answer to three significant digits. Express the energy in ergs. In the next part of our investigation, we will use a procedure known as a flame test to become familiar with the colors produced by several common elements and use these observations to better understand the affect of energy on atoms and ions. Procedure: a. Light a Bunsen burner. Make sure that the gas burns with a clear blue flame and has an easily distinguishable inner blue cone. b. Obtain samples of ions as provided by your teacher. These will be metal nitrates, dissolved in a solvent to allow easy distribution of the ion. c. Using the spray bottles, introduce a small amount of each ion (one squirt) into the flame and observe the result. d. After you have identified the color produced by each ion, mix two of the substances and see if you can detect the presence of each of the substances or if the colors mingle so that one cannot be distinguished from the other. 4-7

8 e. Obtain an unknown sample and observe the colors produced. Try to identify the element present in the unknown sample. Color Key: Na = Yellow green Sr = Deep red K = Violet Li = Crimson Ca = Yellow-red Ba = Green-yellow Cu = Blue- 1. What is the order of the colors in the spectrum from lowest to h ighest wavelength? 2. What is the order of metallic ions from lowest to highest wavelength? 3. What correlations if any do you see between the electron configuration of the metallic elements and the energy given off by exciting their electrons Further Analysis In 1913, Neils Bohr hypothesized that the electron in the hydrogen atom is allowed to have only certain amounts of energy. These energy levels would be orbits in which the electron in hydrogen would circle the nucleus of hydrogen. He believed that the electron would move from one energy level to another and would give off light when it jumped from a higher energy level to a lower energy level. The amount of energy would be different for jumps between different levels. 1) The diagram below shows a sketch of some of the possible orbits of the hydrogen electron and their corresponding energy values. If we think of the energy values as being on a num ber line, which orbit has the greatest value? 2) When an electron jumps from E 2 to E 1 the amount of energy in the light would be E 2 E 1 ; or (-3.4 ev) (-13.6 ev) which would equal 10.2 ev. What would be the amount of energy in the light when an electron jumps from: 4-8

9 a) E 3 to E 4.66 ev b) E 4 to E ev c) E 3 to E ev d) E 5 to E ev 3) Using Bohr s model, we would assume that the electron would only move between certain orbitals or energy levels. Every possible jump corresponds to light of a different energy. a. How many different energies of light can be emitted from hydrogen when the electron jumps down to E 2 from E 3, E 4, E 5, and E 6? b. How many bands of light did you observe when you viewed the hydrogen tube through the spectrometer? c. How do you think these two observations are related? 4) The colors corresponding to jumps to the E 1 level have higher energies or lower, than those to the E 2. a. As the electron jumped from the E 6 all the way to the E 1 level, how many different energies would be emitted? b. Did you see all of these bands? Explain why or why not. c. Bohr did not find bands corresponding to the jumps to the E 3 level. Why do you think that was? Conclusions: In this activi ty we saw the evidence that energy is emitted in p articular patterns depending on the distance that an electron travels between one orbital and another. The number of electrons in an atom and the number of energy levels those electrons occupy determine the number of bands of light and the color of the light seen. What if any conclusions can you draw about the relative numbers of electrons in the atoms of our test atoms? Arrangement of Electrons in Atoms 1. What is the difference between the earlier models of the atom and the modern quantum mechanical model? No fixed orbitals 2. What is a quanta and who developed the concept of quantum energy? Packet of energy that it takes to move an electron from one energy level to the next; Planck 3. How many quantum numbers are used to describe the energy state of an electron in atom? a) 1 (b) 2 (c) 3 d) 4 4. What is the Heisenberg uncertainty principle? It is not possible to predict both position and momentum at the same time 5. The energy level of an electron is the region around the nucleus where an electron is likely to be found 4-9

