# Molecular Geometry. How can molecular shapes be predicted using the VSEPR theory? H 2. CO 3 electron domains (3 bonding, 0 nonbonding)

Save this PDF as:

Size: px
Start display at page:

Download "Molecular Geometry. How can molecular shapes be predicted using the VSEPR theory? H 2. CO 3 electron domains (3 bonding, 0 nonbonding)"

## Transcription

1 Why? Molecular Geometry How can molecular shapes be predicted using the VSEPR theory? When you draw a Lewis structure for a molecule on paper, you are making a two-dimensional representation of the atoms. In reality however, molecules are not flat they are three-dimensional. The true shape of a molecule is important because it determines many physical and chemical properties for the substance. In this activity you will learn how to predict molecular shapes. Model 1 Lewis Structures H 2 CO 3 electron domains (3 bonding, 0 nonbonding) 3-D Molecular Shape BeF 2 2 electron domains (2 bonding, 0 nonbonding) CH 4 4 electron domains (4 bonding, 0 nonbonding) NH 3 4 electron domains (3 bonding, 1 nonbonding) H 2 O 4 electron domains (2 bonding, 2 nonbonding) Lone pair = CO 2 2 electron domains (2 bonding, 0 nonbonding) Molecular Geometry 1

2 1. Name the type of structures shown in the left-hand column of Model Examine the drawings in Model 1. a. What does a solid line between two element symbols represent in the drawings of the molecules? b. What subatomic particles (protons, neutrons or electrons) make up these solid lines? c. What does a pair of dots represent in the drawing of the molecules? d. What subatomic particle (protons, neutrons or electrons) makes up each dot? 3. In the English language, what does the word domain mean? (Your group must come to consensus on this question.) 4. Which molecules in Model 1 have four electron domains? Circle or highlight the four electron domains in the Lewis structure for each molecule that you identified. 5. Which molecules in Model 1 have two electron domains? Circle or highlight the two electron domains in the Lewis structure for each molecule that you identified. 6. Which molecule in Model 1 has three electron domains? Circle or highlight the three electron domains in the Lewis structure for the molecule that you identified. 7. When determining the number of electron domains in a Lewis structure, which of the following should you count? Find evidence from Model 1 to support your answers. a. Bonds on the center atom b. Lone pairs on the center atom c. Total number of atoms in the molecule d. Lone pairs on peripheral atoms 8. When determining the number of electron domains in a Lewis structure, do you count double bonds as one domain or two domains? Find evidence to support your answer from Model 1. 2 POGIL Activities for High School Chemistry

3 9. Explain the difference between a bonding electron domain and a nonbonding electron domain using the examples in Model Circle the correct word or phrase to complete the sentences: Pairs of electrons will (attract/repel) each other. Two bonds on the same atom will try to get as (close to/far from) each other as possible. A lone pair of electrons and a bonded pair of electrons will (push away from/move toward) each other. Read This! The VSEPR (Valence Shell Electron Pair Repulsion) Theory helps predict the shapes of molecules and is based on the premise that electrons around a central atom repel each other. Electron domains are areas of high electron density such as bonds (single, double or triple) and lone-pairs of electrons. In simple terms VSEPR means that all electron bonding domains and electron nonbonding domains around a central atom need to be positioned as far apart as possible in three-dimensional space. 11. VSEPR theory specifies valence shell electrons. Explain why these are the most critical electrons for determining molecular shape based on your exploration of Model In the VSEPR theory, what is repelling what? 13. Based on the information in the Read This! section, sketch one of the molecular shapes shown below in each of the boxes provided in Model 1. Linear Trigonal planar Three-Dimensional Molecular Shapes Tetrahedral Pyramidal Bent Molecular Geometry 3

