1. Newton s Laws of Motion and their Applications Tutorial 1


 Emery Jennings
 1 years ago
 Views:
Transcription
1 1. Newton s Laws of Motion and their Applications Tutorial On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0 N. If the astronaut exerts an upward force of 46.2 N on the rock, what is its acceleration? (1.2 m/s 2 in the y direction) 1.2 A 92kg water skier floating in a lake is pulled from rest to a speed of 12 m/s in a distance of 25 m. What is the net force exerted on the skier, assuming his acceleration is constant? (260N) 1.3 A 42.0kg parachutist lands moving straight downward with a speed of 3.85 m/s. (a) If the parachutist comes to rest with constant acceleration over a distance of m, what force does the ground exert on her? (b) If the parachutist comes to rest over a shorter distance, is the force exerted by the ground greater than, less than, or the same as in part (a)? Explain. (415N, y direction) 1.4 A 747 airliner lands and begins to slow to a stop as it moves along the runway. If its mass is kg, its speed is 27.0 m/s, and the net braking force is N, (a) what is its speed 7.50 s later? (b) How far has it traveled in this time? (17.8 m/s, 168m) 1.5 You hold a brick at rest in your hand. (a) How many forces act on the brick? (b) Identify these forces. (c) Are these forces equal in magnitude and opposite in direction? (d) Are these forces an actionreaction pair? Explain. 1.6 On vacation, your 1300kg car pulls a 540kg trailer away from a stoplight with an 2 acceleration of m s. (a) What is the net force exerted by the car on the trailer? (b) What force does the trailer exert on the car? (c) What is the net force acting on the car? (1.0kN x direction, 1.0kN x direction, 2.5kN x direction) 1.7 A force of magnitude 7.50 N pushes three boxes with masses m kg, m 1 = = kg, and m 3 = kg, as shown in Figure 1.7. Find the magnitude of the contact force (a) between boxes 1 and 2, and (b) between boxes 2 and 3. (6.64N, 3.91N) Figure Two boxes sit sidebyside on a smooth horizontal surface. The lighter box has a mass of 5.2 kg, the heavier box has a mass of 7.4 kg. (a) Find the contact force between these boxes when a horizontal force of 5.0 N is applied to the light box. (b) If the 5.0N force is applied to the heavy box instead, is the contact force between the boxes the same as, greater than, or less than the contact force in part (a)? Explain. (c) Verify your answer to part (b) by calculating the contact force in this case. (3.0N, 2.1N) 1.9 A farm tractor tows a 3900kg trailer up a 16 incline with a steady speed of 3.0 m/s. What force does the tractor exert on the trailer? (Ignore friction.) (11kN) 1. Newton s Laws of Motion and their Applications 1 of 8
2 1.10 A shopper pushes a 7.5kg shopping trolley up a 13 incline, as shown in Figure Find the magnitude of the horizontal force, F, r 2 needed to give the trolley an acceleration of 1.41 m s. (28N) Figure Two crewmen pull a raft through a lock, as shown in Figure One crewman pulls with a force of 130 N at an angle of 34 relative to the forward direction of the raft. The second crewman, on the opposite side of the lock, pulls at an angle of 45. With what force should the second crewman pull so that the net force of the two crewmen is in the forward direction? (0.10kN) Figure To give a 19kg child a ride, two teenagers pull on a 3.7kg sled with ropes, as indicated in Figure Both teenagers pull with a force of 55 N at an angle of 35 relative to the forward direction, which is the direction of motion. In addition, the snow exerts a retarding force on the sled that points opposite to the direction of motion, and has a magnitude of 57 N. Find the acceleration of the sled and child. (1.5m/s 2, x direction) Figure Newton s Laws of Motion and their Applications 2 of 8
3 1.13 A 65kg skier speeds down a trail, as shown in Figure The surface is smooth and inclined at an angle of 22 with the horizontal. (a) Find the direction and magnitude of the net force acting on the skier. (b) Does the net force exerted on the skier increase, decrease, or stay the same as the slope becomes steeper? Explain. (0.24kN) Figure Figure 1.14 shows the Earth, Moon, and Sun (not to scale) in their relative positions at the time when the Moon is in its third quarter phase. Though few people realize it, the force exerted on the Moon by the Sun is actually greater than the force exerted on the Moon by the Earth. In fact, the force exerted on the Moon by the Sun has a magnitude of F SM = N, whereas the force exerted by the Earth has a magnitude of only F EM = N. These