10 6. In general, the higher the electron is on the energy ladder, the _further_ it is to/from the nucleus? 7. A quantum of energy is the amount of energy required to a. move and electron from its present energy level to the next lower one b. maintain an electron in its present energy level c. move an electron from its present energy level to the next higher one 8. True or False: the electrons in an atom can exist between energy levels. F 9. True or False: The quantum mechanical model of the atom estimates the probability of finding an electron in a certain position. F 10. Which name describes the major energy levels of electrons? a) atomic orbitals b) quantum mechanical numbers c) quanta d) principal quantum number 11. What formula represents the maximum number of electrons that can occupy a principal energy level (n = principal quantum number)? a) 2n 2 b)n 2 c) 2n d) n 12. A spherical electron cloud surrounding an atomic nucleus would best represent _. a. an s orbital b. a p orbital c. a combination of two different p orbitals d. a combination of an s and a p orbitals 13. An energy level of n = 4 can hold electrons. (a) 32 (b) 24 (c) An energy level of n = 2 can hold electrons. (a) 32 (b) 24 (c) 8 (d) 6 (d) An electron for which n = 4 has more than an electron for which n = 2. (a) spin (c) energy (b) stability (d) wave nature Behavior of electrons in the atom 1. How did de Broglie conclude that electrons have a wave nature? 2. Identify each of the four quantum numbers and the properties to which they refer. 3. How did the Heisenberg uncertainty principle contribute to the idea that electrons occupy "clouds," or "orbitals"? 4. Complete the following table. 4-10

11 Principal quantum number, Number of Sublevels Types of Orbitals n 1 1 S 2 2 S, p 3 3 S, p, d 4 4 S, p, d, f 5. The way in which electrons are arranged around the nuclei of atoms is called.electron configuration Match the name of the rule used to find the electron configurations of atoms with the rule itself. b 6. aufbau principle a. When electrons occupy orbitals of equal energy, one electron enters each orbital until all the orbitals contain one electron with parallel spins c 7. Pauli exclusion b. Electrons enter orbitals of lowest energy principle first _a 8. Hund s rule c. an atomic orbital may describe at most two electrons moving in opposite directions 9. In the shorthand method for writing an electron configuration, what does the sum of the superscripts equal? Number of electrons in the atom Write the electron configuration and orbital notation for each of the following atoms. 10. Nitrogen 1s 2 2s 2 2p Aluminum 1s 2 2s 2 2p 6 3s 2 3p Argon 1s 2 2s 2 2p 6 3s 2 3p Which guideline, Hund's rule or the Pauli exclusion principle, is violated in the following orbital diagrams? Pauli Hunds 4-11

12 14. What is the relationship between the principal quantum number and the electron configuration? Tells the number of energy levels 15. How does the figure above illustrate Hund's rule? One in each of the 2p levels before two in any 16. How does the figure above illustrate the Pauli exclusion principle? If 2 in the orbital they spin in opposite directions 17. True of False: The aufbau principle works for every element in the periodic table. F 18. Filled energy sublevels are more _stable than partially filled sublevels. 19. Half-filled sublevels are not as stable as _filled levels but are more stable than other configurations. 20. Write the electron configuration of the following atoms: a. carbon 1s 2 2s 2 2p 2 b. potassium 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 c. gallium 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 1 d. copper 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d What is an electron dot structure? Shorthand way to show the valence electrons 22. Draw the electron dot structure of each of the following atoms. a. argon.. : Ar :.. b. calcium Ca: c. iodine. : I :

13 23. Write the electron configurations for these metals and circle the electrons lost when each metal forms a cation a. Mg 1s 2s 2p 3s b. A1 1s 2 2s 2 2p 6 3s 2 2p 1 c. K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 Match the noble gas with its electron configuration. _c 24. argon a. 1s 2 a _ 25. helium b. 1s 2 2s 2 2p6 _b 26. neon c. 1s 2 2s 2 2p 6 3s 2 3p 6 _d 27. krypton d. 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p What is the electron configuration called that has 18 electrons in the outer energy level and all of the orbitals filled? Pseudo nobel gas 14. Write the electron configuration for zinc. 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d Fill in the electron configuration diagram for the copper(i) ion. Electron Review 1. Write the electronic configurations, orbital notation, Lewis dot structure for the following: a. S 4-13

14 Electron Configuration b. C c. P d. Ca e. Zn f. Fe g. A1 2. How many dots would appear in the Lewis electron dot diagram for an atom whose electron configuration ended 4S 2 3d 10 4p 3? 5 3. How many unpaired electrons does the Lewis dot structure of N have? 3 4. How many pairs of electrons does the Lewis dot structure of O have? 2 5. Why does copper have 1 valence electron? Half filled orbitals are more stable than others Charting Oxidation Number Complete the following chart. You may wish to use the periodic table in your text. 4-14

15 Electron Configuration 4-15

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Unit 2: Atomic Theory Practice Packet