4 14. Often we draw Lewis structures with 90 bond angles. Do any of the molecular shapes in Model 1 have 90 bond angles? 15. Are the bond angles in the three-dimensional molecules generally larger or smaller than those shown in the Lewis structures drawn on notebook paper? 16. Why is it possible to get larger angles separating electron domains in three-dimensions versus two-dimensions? 17. Identify the three molecules shown in Model 1 that have four electron domains each. a. What happens to the size of the bond angle(s) in a molecule as the number of lone pairs on the central atom increases? b. Discuss in your group some possible explanations for the trend in part a. Your presenter should be ready to present to the class one or two of your hypotheses for full class discussion. 18. A student does not waste his time drawing a Lewis structure before determining the shape of PF 3. The student thinks that the shape of PF 3 must be trigonal planar because there are three fluorine atoms bonded to the central phosphorus atom. a. Draw the Lewis structure for PF 3. b. Was the student s answer for the shape of a PF 3 molecule correct? Explain. c. Why is it important to draw the Lewis structure for a molecule before identifying the shape of the molecule? 4 POGIL Activities for High School Chemistry

5 19. Complete the following chart: Molecule Lewis Structure 3-D Drawing Name of 3-D Shape Bond Angle H 2 S PH 3 CCl 4 CS 2 Molecular Geometry 5

6 Extension Question 20. Ozone, O 3, is not a linear molecule. Actually it is bent with an angle that is a little less than 120. a. Draw the Lewis structure of ozone, O 3. b. Describe why ozone has a bent shape instead of a linear shape. c. Describe why ozone s bond angle is larger than that of water, H 2 O. 6 POGIL Activities for High School Chemistry

### Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

### PREDICTING MOLECULAR SHAPE AND POLARITY USING VSEPR THEORY

EXPERIMENT 2 PREDICTING MOLECULAR SHAPE AND POLARITY USING VSEPR THEORY Materials Needed Molecular model kit. Textbook Reading Smith, chapter 3.10-3.12 Background In this lab, you will practice your understanding

### Molecular Models: Lewis Structure and VSEPR Theory

Minneapolis Community & Technical College Chemistry Department Chem 1020 Laboratory Molecular Models: Lewis Structure and VSEPR Theory bjectives To determine the Lewis structure for a molecule To determine

### Lab Manual Supplement

Objectives 1. Learn about the structures of covalent compounds and polyatomic ions. 2. Draw Lewis structures based on valence electrons and the octet rule. 3. Construct 3-dimensional models of molecules

### EXPERIMENT - 1. Molecular Geometry- Lewis Dot structures

EXPERIMENT - 1 Molecular Geometry- Lewis Dot structures INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope, most of our information

### Lewis Structures. Molecular Shape. VSEPR Model (Valence Shell Electron Pair Repulsion Theory)

Lewis Structures Molecular Shape VSEPR Model (Valence Shell Electron Pair Repulsion Theory) PART 1: Ionic Compounds Complete the table of Part 1 by writing: The Lewis dot structures for each metallic and

### EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

### Laboratory 20: Review of Lewis Dot Structures

Introduction The purpose of the laboratory exercise is to review Lewis dot structures and expand on topics discussed in class. Additional topics covered are the general shapes and bond angles of different

### What Are the Shapes of Molecules?

Lab 7 Name What Are the Shapes of Molecules? Pre-Lab Assignment Read the entire lab handout. There is no written pre-lab assignment for this lab. Learning Goals Derive the Lewis structure of a covalent

### Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

### Lewis Structure Exercise

Lewis Structure Exercise A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared electron

### Laboratory 11: Molecular Compounds and Lewis Structures

Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

### Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory

Structures and Properties of Substances Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory The VSEPR theory In 1957, the chemist Ronald Gillespie and Ronald Nyholm, developed a model for

### Chemistry 3012 Foundational Chemistry Laboratory Manual

Chemistry 3012 Foundational Chemistry Laboratory Manual Table of Contents Page Experiment 1. Experiment 2. Experiment 3. Experiment 4. Experiment 5. Experiment 6. Experiment 7. Experiment 8. Determining

### Background: Electron Dot Formula Basics

Background: Electron Dot Formula Basics 1. What do the dots in an electron dot formula represent? 2. Describe the pattern of electron dot formulas as you move from left to right in a period of the Periodic

