# Flat Clustering K-Means Algorithm

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Flat Clustering K-Means Algorithm 1. Purpose. Clustering algorithms group a set of documents into subsets or clusters. The cluster algorithms goal is to create clusters that are coherent internally, but clearly different from each other. In other words, documents within a cluster should be as similar as possible; and documents in one cluster should be as dissimilar as possible from documents in other clusters. Clustering is the most common form of unsupervised learning. No supervision means that there is no human expert who has assigned documents to classes. In clustering, it is the distribution and makeup of the data that will determine cluster membership. An example is in figure 1. It is visually clear that there are three distinct clusters of points. The difference between clustering and classification may not seem great at first. After all, in both cases we have a partition of a set of documents into groups. But as we will see that problems are fundamentally different. Classification is a form of supervised learning. Our goal is to replicate a categorical distinction that a human supervisor imposes on the data. In unsupervised learning, of which clustering is the most important example, we have no such teacher to guide us. The key input to a clustering algorithm is the distance measure. In Figure 1, the distance measure is distance in the two-dimensional(2d) plane. This measure suggests three different clusters in the figure. In document clustering, the distance measure is often Euclidean distance. Different distance measures give rise to different clusterings. Thus, the distance measure is an important means by which we can influence the outcome of clustering. Flat clustering creates a flat set of clusters without any explicit structure that flat clustering would relate clusters to each other. Figure 1: An example of a data set with a clear cluster structure. A second important distinction can be made between hard and soft clustering

2 algorithms. Hard clustering computes a hard assignment each document is a member of exactly one cluster. The assignment of soft clustering algorithms is soft a document s assignment is a distribution over all clusters. In a soft assignment, a document has fractional membership in several clusters. Latent semantic indexing, a form of dimensionality reduction, is a soft clustering algorithm. This laboratory motivates the use of clustering in information retrieval by introducing a number of applications, defines the problem we are trying to solve in clustering, and discusses measures for evaluating cluster quality. It then describes the K means flat clustering algorithm,,and the expectation maximization (or EM) algorithm, a soft clustering algorithm. K-means is perhaps the most widely used flat clustering algorithm because of its simplicity and efficiency. The EM algorithm is a generalization of K-means and can be applied to a large variety of document representations and distributions. 2. Problem statement We can define the goal in hard flat clustering as follows. Given (i) a set of documents D ={d1,...,dn}, (ii) a desired number of clusters K (iii) an objective function that evaluates the quality of a clustering we want to compute an assignment γ : D {1,...,K} that minimizes (or, in other cases, maximizes) the objective function. In most cases, we also demand that γ is surjective, that is, that none of the K clusters is empty. The objective function is often defined in terms of similarity or distance between documents. Below, we will see that the objective in K-means clustering is to minimize the average distance between documents and their centroids or, equivalently, to maximize the similarity between documents and their centroids. We use both similarity and distance to talk about relatedness between documents. For documents, the type of similarity we want is usually topic similarity or high values on the same dimensions in the vector space model. For example, documents about China have high values on dimensions like Chinese, Beijing, and Mao whereas documents about the UK tend to have high values for London, Britain,and Queen. We approximate topic similarity with cosine similarity or Euclidean distance in vector space. If we intend to capture similarity of a type other than topic, for example, similarity of language, then a different representation may be appropriate. When computing topic similarity, stop word scan be safely ignored, but they are important cues for separating clusters of English (in which 'the' occurs frequently and 'la' infrequently) and French documents (in which 'the' occurs infrequently and 'la' frequently). A difficult issue in clustering is determining the number of clusters or cardinality of a clustering, which we denote by K. Often K is not hing more than a good guess based on experience or domain knowledge. But for K-means, we will also introduce a heuristic method for choosing K and an attempt to incorporate the selection of K into the objective function. Sometimes the application puts constraints on the range of K. For example, the scatter-gather interface in Figure16.3 could not display more than about K = 10 clusters per layer because of the size and resolution of computer monitors in the early 1990s. Because our goal is to optimize an objective function, clustering is essentially a search