Unit 2: Atomic Theory Practice Packet Unit 2: Atomic Theory Practice Packet 1 Name History of Atomic Theory Period Fill in the missing information in the chart below: Name of Researcher Equipment Sketch of Model Major Idea/Discovery N/A All

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions)

Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions) Name: Period: Date: Unit 3 Review: things you will need to know 1. Atomic Theories: Know all the scientists in order. What did they discover? What experiment did they use? 2. Development of the periodic

More information

CHAPTER 5: MODELS OF THE ATOM

CHAPTER 5: MODELS OF THE ATOM CHAPTER 5: MODELS OF THE ATOM Problems: 1, 5, 7,11,13,15,17,19,21,25, 37,39,41,61,67,69,71,73, 77ab,79ab,81,83,87,89 1981 - STM (scanning tunneling microscope) used to "see" atoms STM Images - Web sites:

More information

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

More information

UNIT 2 - ATOMIC THEORY

UNIT 2 - ATOMIC THEORY UNIT 2 - ATOMIC THEORY VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic number Bohr model Cation Compound Electron Electron Configuration Element Excited state Ground state

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Test 2: Atomic Structure Review

Test 2: Atomic Structure Review Name: Monday, October 15, 2007 Test 2: Atomic Structure Review 1. Figure 1 The diagram shows the characteristic spectral line patterns of four elements. Also shown are spectral lines produced by an unknown

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

More information

ELECTRONIC CONFIGURATIONS

ELECTRONIC CONFIGURATIONS ELECTRONIC CONFIGURATIONS ELECTRONIC CONFIGURATIONS CONTENTS The Bohr Atom Levels and sub-levels Rules and principles Orbitals Rules for filling orbitals. The Aufbau principle Electronic configurations

More information

Practice questions for Ch. 7

Practice questions for Ch. 7 Name: Class: Date: ID: A Practice questions for Ch. 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When ignited, a uranium compound burns with a green

More information

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model. John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of

More information

Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 2: Atomic Theory

Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 2: Atomic Theory *STUDENT* *STUDENT* Mr. Dolgos Regents Chemistry NOTE PACKET Unit 2: Atomic Theory 1 *STUDENT* UNIT 2 - ATOMIC THEORY *STUDENT* VOCABULARY: Allotrope Anion Atom Atomic Mass Atomic Mass unit (a.m.u.) Atomic

More information

CHM1 Exam 4 Review. Topics. 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits - 0 amu 2.

CHM1 Exam 4 Review. Topics. 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits - 0 amu 2. Topics 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits - 0 amu 2. Atomic symbols Mass number (protons + neutrons) 4+ charge 126C atomic number (# protons)

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

2. All of the atoms of argon have the same. 1. The atomic number of an atom is always equal to the total number of. A. mass number B.

2. All of the atoms of argon have the same. 1. The atomic number of an atom is always equal to the total number of. A. mass number B. 1. The atomic number of an atom is always equal to the total number of A. neutrons in the nucleus B. protons in the nucleus 2. All of the atoms of argon have the same A. mass number B. atomic number C.

More information

Answers and Solutions to Text Problems

Answers and Solutions to Text Problems Atoms and Elements 2 Answers and Solutions to Text Problems 2.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 2.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 2.3 a. carbon b. chlorine c. iodine d. mercury

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

PSI AP Chemistry Unit 1: The Atom Free Response CW/HW

PSI AP Chemistry Unit 1: The Atom Free Response CW/HW PSI AP Chemistry Unit 1: The Atom Free Response CW/HW Name Laws of Multiple and Definite Proportions and Conservation of Mass Classwork: 1. Exactly twice as much oxygen is required to react with 1 gram

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more

1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more 1. According to the modern model of the atom, the nucleus of an atom is surrounded by one or more 8. The diagram below represents the nucleus of an atom. A) electrons B) neutrons C) positrons D) protons

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

Name Date Class ATOMIC STRUCTURE

Name Date Class ATOMIC STRUCTURE Name Date Class 4 ATOMIC STRUCTURE SECTION 4.1 DEFINING THE ATOM (pages 101 103) This section describes early atomic theories of matter and provides ways to understand the tiny size of individual atoms.