### Illustrating Bonds - Lewis Dot Structures

Illustrating Bonds - Lewis Dot Structures Lewis Dot structures are also known as electron dot diagrams These diagrams illustrate valence electrons and subsequent bonding A line shows each shared electron

### Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion A covalent bond is a bond formed due to a sharing of electrons. Lewis structures provide a description

### Unit 8: Drawing Molecules

Unit 8: Drawing Molecules bjectives Topic 1: Lewis Dot Diagrams & Ionic Bonding 1. Draw a Lewis dot diagram of any representative element. 2. Draw a Lewis dot diagram of any ionic compound. A Lewis structure

### EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

### Chemical Bonds, Molecular Models and Shapes

Chem 100 Section Experiment 6 Chemical Bonds, Molecular Models and Shapes Introduction The properties of chemical compounds are directly related to the ways in which atoms are bonded together into molecules.

### Both molecules have the same polarity. Circle the word that describes the polarity of these molecules. polar non-polar Justify your choice.

QUESTION (2015:1) (c) BeCl2 and BF3 are unusual molecules because there are not enough electrons for the central atoms, Be and B, to have a full valence shell. Their Lewis structures are shown below. Both

### Molecular Structures

E x p e r i m e n t Molecular Structures Objectives To determine the number of valence electrons in molecules. To determine the Lewis structure of molecules. To determine the electron pair geometry and

### Lewis Structures & the VSEPR Model

Lewis Structures & the VSEPR Model A Directed Learning Activity for Hartnell College Chemistry 1 Funded by the Title V STEM Grant #P031S090007 through Hartnell College For information contact lyee@hartnell.edu

### Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories 1. or a molecule with the formula AB 2 the molecular shape is. (a). linear or trigonal planar (b). linear or bent (c). linear or T-shaped (d). T-shaped

### Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

### Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

### Covalent Bonding and Molecular Geometry

Name Section # Date of Experiment Covalent Bonding and Molecular Geometry When atoms combine to form molecules (this also includes complex ions) by forming covalent bonds, the relative positions of the

### CHEM 121: Molecular Models

CHEM 121: Molecular Models Introduction Electron Dot Formulas Molecular Models In this lab, you will study covalently bonded molecules i.e., molecules where nonmetal atoms are held together because they

### Linear (2 atoms around central atom) Trigonal Planar (3 atoms around central atom) Tetrahedral (pyramid has 4 faces) (4 atoms around central atom)

Step by step: Drawing Molecular Structures / Lewis Structures Molecular Shapes and Names **The names refer to where the atoms are located, not where the electrons are located!** Linear Linear (2 atoms

### Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

### Drawing Lewis Structures

Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

### 7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

### Chapter 8. Chemical Bonding. Introduction. Molecular and Ionic Compounds. Chapter 8 Topics. Ionic and Covalent. Ionic and Covalent

Introduction Chapter 8 Chemical Bonding How and why to atoms come together (bond) to form compounds? Why do different compounds have such different properties? What do molecules look like in 3 dimensions?

### Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

### Chapter 5. The covalent bond model

Chapter 5 The covalent bond model What s a comin up? Covalent bond model Lewis structures for molecular compounds Multiple bonds Coordinate covalent bonds Guidelines for drawing correct Lewis structures

### C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

### Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

### 5. Which of the following subatomic particles are most important in determining the chemical reactivity and physical properties of an atom?

1. For the following compounds draw the Lewis Structure and determine: (a) The # of Bonding Pairs (b) The # of Lone pairs (c) The electron domain shape (d) The molecular shape (e) Hybridization (f) Whether

### Chemistry 4th Edition McMurry/Fay

7 Chapter Covalent Bonding Chemistry 4th Edition McMurry/Fay Dr. Paul Charlesworth Michigan Technological University The Covalent Bond 01 Covalent bonds are formed by sharing at least one pair of electrons.