3 problem. The brute force solution would be to enumerate all possible clusterings and pick the best. However, there are exponentially many partitions, so this approach is not feasible. For this reason, most flat clustering algorithms refine an initial partition ingiteratively. If the search starts at an unfavorable initial point, we may miss the global optimum. Finding a good starting point is therefore another important problem we have to solve in flat clustering. 3. K-means K-means is the most important flat clustering algorithm. Its objective is to minimize the average squared Euclidean distance of documents from their cluster centers where a cluster center is defined as the mean or centroid # µ of the documents in a cluster ω: centroid The definition assumes that documents are represented as length normalized vectors in a real valued space in the familiar way. The ideal clustering K-means is a sphere with the centroid as its center of gravity. Ideally, the clusters should not overlap. Our desiderata for training set in clustering for which we know which documents should be in the same cluster classes in Rocchio classification were the same. The difference is that we have no labeled A measure of how well the centroids represent the members of their clusters is the residual sum of squares or RSS, the squared distance of each vector residual sum of squares from its centroids summed over all vectors:

4 RSS is the objective function in K-means and our goal is to minimize it. Because N is fixed, minimizing RSS is equivalent to minimizing the average squared distance, a measure of how well centroids represent their documents. The first step of K-means is to select as initial cluster centers K randomly selected documents, the seeds. The algorithm then moves the cluster centers seed around in space to minimize RSS. As shown in Figure16.5, this is done iteratively by repeating two steps until a stopping criterion is met: Reassigning documents to the cluster with the closest centroid and recomputing each centroid based on the current members of its cluster. Figure16.6 shows snapshots from nine iterations of the K-means algorithm for a set of points. The centroid column of Table17.2 (page364) shows examples of centroids. We can apply one of the following termination conditions. A fixed number of iterations I has been completed. This condition limits The runtime of the clustering algorithm, but in some cases the quality of the clustering will be poor because of an insufficient number of iterations.

5 Assignment of documents to clusters (the partitioning function γ ) does not change between iterations. Except for cases with a bad local minimum, this produces a good clustering, but run-time may be unacceptably long. Terminate when the decrease in RSS falls below a threshold θ. For small θ, this indicates that we are close to convergence. Again, we need to combine it with a bound on the

6 number of iterations to prevent very long run-times. We now show that K-means converges by proving that RSS monotonically decreases in each iteration. We will use decrease in the meaning decrease or does not change in this section. First, RSS decreases in the reassignment step; each vector is assigned to the closest centroid, so the distance it contributes to RSS decreases. Second, it decreases in the re-computation step because the new centroid is the vector v for which RSSk reaches its minimum. where xm and vm are the mth components of their respective vectors. Setting the partial derivative to zero, we get: which is the component wise definition of the centroid. Thus, we minimize RSSk when the old centroid is replaced with the new centroid. RSS, the sum of the RSSk, must then also decrease during recomputation. Because there is only a finite set of possible clusterings, a monotonically decreasing algorithm will eventually arrive at a (local) minimum. Take care, however, to break ties consistently, for example, by assigning a document to the cluster with the lowest index if there are several equidistant centroids. Otherwise, the algorithm can cycle forever in a loop of clusterings that have the same cost. Although this proves the convergence of K-means, there is unfortunately no guarantee that a global minimum in the objective function will be reached. This is a particular problem if a document set contains many outliers, documents that are far from any other documents and therefore do not fit well into any cluster. Frequently, if an outlier is chosen as an initial seed, then no other vector is assigned to it during subsequent iterations. Thus, we end up with a singleton cluster (a cluster with only one document) even though there singleton cluster is probably a clustering with lower RSS.