More information

Chapter 11 Atoms, Energy and Electron Configurations Objectives

Chapter 11 Atoms, Energy and Electron Configurations Objectives Objectives 1. To review Rutherford s model of the atom 2. To explore the nature of electromagnetic radiation 3. To see how atoms emit light A. Rutherford s Atom.but there is a problem here!! Using Rutherford

More information

PSI AP Chemistry Unit 1 MC Homework. Laws of Multiple and Definite Proportions and Conservation of Mass

PSI AP Chemistry Unit 1 MC Homework. Laws of Multiple and Definite Proportions and Conservation of Mass PSI AP Chemistry Unit 1 MC Homework Name Laws of Multiple and Definite Proportions and Conservation of Mass 1. Dalton's atomic theory explained the observation that the percentage by mass of the elements

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Atomic Structure ELECTRONS AND THE STRUCTURE OF ATOMS 4.1 Defining the Atom Essential Understanding Atoms are the fundamental building blocks of matter. Lesson Summary Early Models of the Atom The scientific

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39)

ATOMS A T O M S, I S O T O P E S, A N D I O N S. The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) ATOMS A T O M S, I S O T O P E S, A N D I O N S The Academic Support Center @ Daytona State College (Science 120, Page 1 of 39) THE ATOM All elements listed on the periodic table are made up of atoms.

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

ATOMS AND THE PERIODIC TABLE

ATOMS AND THE PERIODIC TABLE ATOMS AND THE PERIODIC TABLE Physical Science 2nd Semester NAME: CLASS PERIOD: TEACHER: ASSIGNMENT/PAGE NUMBERS DUE DATE POINTS EARNED Periodic Table of Elements pg. 1 Atomic Structure Learning Targets

More information

SAI. Protons Electrons Neutrons Isotope Name. Isotope Symbol 131i S3 1. Atomic Number. Mass Number

SAI. Protons Electrons Neutrons Isotope Name. Isotope Symbol 131i S3 1. Atomic Number. Mass Number ATOMIC STRUCTURE AND THE PERIODIC TABLE CHAPTER 4 WORKSHEET PART A Given the following isotopes, determine the atomic number, the mass number, the number of protons, electrons and neutrons. Isotope Symbol

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Atomic Theory: The Nuclear Model of the Atom

Atomic Theory: The Nuclear Model of the Atom Chapter 5 Atomic Theory: The Nuclear Model of the Atom Section 5.1 Dalton s Atomic Theory Goal 1 Precursors to John Dalton s atomic theory Law of Definite Composition The percentage by mass of the elements

More information

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass Composition and Structure of the Atom Atom: basic unit of an element; smallest unit that retains chemical properties of an element Subatomic particles: Small particles that are the building blocks from

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. Electromagnetic radiation travels through vacuum at a speed of m/s. (a). 6.626 x 26 (b). 4186 (c). 3.00 x 8 (d). It depends on wavelength Explanation: The speed

More information

ATOMIC STRUCTURE AND THE PERIODIC TABLE

ATOMIC STRUCTURE AND THE PERIODIC TABLE 5 ATOMIC STRUCTURE AND THE PERIODIC TABLE Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core

More information

Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information

Chapter 3 Atoms and Elements

Chapter 3 Atoms and Elements Chapter 3 Atoms and Elements 1 Elements Elements are pure substances that cannot be separated into simpler substances by ordinary laboratory processes the building blocks of matter listed on the inside

More information

1301 TEST 1 REVIEW SHEET. You need to read chapters 1 through 4 All is fair game unless I announce otherwise on Wednesday before the test.

1301 TEST 1 REVIEW SHEET. You need to read chapters 1 through 4 All is fair game unless I announce otherwise on Wednesday before the test. 1301 TEST 1 REVIEW SHEET You need to read chapters 1 through 4 All is fair game unless I announce otherwise on Wednesday before the test. Introductory Stuff Scientific Method Atoms and Molecules; Dalton

More information

Chapter 10. Modern Atomic Theory and the Periodic Table

Chapter 10. Modern Atomic Theory and the Periodic Table Chapter 10 Modern Atomic Theory and the Periodic Table 1 10.1 A brief history 10.1 A brief history atoms proposed by Greek philosopher Dalton s model of atom Thomson s model Rutherford s model there remain

More information

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge ATOMIC THEORY The smallest component of an element that uniquely defines the identity of that element is called an atom. Individual atoms are extremely small. It would take about fifty million atoms in

More information

CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS HEINS10-118-128v4.qxd 12/30/06 2:05 PM Page 118 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. An electron orbital is a region in space around the nucleus of an