### Molecular Geometry & Polarity

Name AP Chemistry Molecular Geometry & Polarity Molecular Geometry A key to understanding the wide range of physical and chemical properties of substances is recognizing that atoms combine with other atoms

### Chapter 12 Review 1: Covalent Bonds and Molecular Structure

Chapter 12 Review 1: Covalent Bonds and Molecular Structure 1) How are ionic bonds and covalent bonds different, and what types of elements combine to form each? Ionic bonds result from the transfer of

### 11 Chemical Bonds: The Formation of Compounds from Atoms. Chapter Outline. Periodic Trends in Atomic Properties. Periodic Trends in Atomic Properties

11 Chemical Bonds The Formation of Compounds from Atoms Chapter Outline 11.1 11.2 Lewis Structures of Atoms 11.3 The Ionic Bond Transfer of Electrons from One Atom to Another 11.4 Predicting Formulas of

### VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

### Chemical Bonds. a. Duet Rule: 2 electrons needed to satisfy valence shell. i. What follows this rule? Hydrogen and Helium

Chemical Bonds 1. Important points about Lewis Dot: a. Duet Rule: 2 electrons needed to satisfy valence shell. i. What follows this rule? Hydrogen and Helium b. Octet Rule: 8 electrons needed to satisfy

### EXPERIMENT 14: COMPARISONS OF THE SHAPES OF MOLECULES AND IONS USING MODELS

EXPERIMENT 14: CMPARISNS F TE SAPES F MLECULES AND INS USING MDELS PURPSE Models of various molecules and ions will be constructed and their shapes and geometries will be compared. BACKGRUND LEWIS STRUCTURES

### Chapter 9-10 practice test

Class: Date: Chapter 9-10 practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which one of the following is most likely to be an ionic compound?

### Unit 28 Molecular Geometry

Unit 28 Molecular Geometry There are two concepts in the study of molecular geometry. One is called the Valence Shell Electron Pair Repulsion (VSEPR) model. The other is electron orbital hybridization.

### 5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

### Chapter 8. Homework. Valence Electrons. Molecular Structure & Bonding. Example of Lewis Dot Symbols

Homework Chapter 8 Bonding and Molecular Shapes: Fundamental Concepts Chapter 8 21, 23, 31, 35, 39, 47, 51, 57, 61, 65, 71, 73, 81, 83, 89, 105, 109, 113 Molecular Structure & Bonding Structure Refers

### ch9 and 10 practice test

1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

### CH101/105, GENERAL CHEMISTRY LABORATORY

CH101/105, GENERAL CHEMITRY LABORATORY LABORATORY LECTURE 5 EXPERIMENT 5: LEWI TRUCTURE AND MOLECULAR HAPE Lecture topics I. LEWI TRUCTURE a) calculation of the valence electron numbers; b) choosing the

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A chemical bond formed between two identical atoms is a(an) bond. A) covalent B) ionic C) molecular

### Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

### Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals

Covalent Bonding What is covalent bonding? Covalent Bonds: overlap of orbitals σ-bond π-bond Molecular Orbitals Hybrid Orbital Formation Shapes of Hybrid Orbitals Hybrid orbitals and Multiple Bonds resonance

### George Mason University General Chemistry 211 Chapter 10 The Shapes (Geometry) of Molecules

Acknowledgements George Mason University General Chemistry 211 Chapter 10 The Shapes (Geometry) of Molecules Course Text Chemistry the Molecular Nature of Matter and Change, 7 th edition, 2011, McGraw-Hill

### Leaving Cert Chemistry. Free Notes. Chemical Bonding

Leaving Cert Chemistry Free Notes Chemical Bonding Chemical Bonding: Molecule: Group of atoms which are chemically joined e.g. 2 0, CO 2 and C 4. A molecule can be polar or non polar. Difference between

### REVIEW QUESTIONS Chapter electrons

Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 10 1. Draw Lewis structures and determine the molecular geometry of each molecule or ion shown below: A) ClO 2 20 electrons Bent (from tetrahedral) B)

### Lewis Dot Structure Answer Key

Lewis Dot Structure Answer Key 1) Nitrogen is the central atom in each of the following species: N2 N2 - N2 + Nitrogen can also form electron deficient compounds with a single unpaired electron on the