7 Figure 3: The outcome of clustering in K-means depends on the initial seeds. For seeds d2 and d5, K-means converges to {{d1,d2,d3}, {d4,d5,d6}},a suboptimal clustering. For seeds d2 and d3, it converges to {{d1,d2,d4,d5}, {d3,d6}},the global optimum for K = 2. Effective heuristics for seed selection include (i) excluding outliers from the seed set;(ii)trying out multiple starting points and choosing the clustering with lowest cost; and (iii) obtaining seeds from another method such as hierarchical clustering. Because deterministic hierarchical clustering methods are more predictable than K-means, a hierarchical clustering of a small random sample of size ik (e.g., for i = 5 or i = 10)often provides good seeds. Other initialization methods compute seeds that are not selected from the vectors to be clustered. A robust method that works well for a large variety of document distributions is to select i (e.g., i = 10) random vectors for each cluster and use their centroid as the seed for this cluster. What is the time complexity of K-means? Most of the time is spent on computing vector distances. One such operation costs #(M). The reassignment step computes KN distances, so its overall complexity is #(KNM). In the re-computation step, each vector gets added to a centroid once, so the complexity of this step is #(NM). For a fixed number of iterations I, the overall complexity is therefore #(IKNM).Thus, K-means is linear in all relevant factors: iterations, number of clusters, number of vectors, and dimensionality of the space. This means that K-means is more efficient than the hierarchical algorithms. We had to fix the number of iterations I, which can be tricky in practice. But in most cases, K-means quickly reaches either complete convergence or a clustering that is close to convergence. In the latter case, a few documents would switch membership if further iterations were computed, but this has a small effect on the overall quality of the clustering. There is one subtlety in the preceding argument. Even a linear algorithm can be quite slow if one of the arguments of #(...) is large, and M usually is large. High dimensionality is not a problem for computing the distance of two documents. Their vectors are sparse, so that only a small fraction of the theoretically possible M component wise differences need to be computed. Centroids, however, are dense; they pool all terms that occur in any of the documents of their clusters. As a result, distance computations are time consuming in a naive implementation of K-means. But there are simple and effective heuristics for making centroid document similarities as fast to compute as document document similarities. Truncating centroids to the most significant k terms (e.g., k = 1,000) hardly decreases cluster quality while achieving a significant speedup of the reassignment step.

8 The same efficiency problem is addressed by K-medoids, a variant of K-means that computes medoids instead of centroids as cluster centers. We define the medoid of a cluster as the document vector that is closest to the medoid centroid. Since medoids are sparse document vectors, distance computations are fast. 4. Working example using Weka 1. Under the Process tab in Experimenter window, press Open File; 2. Select <path_to_weka>/data/weather.arff or any other input data 3. The attributes and their possible values for the relation weather are as outlook {sunny, overcast, temperature humidity windy {TRUE, play {yes, no} 4. Under the Cluster tab, tick off the Use training set combo box and press start. 5. The output of the clustering is as follows: Number of iterations: 3 Within cluster sum of squared errors: Missing values globally replaced with mean/mode Cluster centroids: Cluster# Attribute Full Data 0 1 (14) (9) (5) ============================================== outlook sunny sunny overcast temperature humidity windy FALSE FALSE TRUE play yes yes yes Hereafter, we have 2 clusters. The fist cluster's centroid is represented by the vector on the (0) column, the second cluster is represented by the vector on the last column, and the mean of all the data is presented on the first column.

9 5. Real world clustering examples 5.1 Clustering of wines Being given a database containing categories of wine, described by their properties, we should be able to create some clusters of wine categories, splitting them by major characteristics Clustering of students in a group Being given a database of students from a group, we should be able to create 4 clusters named : Weak, Normal, Smart, Outstanding based on their grades on different disciplines. After the clustering is done, we can calculate the distance between a student and a cluster centroid 6. Assignments 6.1 Being given the following relation: Student(Name, grademath, gradeprogramming, gradephysics, gradeenglish, gradeoverall), create an arff file containing at least 15 instances, load it into Weka, and apply k-means clustering to it. Also cluster the instances without Weka, and compare the results. Pick different initial cluster centroids and compare the results. 6.2 Also create an arff file according to the table with wine instances, load it into Weka and see the results after applying k-means clustering. 6.3 *Develop a C program that clusters a planar set P of m=3k points into k triangles such that the sum of all triangle circumferences is minimized. 6.4 **Develop a C program that clusters m = nk points on a line into k clusters of equal size, i.e. a balanced clustering, with a minimum sum of all distances between points of the same subset consists of k disjoint segments of the line each containing n points.