forces are indicated to scale in Figure Find (a) the direction and (b) the magnitude of the net force acting on the Moon. (c) Given that the mass of the Moon is M M = kg, find the magnitude of its acceleration at the time of the thirdquarter phase. (24.5 above x axis, N, m/s 2 ) Figure Suppose a rocket launches with an acceleration of 30 2 an 88kg astronaut aboard this rocket? (3.5kN). m/s 2. What is the apparent weight of 1.16 As part of a physics experiment, you stand on a bathroom scale in an elevator. Though your normal weight is 610 N, the scale at the moment reads 730 N. (a) Is the acceleration of the elevator upward, downward, or zero? Explain. (b) Calculate the magnitude of the elevator s acceleration. (c) What, if anything, can you say about the velocity of the elevator? Explain. (1.9m/s 2 ) 1.17 When you lift a bowling ball with a force of 82 N, the ball accelerates upward with an acceleration a. If you lift with a force of 92 N, the ball s acceleration is 2a. Find (a) the weight of the bowling ball, and (b) the acceleration a. (72N, 1.4m/s 2 ) 1.18 A 23kg suitcase is being pulled with constant speed by a handle that is at an angle of 25 above the horizontal. If the normal force exerted on the suitcase is 180 N, what is the force F applied to the handle? (0.11kN) 1. Newton s Laws of Motion and their Applications 3 of 8
4 1.19 A 9.3kg child sits in a 3.7kg high chair. (a) Draw a freebody diagram for the child, and find the normal force exerted by the chair on the child. (b) Draw a freebody diagram for the chair, and find the normal force exerted by the floor on the chair. (91N, 0.13kN) 1.20 A 5.0kg bag of potatoes sits on the bottom of a stationary shopping cart. (a) Sketch a freebody diagram for the bag of potatoes. (b) Now suppose the cart moves with a constant velocity. How does this affect your freebody diagram? Explain An ant walks slowly away from the top of a bowling ball, as shown in Figure If the ant starts to slip when the normal force on its feet drops below onehalf its weight, at what angle θ does slipping begin? (60 ) Figure A child goes down a playground slide with an acceleration of 116. m/s 2. Find the coefficient of kinetic friction between the child and the slide if the slide is inclined at an angle of 31.0 below the horizontal. (0.436) 1.23 When you push a 1.80kg book resting on a tabletop, it takes 2.25 N to start the book sliding. Once it is sliding, however, it takes only 1.50 N to keep the book moving with constant speed. What are the coefficients of static and kinetic friction between the book and the tabletop? (0.127, ) 1.24 To move a large crate across a rough floor, you push on it with a force F at an angle of 21 below the horizontal, as shown in Figure Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static friction between the crate and the floor is (0.25kN) Figure A person places a cup of coffee on the roof of her car while she dashes back into the house for a forgotten item. When she returns to the car, she hops in and takes off with the coffee cup still on the roof. (a) If the coefficient of static friction between the coffee cup and the roof of the car is 0.24, what is the maximum acceleration the car can have without causing the cup to slide? Ignore the effects of air resistance. (b) What is the smallest amount of time in which the person can accelerate the car from rest to 15 m/s and still keep the coffee cup on the roof? (2.4m/s 2, 6.4s) 1. Newton s Laws of Motion and their Applications 4 of 8
5 1.26 The coefficient of kinetic friction between the tires of your car and the roadway is µ. (a) If your initial speed is v and you lock your tires during braking, how far do you skid? Give your answer in terms of v, µ, and m, the mass of your car. (b) If you double your speed, what happens to the stopping distance? (c) What is the stopping distance for a truck with twice the mass of your car, assuming the same initial speed and coefficient of kinetic friction? (v 2 /2µg) 1.27 A 50.0kg person takes a nap in a backyard hammock. Both ropes supporting the hammock are at an angle of 15.0 above the horizontal. Find the tension in the ropes. (948N) 1.28 A backpack full of books weighing 52.0 N rests on a table in a physics laboratory classroom. A spring with a force constant of 150 N/m is attached to the backpack and pulled horizontally, as indicated in Figure (a) If the spring is pulled until it stretches 2.00 cm and the pack remains at rest, what is the force of friction exerted on the backpack by the table? (b) Does your answer to part (a) change if the