### Part A: Lewis Structures (How do I draw a legitimate Lewis structure?)

hemactivity 2 Lewis Structures 1 hemactivity 2 Part A: Lewis Structures (ow do I draw a legitimate Lewis structure?) Dot and line-bond representations which follow certain rules will be called legitimate

### Shapes of Molecules and Bonding

Shapes of Molecules and onding Molecular geometry is governed by energy. Molecules receive such geometry as to minimize their potential energy. A striking example is DA. Lewis Dot Structures 1. VAL (total

### Modeling Molecular Structure

PRELAB: Reading: Modeling Molecular Structure Make sure to have read Chapters 8 and 9 in Brown, Lemay, and Bursten before coming to lab. Bring your textbook to lab and a pencil. INTRDUCTIN: Chemists often

### CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING Active Learning Questions: 3-9, 11-19, 21-22 End-of-Chapter Problems: 1-36, 41-59, 60(a,b), 61(b,d), 62(a,b), 64-77, 79-89, 92-101, 106-109, 112, 115-119 An American chemist

### Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

(Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

### Experiment 5 Can You Model This?

Experiment 5 Can You Model This? OUTCOMES After completing this experiment, the student should be able to: Differentiate between molecular compounds and ionic compounds. Construct Lewis-dot structures

### 2. Atoms with very similar electronegativity values are expected to form

AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

### Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

### Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

NCEA Level 2 Chemistry (91164) 2015 page 1 of 7 Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence Statement Q Evidence

### The Lewis electron dot structures below indicate the valence electrons for elements in Groups 1-2 and Groups 13-18

AP EMISTRY APTER REVIEW APTER 7: VALENT BNDING You should understand the nature of the covalent bond. You should be able to draw the Lewis electron-dot structure for any atom, molecule, or polyatomic ion.

### Ch 8-9 Practice Test Answer Key

Ch 8-9 Practice Test Answer Key 18. Which of the atoms below is least likely to violate the octet rule? a) Be- deficient likely b) P- can expland c) S- can expand d) B- deficient is likely e) F- usually

### Geometries and Valence Bond Theory Worksheet

Geometries and Valence Bond Theory Worksheet Also do Chapter 10 textbook problems: 33, 35, 47, 49, 51, 55, 57, 61, 63, 67, 83, 87. 1. Fill in the tables below for each of the species shown. a) CCl 2 2

### : : Solutions to Additional Bonding Problems

Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

### 8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table

Periodic Trends and Lewis Dot Structures Chapter 11 Review PERIODIC Table Recall, Mendeleev and Meyer organized the ordering the periodic table based on a combination of three components: 1. Atomic Number

### ACE PRACTICE TEST Chapter 8, Quiz 3

ACE PRACTICE TEST Chapter 8, Quiz 3 1. Using bond energies, calculate the heat in kj for the following reaction: CH 4 + 4 F 2 CF 4 + 4 HF. Use the following bond energies: CH = 414 kj/mol, F 2 = 155 kj/mol,

### Periodic Table Trends

Name Date Period Periodic Table Trends (Ionization Energy and Electronegativity) Ionization Energy The required to an electron from a gaseous atom or ion. Period Trend: As the atomic number increases,

### 3.4 Covalent Bonds and Lewis Structures

3.4 Covalent Bonds and Lewis Structures The Lewis Model of Chemical Bonding In 1916 G. N. Lewis proposed that atoms combine in order to achieve a more stable electron configuration. Maximum stability results

### Effect of unshared pairs on molecular geometry

Chapter 7 covalent bonding Introduction Lewis dot structures are misleading, for example, could easily represent that the electrons are in a fixed position between the 2 nuclei. The more correct designation

### Lewis Structures. Sections Learning goals:

1 Lewis Structures. Sections 3.3-3.7 Learning goals: (1) Writing valid Lewis structures for the constitutional structure of molecular substances for a given composition. (2) Predicting molecular geometry