### Information Retrieval and Web Search Engines

Information Retrieval and Web Search Engines Lecture 7: Document Clustering December 10 th, 2013 Wolf-Tilo Balke and Kinda El Maarry Institut für Informationssysteme Technische Universität Braunschweig

### Clustering. Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016

Clustering Danilo Croce Web Mining & Retrieval a.a. 2015/201 16/03/2016 1 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate data attributes with

### Social Media Mining. Data Mining Essentials

Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

### K-Means Clustering Tutorial

K-Means Clustering Tutorial By Kardi Teknomo,PhD Preferable reference for this tutorial is Teknomo, Kardi. K-Means Clustering Tutorials. http:\\people.revoledu.com\kardi\ tutorial\kmean\ Last Update: July

### Cluster Analysis: Basic Concepts and Algorithms

Cluster Analsis: Basic Concepts and Algorithms What does it mean clustering? Applications Tpes of clustering K-means Intuition Algorithm Choosing initial centroids Bisecting K-means Post-processing Strengths

### UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi-110 012 dcmishra@iasri.res.in What is Learning? "Learning denotes changes in a system that enable

### Unsupervised learning: Clustering

Unsupervised learning: Clustering Salissou Moutari Centre for Statistical Science and Operational Research CenSSOR 17 th September 2013 Unsupervised learning: Clustering 1/52 Outline 1 Introduction What

### Chapter 7. Cluster Analysis

Chapter 7. Cluster Analysis. What is Cluster Analysis?. A Categorization of Major Clustering Methods. Partitioning Methods. Hierarchical Methods 5. Density-Based Methods 6. Grid-Based Methods 7. Model-Based

### Unsupervised Learning and Data Mining. Unsupervised Learning and Data Mining. Clustering. Supervised Learning. Supervised Learning

Unsupervised Learning and Data Mining Unsupervised Learning and Data Mining Clustering Decision trees Artificial neural nets K-nearest neighbor Support vectors Linear regression Logistic regression...

### ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING)

ARTIFICIAL INTELLIGENCE (CSCU9YE) LECTURE 6: MACHINE LEARNING 2: UNSUPERVISED LEARNING (CLUSTERING) Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Preliminaries Classification and Clustering Applications

### Cluster Analysis: Basic Concepts and Algorithms

8 Cluster Analysis: Basic Concepts and Algorithms Cluster analysis divides data into groups (clusters) that are meaningful, useful, or both. If meaningful groups are the goal, then the clusters should

### K-Means Cluster Analysis. Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1

K-Means Cluster Analsis Chapter 3 PPDM Class Tan,Steinbach, Kumar Introduction to Data Mining 4/18/4 1 What is Cluster Analsis? Finding groups of objects such that the objects in a group will be similar

### Clustering. 15-381 Artificial Intelligence Henry Lin. Organizing data into clusters such that there is

Clustering 15-381 Artificial Intelligence Henry Lin Modified from excellent slides of Eamonn Keogh, Ziv Bar-Joseph, and Andrew Moore What is Clustering? Organizing data into clusters such that there is

### DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

### Clustering Very Large Data Sets with Principal Direction Divisive Partitioning

Clustering Very Large Data Sets with Principal Direction Divisive Partitioning David Littau 1 and Daniel Boley 2 1 University of Minnesota, Minneapolis MN 55455 littau@cs.umn.edu 2 University of Minnesota,

### Cluster Analysis: Basic Concepts and Methods

10 Cluster Analysis: Basic Concepts and Methods Imagine that you are the Director of Customer Relationships at AllElectronics, and you have five managers working for you. You would like to organize all

### Clustering. Adrian Groza. Department of Computer Science Technical University of Cluj-Napoca

Clustering Adrian Groza Department of Computer Science Technical University of Cluj-Napoca Outline 1 Cluster Analysis What is Datamining? Cluster Analysis 2 K-means 3 Hierarchical Clustering What is Datamining?

### Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analysis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 by Tan, Steinbach, Kumar 1 What is Cluster Analysis? Finding groups of objects such that the objects in a group will

### Data Mining Project Report. Document Clustering. Meryem Uzun-Per

Data Mining Project Report Document Clustering Meryem Uzun-Per 504112506 Table of Content Table of Content... 2 1. Project Definition... 3 2. Literature Survey... 3 3. Methods... 4 3.1. K-means algorithm...