mass of the backpack is doubled? Explain. (3N) Figure The equilibrium length of a certain spring with a force constant of k = 250 N/m is 0.18 m. (a) What is the magnitude of the force that is required to hold this spring at twice its equilibrium length? (b) Is the magnitude of the force required to keep the spring compressed to half its equilibrium length greater than, less than, or equal to the force found in part (a)? Explain. (45N) 1.30 A picture hangs on the wall suspended by two strings, as shown in Figure The tension in string 1 is 1.7 N. (a) Is the tension in string 2 greater than, less than, or equal to 1.7 N? Explain. (b) Verify your answer to part (a) by calculating the tension in string 2. (c) What is the weight of the picture? (0.85N, 2.0N) Figure Newton s Laws of Motion and their Applications 5 of 8
6 1.31 The pulley system shown in Figure 1.31 is used to lift a 52kg crate. Note that one chain connects the upper pulley to the ceiling and a second chain connects the lower pulley to the crate. Assuming the masses of the chains, pulleys, and ropes are negligible, determine (a) the force r F required to lift the crate with constant speed, (b) the tension in the upper chain, and (c) the tension in the lower chain. (0.26kN downwards, 0.51kN, 0.51kN) Figure In Figure 1.32 we see two blocks connected by a string and tied to a wall. The mass of the lower block is 1.0 kg; the mass of the upper block is 2.0 kg. Given that the angle of the incline is 31, find the tensions in (a) the string connecting the two blocks and (b) the string that is tied to the wall. (5.1N, 15N) Figure After a skiing accident, your leg is in a cast and supported in a traction device, as shown in Figure Find the magnitude of the force r F exerted by the leg on the small pulley. (By Newton s third law, the small pulley exerts an equal and opposite force on the leg.) Let the mass m be 2.50 kg. (42.5N) Figure Newton s Laws of Motion and their Applications 6 of 8
7 1.34 You want to nail a 1.6kg board onto the wall of a barn. To position the board before nailing, you push it against the wall with a horizontal force r F to keep it from sliding to the ground. (Figure 1.34) (a) If the coefficient of static friction between the board and the wall is 0.79, what is the least force you can apply and still hold the board in place? (b) What happens to the force of static friction if you push against the wall with a force greater than that found in part (a)? (20N) Figure Two blocks are connected by a string, as shown in Figure The smooth inclined surface makes an angle of 35 with the horizontal, and the block on the incline has a mass of 5.7 kg. The mass of the hanging block is m = 3. 2 kg. Find (a) the direction and (b) the magnitude of the hanging block s acceleration. (0.076m/s 2 ) Figure A 3.50kg block on a smooth tabletop is attached by a string to a hanging block of mass 2.80 kg, as shown in Figure The blocks are released from rest and allowed to move freely. (a) Is the tension in the string greater than, less than, or equal to the weight of the hanging mass? Find (b) the acceleration of the blocks and (c) the tension in the string. (4.36m/s 2, 15.3N) Figure Newton s Laws of Motion and their Applications 7 of 8
8 1.37 Two buckets of sand hang from opposite ends of a rope that passes over an ideal pulley. One bucket is full and weighs 110 N; the other bucket is only partly filled and weighs 63 N. (a) Initially, you hold onto the lighter bucket to keep it from moving. What is the tension in the rope? (b) You release the lighter bucket and the heavier one descends. What is the tension in the rope now? (c) Eventually the heavier bucket lands and the two buckets come to rest. What is the tension in the rope now? (110N, 80N, 63N) 1.38 When you take your 1200kg car out for a spin, you go around a corner of radius 57 m with a speed of 15 m/s. The coefficient of static friction between the car and the road is Assuming your car doesn t skid, what is the force exerted on it by static friction? (4.7kN) 1.39 Find the linear speed of the bottom of a test tube in a centrifuge if the centripetal acceleration there is 52,000 times the acceleration of gravity. The distance from the axis of rotation to the bottom of the test tube is 7.5 cm. (200m/s) 1.40 Driving in your car with a constant speed of 12 m/s, you encounter a bump in the road that has a circular crosssection, as indicated in Figure If the radius of curvature of the bump is 35 m, find the apparent weight of a 67kg person in your car as you pass over the top of the bump. (380N) Figure Referring to Question 1.40, at what speed must you go over the bump if people in your car are to feel weightless? (19m/s) 1. Newton s Laws of Motion and their Applications 8 of 8