### CH 222 Chapter Seven Concept Guide

CH 222 Chapter Seven Concept Guide 1. Lewis Structures Draw the Lewis Dot Structure for cyanide ion, CN -. 1 C at 4 electrons = 4 electrons 1 N at 5 electrons = 5 electrons -1 charge = + 1 electron Total

### Molecular Geometry and Molecular Models

Experiment 10 Molecular Geometry and Molecular Models molecular geomometry background.wpd INTENT The purpose of this experiment is to introduce to you some of the basic theories and techniques used by

### SHAPES OF MOLECULES (VSEPR MODEL)

1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

### Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

### Valence shell electrons repel each other Valence shell electrons are arranged geometrically around the central atom to

Molecular Geometry (Valence Shell Electron Pair Repulsion -VSEPR) & Hybridization of Atomic Orbitals (Valance Bond Theory) Chapter 10 Valence Shell Electron Pair Repulsion (VSEPR) Valence shell electrons

### UNIT TEST Atomic & Molecular Structure. Name: Date:

SCH4U UNIT TEST Atomic & Molecular Structure Name: _ Date: Part A - Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Who postulated that electrons

### Section 1: Organic Structure and Bonding

Section 1: Organic Structure and Bonding What is Organic Chemistry? Compounds containing only carbon and hydrogen, also known as, are the simplest form of organic compounds. Examples: C C C C C C Atoms

### Chemical Bonding and Molecular Structure (Chapter 10)

Chemical Bonding and Molecular Structure (Chapter 10) Molecular Structure 1. General Summary -- Structure and Bonding Concepts Electronic Configuration of Atoms Octet Rule Lewis Electron Dot ormula of

### Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

### 4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions

Molecular Shape and Polarity 4.2 molecule is a discrete chemical entity, in which atoms are held together by the electrostatic attractions of covalent bonds. In previous chemistry courses, you used Lewis

### Chapter 8: Bonding General Concepts. Valence Electrons. Representative Elements & Lewis Dot Structures

Chapter 8: Bonding General Concepts Valence Electrons 8.1 Chemical Bond Formation 8.2 Covalent Bonding (Lewis Dot Structures) 8.3 Charge Distribution in Covalent Compounds 8.4 Resonance 8.5 Molecular Shapes

### Order of Filling Subshells

Bonding: General Concepts Ionic Bonds Sections 13.2-13.6 Covalent Bonds Section 13.7 Covalent Bond Energy & Chemical Reactions Section 13.8-13.9 Lewis Structures Sections 13.10-13.12 VSEPR Theory Section

### AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

### COVALENT BONDING. [MH5; Chapter 7]

COVALENT BONDING [MH5; Chapter 7] Covalent bonds occur when electrons are equally shared between two atoms. The electrons are not always equally shared by both atoms; these bonds are said to be polar covalent.

### CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s DRAWING LEWIS STRUCTURES: RULES 1) Draw the skeleton structure for the molecule. The central atom will generally be the least electronegative element

### Chemistry. Unit 5 Review Part 1

Chemistry Unit 5 Review Part 1 Molecules & Compounds 1. What are elements made of? 2. What are compounds made of? 3. What is a pure substance? 4. Why does a pure substance obey the Law of Definite ProporHons?

### Chapter 5 Chemical Compounds. An Introduction to Chemistry by Mark Bishop

Chapter 5 Chemical Compounds An Introduction to Chemistry by Mark Bishop Chapter Map Elements, Compounds, and Mixtures Element: A substance that cannot be chemically converted into simpler substances;

### Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

### CHEM 2323 Unit 1 General Chemistry Review

EM 2323 Unit 1 General hemistry Review I. Atoms A. The Structure of the Atom B. Electron onfigurations. Lewis Dot Structures II. Bonding A. Electronegativity B. Ionic Bonds. ovalent Bonds D. Bond Polarity

### EXPERIMENT 7 Molecular Models. Introduction

EXPERIMENT 7 Molecular Models Introduction The study of molecular geometry plays a fundamental role in chemistry and biology. You have already encountered the simple but powerful VSEPR model for predicting