More information

8/29/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory (1808) J. J. Thomson. Thomson s Experiment

8/29/2011. The Greek Philosophers. Atomic Structure & The Periodic Table. Dalton s Atomic Theory (1808) J. J. Thomson. Thomson s Experiment Atomic Structure & The Periodic Table The Greek Philosophers Democritus believed that all matter is made up of tiny particles that could not be divided Aristotle -- thought that matter was made of only

More information

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 6.9 What are the basic SI units for? (a) the wavelength of light meters, although colors are usually reported in 3 digit

More information

Surviving Chemistry. One Concept at a Time. Engaging and Easy-to-learn Guided Study of High School Chemistry

Surviving Chemistry. One Concept at a Time. Engaging and Easy-to-learn Guided Study of High School Chemistry Surviving Chemistry One Concept at a Time Atomic Structure Engaging and Easy-to-learn Guided Study of High School Chemistry Guided Study Book. One Concept at a Time A Guided Study and Workbook for High

More information

Review - Atomic Structure

Review - Atomic Structure Name: Tuesday, June 03, 2008 Review - Atomic Structure 1. The number of neutrons in the nucleus of an atom can be determined by 1. adding the atomic number to the mass number 3. adding the mass number

More information

Atomic Theory Test 3.1

Atomic Theory Test 3.1 Name: Atomic Theory Test 3.1 Multiple Choice 1. What is the total number of electrons in the 2p sublevel of a chlorine atom in the ground state? 6; (2) 2; (3) 3; 5. 2. Rutherford's model of the atom postulated

More information

Worked solutions to student book questions Chapter 2 A particle view of matter

Worked solutions to student book questions Chapter 2 A particle view of matter Q1. Dalton and Thomson each proposed a model of an atom. a What experimental evidence did Thomson have that was not available to Dalton? b As a result of this experimental evidence, how did Thomson s model

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

Electron Configurations

Electron Configurations SECTION 4.3 Electron Configurations Bohr s model of the atom described the possible energy states of the electron in a hydrogen atom. The energy states were deduced from observations of hydrogen s emissionline

More information

[Document title] [Document subtitle] Chemistry Revision Notes By Johnathan Reynolds

[Document title] [Document subtitle] Chemistry Revision Notes By Johnathan Reynolds [Document title] [Document subtitle] Chemistry Revision Notes By Johnathan Reynolds Leaving Certificate Chemistry (Higher & Ordinary Level) Points to note about the Chemistry examination: 1. Higher & Ordinary

More information

Name: Worksheet: Electron Configurations. I Heart Chemistry!

Name: Worksheet: Electron Configurations. I Heart Chemistry! 1. Which electron configuration represents an atom in an excited state? 1s 2 2s 2 2p 6 3p 1 1s 2 2s 2 2p 6 3s 2 3p 2 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2 2s 2 2p 6 3s 2 Worksheet: Electron Configurations Name:

More information

1. Structure and Properties of the Atom

1. Structure and Properties of the Atom SACE Stage 1 Chemistry - The Essentials 1. Structure and Properties of the Atom 1.1 Atoms: A simple definition of the atom is that it is the smallest particle that contains the properties of that element.

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and

More information

History of Atomic Theory

History of Atomic Theory History of Atomic Theory Alchemy ~ Before 400 B.C. Experiment: Pseudoscience concerned with: Changing metal to gold Finding an eternal life elixir Aristotle Beliefs: All matter was made up of a combination

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

Chapter 3 Applying Your Knowledge- Even Numbered

Chapter 3 Applying Your Knowledge- Even Numbered Chapter 3 Applying Your Knowledge- Even Numbered 2. Elements in a specific compound are always present in a definite proportion by mass; for example, in methane, CH 4, 12 g of carbon are combined with

More information

CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure

CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure CHAPTER 4 TEST: Atoms, Atomic Theory and Atomic Structure Matching. A. Bohr B. Democritus C. Rutherford D. Dalton E. Thomson F. Schrodinger name HPS # date: 1. 2. 3. 4. 5. 6. Greek thinker; called nature

More information

The Structure of the Atom

The Structure of the Atom The Structure of the Atom Copyright Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc. Section 4. Early Ideas About Matter pages 02 05 Section 4. Assessment page 05. Contrast the methods

More information

b. How is the modern periodic table arranged? In order of increasing atomic number

b. How is the modern periodic table arranged? In order of increasing atomic number Unit 3 Review Chapters 4 (Atomic Structure) & 6 (Periodic Table) Part 1: Answer the following questions. 1. a. Which scientist created the first modern atomic theory? John Dalton b. What was his theory?