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion
Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckleup? A) the first law
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationB) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B
Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north
More informationB) 286 m C) 325 m D) 367 m Answer: B
Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of
More informationConceptual Questions: Forces and Newton s Laws
Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is
More informationChapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.
Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal
More informationPhysics 11 Assignment KEY Dynamics Chapters 4 & 5
Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problemsolving questions, draw appropriate free body diagrams and use the aforementioned problemsolving method.. Define the following
More information2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.
2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More informationChapter 4: Newton s Laws: Explaining Motion
Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state
More informationNewton s Laws PreTest
Newton s Laws PreTest 1.) Consider the following two statements and then select the option below that is correct. (i) It is possible for an object move in the absence of forces acting on the object. (ii)
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationphysics 111N forces & Newton s laws of motion
physics 111N forces & Newton s laws of motion forces (examples) a push is a force a pull is a force gravity exerts a force between all massive objects (without contact) (the force of attraction from the
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationPHYSICS MIDTERM REVIEW
1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If
More informationAP Physics C Fall Final Web Review
Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of
More informationPhysics1 Recitation3
Physics1 Recitation3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time
More informationFriction and Newton s 3rd law
Lecture 4 Friction and Newton s 3rd law Prereading: KJF 4.8 Frictional Forces Friction is a force exerted by a surface. The frictional force is always parallel to the surface Due to roughness of both
More information2. (P2.1 A) a) A car travels 150 km in 3 hours, what is the cars average speed?
Physics: Review for Final Exam 1 st Semester Name Hour P2.1A Calculate the average speed of an object using the change of position and elapsed time 1. (P2.1 A) What is your average speed if you run 140
More informationExplaining Motion:Forces
Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application
More information2. (b). The newton is a unit of weight, and the quantity (or mass) of gold that weighs 1 newton is m 1 N
QUICK QUIZZS 1. Newton s second law says that the acceleration of an object is directly proportional to the resultant (or net) force acting on. Recognizing this, consider the given statements one at a
More information1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2
1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than
More informationChapter 5 Newton s Laws of Motion
Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to welldefined rules. The book Philosophiae
More informationPhysics 201 Fall 2009 Exam 2 October 27, 2009
Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More information6: Applications of Newton's Laws
6: Applications of Newton's Laws Friction opposes motion due to surfaces sticking together Kinetic Friction: surfaces are moving relative to each other a.k.a. Sliding Friction Static Friction: surfaces
More information5. Forces and MotionI. Force is an interaction that causes the acceleration of a body. A vector quantity.
5. Forces and MotionI 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will
More information1 of 7 10/2/2009 1:13 PM
1 of 7 10/2/2009 1:13 PM Chapter 6 Homework Due: 9:00am on Monday, September 28, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]
More informationPHYSICS 218 EXAM 2 Thursday, October 22, 2009
PHYSICS 218 EXAM 2 Thursday, October 22, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:1010:00 526 Recitation Wed 11:3012:20 527 Recitation Wed 1:502:40 528 Recitation Mon 11:3012:20
More informationWhat is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?
Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact
More informationMOTION AND FORCE: DYNAMICS
MOTION AND FORCE: DYNAMICS We ve been dealing with the fact that objects move. Velocity, acceleration, projectile motion, etc. WHY do they move? Forces act upon them, that s why! The connection between
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the NormalForce
More informationPhysics I Honors: Chapter 4 Practice Exam
Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe
More informationWorksheet #1 Free Body or Force diagrams
Worksheet #1 Free Body or Force diagrams Drawing FreeBody Diagrams Freebody diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.
More informationCh 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79
Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life?  car brakes  driving around a turn  walking  rubbing your hands together
More informationMore of Newton s Laws
More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 1921, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so
More informationPhysics Midterm Review. MultipleChoice Questions
Physics Midterm Review MultipleChoice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves
More informationChapter 4 Newton s Laws: Explaining Motion
Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!
More informationLecture Presentation Chapter 4 Forces and Newton s Laws of Motion
Lecture Presentation Chapter 4 Forces and Newton s Laws of Motion Suggested Videos for Chapter 4 Prelecture Videos Newton s Laws Forces Video Tutor Solutions Force and Newton s Laws of Motion Class Videos
More informationUnits DEMO spring scales masses
Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity
More informationWork, Energy and Power Practice Test 1
Name: ate: 1. How much work is required to lift a 2kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill
More informationIsaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law
Isaac Newton (1642 to 1727) Force Chapter 4 Born 1642 (Galileo dies) Invented calculus Three laws of motion Principia Mathematica. Newton s Three Law s of Motion 1. All objects remain at rest or in uniform,
More informationNewton s Laws of Motion
Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first
More informationChapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationClicker Question. A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road.
A tractor driving at a constant speed pulls a sled loaded with firewood. There is friction between the sled and the road. A. positive. B. negative. C. zero. Clicker Question The total work done on the
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A lawn roller in the form of a uniform solid cylinder is being pulled horizontally by a horizontal
More informationChapter 7: Momentum and Impulse
Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting
More informationPHYS101 The Laws of Motion Spring 2014
The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More information1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.
Base your answers to questions 1 through 5 on the diagram below which represents a 3.0kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the
More informationMass, energy, power and time are scalar quantities which do not have direction.
Dynamics Worksheet Answers (a) Answers: A vector quantity has direction while a scalar quantity does not have direction. Answers: (D) Velocity, weight and friction are vector quantities. Note: weight and
More informationGround Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan
PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture
More informationSteps to Solving Newtons Laws Problems.
Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F
More informationPhysics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)
Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More informationHW#4b Page 1 of 6. I ll use m = 100 kg, for parts bc: accelerates upwards, downwards at 5 m/s 2 A) Scale reading is the same as person s weight (mg).
HW#4b Page 1 of 6 Problem 1. A 100 kg person stands on a scale. a.) What would be the scale readout? b.) If the person stands on the scale in an elevator accelerating upwards at 5 m/s, what is the scale
More informationHere is a list of concepts that you will need to include in your observations and explanations:
NEWTON S LAWS Sir Isaac Newton (16421727) is probably one of the most remarkable men in the history of science. He graduated from Cambridge University in England at the age of 23. Records indicate that
More informationPhysics 11 Chapter 4 HW Solutions
Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction
More informationTEACHER ANSWER KEY November 12, 2003. Phys  Vectors 11132003
Phys  Vectors 11132003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude
More informationSection Review Answers. Chapter 12
Section Review Answers Chapter 12 Section 1 1. Answers may vary. Students should say in their own words that an object at rest remains at rest and an object in motion maintains its velocity unless it experiences
More informationLAB 6: GRAVITATIONAL AND PASSIVE FORCES
55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More information56 Chapter 5: FORCE AND MOTION I
Chapter 5: FORCE AND MOTION I 1 An example of an inertial reference frame is: A any reference frame that is not accelerating B a frame attached to a particle on which there are no forces C any reference
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationHW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set II page 1 of 9 450 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco
More information9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J
1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9
More information4 Gravity: A Force of Attraction
CHAPTER 1 SECTION Matter in Motion 4 Gravity: A Force of Attraction BEFORE YOU READ After you read this section, you should be able to answer these questions: What is gravity? How are weight and mass different?