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

CHM101 Lab The Periodic Table and Atomic Structure Grading Rubric

CHM101 Lab The Periodic Table and Atomic Structure Grading Rubric Name Team Name CHM101 Lab The Periodic Table and Atomic Structure Grading Rubric To participate in this lab you must have splash- proof goggles, proper shoes and attire. Criteria Points possible Points

More information

CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13. Electrons in Atoms CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

1. Structure and Properties of the Atom

1. Structure and Properties of the Atom 1. Structure and Properties of the Atom 1.1 Atoms: A simple definition of the atom is that it is the smallest particle that contains the properties of that element. The idea of atoms was first suggested

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

Electromagnetic Radiation and Atomic Spectra POGIL

Electromagnetic Radiation and Atomic Spectra POGIL Name _Key AP Chemistry Electromagnetic Radiation and Atomic Spectra POGIL Electromagnetic Radiation Model 1: Characteristics of Waves The figure above represents part of a wave. The entire wave can be

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented below. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the other

More information

Electron Arrangements

Electron Arrangements Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

More information

Outline. Chapter 6 Electronic Structure and the Periodic Table. Review. Arranging Electrons in Atoms. Fireworks. Atomic Spectra

Outline. Chapter 6 Electronic Structure and the Periodic Table. Review. Arranging Electrons in Atoms. Fireworks. Atomic Spectra Outline William L Masterton Cecile N. Hurley Edward J. Neth cengage.com/chemistry/masterton Chapter 6 Electronic Structure and the Periodic Table Light, photon energies and atomic spectra The hydrogen

More information

The Periodic Table: Chapter Problems Periodic Table Class Work Homework Special Groups Class Work Homework Periodic Families Class Work

The Periodic Table: Chapter Problems Periodic Table Class Work Homework Special Groups Class Work Homework Periodic Families Class Work The Periodic Table: Chapter Problems Periodic Table 1. As you move from left to right across the periodic table, how does atomic number change? 2. What element is located in period 3, group 13? 3. What

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Section A Q1 The first six ionisation energies of four elements, A to D, are given. Which element is most likely to be in Group IV of the Periodic Table? Q2 In which species are the numbers of electrons

More information

Atoms, Molecules, Formulas, and Subatomic Particles

Atoms, Molecules, Formulas, and Subatomic Particles Introduction to Chemistry Chapter 5 1 Atoms, Molecules, Formulas, and Subatomic Particles The Atom: The smallest particle of an element that can exist and still have the properties of the element building

More information

Elements, Atoms & Ions

Elements, Atoms & Ions Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

More information

electron configuration

electron configuration electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1

More information

3.2 The Quantum Mechanical Model of the Atom. Section Review Answers

3.2 The Quantum Mechanical Model of the Atom. Section Review Answers CD-ROM) Section Review Answers Student Textbook page 130 1. (a) Thomson's model of the atom focussed on the electrons. Rutherford's model focussed on the nucleus. Thomson viewed the atom as a positively

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Final Semester 1 Review Sheet

Final Semester 1 Review Sheet Final Semester 1 Review Sheet Chapter 1&3 What is Chemistry Matter Mass Weight Scientific method o Observation Observation vs. inference (know the difference) Qualitative data Quantitative data o Hypothesis

More information

Chapter Two Study Guide Answers

Chapter Two Study Guide Answers Chapter Two Study Guide Answers Concepts 1. Know the law of conservation of mass 2. Know about the structure of the atom and who did what including Thomson, Rutheford, Millikan, Bohr 3. Know the three

More information

Section 11.3 Atomic Orbitals Objectives

Section 11.3 Atomic Orbitals Objectives Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location

More information

The idea of arranging the elements in the periodic table according to their chemical and physical properties is attributed to. d) Ramsay.

The idea of arranging the elements in the periodic table according to their chemical and physical properties is attributed to. d) Ramsay. Chemistry I PERIODIC TABLE PRACTICE QUIZ Mr. Scott Select the best answer. 1) The idea of arranging the elements in the periodic table according to their chemical and physical properties is attributed

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

Models of the Atom and periodic Trends Exam Study Guide

Models of the Atom and periodic Trends Exam Study Guide Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

More information