More informationF13HPhysQ5 Practice
Name: Class: Date: ID: A F13HPhysQ5 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A vector is a quantity that has a. time and direction.
More information2 Newton s First Law of Motion Inertia
2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)
More information356 CHAPTER 12 Bob Daemmrich
Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,
More informationNewton s Third Law. object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1
Newton s Third Law! If two objects interact, the force exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force exerted by object 2 on object 1!! Note on notation: is
More informationLAB 6  GRAVITATIONAL AND PASSIVE FORCES
L061 Name Date Partners LAB 6  GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies
More informationP113 University of Rochester NAME S. Manly Fall 2013
Final Exam (December 19, 2013) Please read the problems carefully and answer them in the space provided. Write on the back of the page, if necessary. Show all your work. Partial credit will be given unless
More informationForces. Lecturer: Professor Stephen T. Thornton
Forces Lecturer: Professor Stephen T. Thornton Reading Quiz: Which of Newton s laws refers to an action and a reaction acceleration? A) First law. B) Second law. C) Third law. D) This is a trick question.
More informationB Answer: neither of these. Mass A is accelerating, so the net force on A must be nonzero Likewise for mass B.
CTA1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass
More informationPhysics Exam 1 Review  Chapter 1,2
Physics 1401  Exam 1 Review  Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental
More informationNewton's First Law. Newton s Laws. Page 1 of 6
Newton's First Law Newton s Laws In previous units, the variety of ways by which motion can be described (words, graphs, diagrams, numbers, etc.) was discussed. In this unit (Newton's Laws of Motion),
More informationWork, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!
Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases
More informationPhysics 201 Homework 5
Physics 201 Homework 5 Feb 6, 2013 1. The (nonconservative) force propelling a 1500kilogram car up a mountain 1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationAP Physics Newton's Laws Practice Test
AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a
More informationThis week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.
This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationcircular motion & gravitation physics 111N
circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would
More informationMechanics 1. Revision Notes
Mechanics 1 Revision Notes July 2012 MECHANICS 1... 2 1. Mathematical Models in Mechanics... 2 Assumptions and approximations often used to simplify the mathematics involved:... 2 2. Vectors in Mechanics....
More informationD) A block pulled with a constant force will have a constant acceleration in the same direction as the force.
Phsics 100A Homework 4 Chapter 5 Newton s First Law A)If a car is moving to the left with constant velocit then the net force applied to the car is zero. B) An object cannot remain at rest unless the net
More informationquestions: force and motion I
questions: force and motion I problem 1 The figure below is an overhead view of a 12 kg tire that is to be pulled by three ropes. One force (F l, with magnitude 50 N) is indicated. Orient the other two
More informationSHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.
More information1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?
Physics 2A, Sec C00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPH 2211D Spring Force and Motion II. Lecture Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)
PH 2211D Spring 2013 Force and Motion II Lecture 1213 Chapter 6 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) Chapter 6 Force and Motion II In this chapter we will cover the following
More informationPhysics 2101, First Exam, Fall 2007
Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the
More informationPhysics Honors: Chapter 7 Practice Test
Physics Honors: Chapter 7 Practice Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When an object is moving with uniform circular motion,
More informationReview Chapters 2, 3, 4, 5
Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freelyfalling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string
More informationUNIT 2D. Laws of Motion
Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics the study of forces that act on bodies in motion. First Law of Motion
More informationPhysics Classroom Website Webquest Lisa Peck
Physics Classroom Website Webquest Lisa Peck http://www.physicsclassroom.com/class/newtlaws/newtltoc.html Lesson 1: Newton s 1st Law 1. There are many applications of Newton's first law of motion. Several
More informationNewton s Laws of Motion
Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems
More information