### Extend Table Lens for High-Dimensional Data Visualization and Classification Mining

Extend Table Lens for High-Dimensional Data Visualization and Classification Mining CPSC 533c, Information Visualization Course Project, Term 2 2003 Fengdong Du fdu@cs.ubc.ca University of British Columbia

### Machine Learning using MapReduce

Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

### Supervised and unsupervised learning - 1

Chapter 3 Supervised and unsupervised learning - 1 3.1 Introduction The science of learning plays a key role in the field of statistics, data mining, artificial intelligence, intersecting with areas in

### K-means Clustering Technique on Search Engine Dataset using Data Mining Tool

International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 6 (2013), pp. 505-510 International Research Publications House http://www. irphouse.com /ijict.htm K-means

### Cluster analysis with SPSS: K-Means Cluster Analysis

analysis with SPSS: K-Means Analysis analysis is a type of data classification carried out by separating the data into groups. The aim of cluster analysis is to categorize n objects in k (k>1) groups,

### SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING

AAS 07-228 SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING INTRODUCTION James G. Miller * Two historical uncorrelated track (UCT) processing approaches have been employed using general perturbations

### Monday Morning Data Mining

Monday Morning Data Mining Tim Ruhe Statistische Methoden der Datenanalyse Outline: - data mining - IceCube - Data mining in IceCube Computer Scientists are different... Fakultät Physik Fakultät Physik

### Practical Introduction to Machine Learning and Optimization. Alessio Signorini <alessio.signorini@oneriot.com>

Practical Introduction to Machine Learning and Optimization Alessio Signorini Everyday's Optimizations Although you may not know, everybody uses daily some sort of optimization

### Clustering Connectionist and Statistical Language Processing

Clustering Connectionist and Statistical Language Processing Frank Keller keller@coli.uni-sb.de Computerlinguistik Universität des Saarlandes Clustering p.1/21 Overview clustering vs. classification supervised

### CLUSTER ANALYSIS FOR SEGMENTATION

CLUSTER ANALYSIS FOR SEGMENTATION Introduction We all understand that consumers are not all alike. This provides a challenge for the development and marketing of profitable products and services. Not every

### Neural Networks Lesson 5 - Cluster Analysis

Neural Networks Lesson 5 - Cluster Analysis Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm michele.scarpiniti@uniroma1.it Rome, 29

### Data Clustering. Dec 2nd, 2013 Kyrylo Bessonov

Data Clustering Dec 2nd, 2013 Kyrylo Bessonov Talk outline Introduction to clustering Types of clustering Supervised Unsupervised Similarity measures Main clustering algorithms k-means Hierarchical Main

### DEA implementation and clustering analysis using the K-Means algorithm

Data Mining VI 321 DEA implementation and clustering analysis using the K-Means algorithm C. A. A. Lemos, M. P. E. Lins & N. F. F. Ebecken COPPE/Universidade Federal do Rio de Janeiro, Brazil Abstract

### Chapter ML:XI (continued)

Chapter ML:XI (continued) XI. Cluster Analysis Data Mining Overview Cluster Analysis Basics Hierarchical Cluster Analysis Iterative Cluster Analysis Density-Based Cluster Analysis Cluster Evaluation Constrained

### A comparison of various clustering methods and algorithms in data mining

Volume :2, Issue :5, 32-36 May 2015 www.allsubjectjournal.com e-issn: 2349-4182 p-issn: 2349-5979 Impact Factor: 3.762 R.Tamilselvi B.Sivasakthi R.Kavitha Assistant Professor A comparison of various clustering

### Cluster Analysis. Isabel M. Rodrigues. Lisboa, 2014. Instituto Superior Técnico

Instituto Superior Técnico Lisboa, 2014 Introduction: Cluster analysis What is? Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from

### Efficient Algorithms for Creating Product Catalogs *

Efficient Algorithms for Creating Product Catalogs * Michael Steinbach, George Karypis, and Vipin Kumar University of Minnesota, Army HPC Research Center {steinbac, karypis, kumar}@cs.umn.edu Technical

### Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques

Comparision of k-means and k-medoids Clustering Algorithms for Big Data Using MapReduce Techniques Subhashree K 1, Prakash P S 2 1 Student, Kongu Engineering College, Perundurai, Erode 2 Assistant Professor,

### Standardization and Its Effects on K-Means Clustering Algorithm

Research Journal of Applied Sciences, Engineering and Technology 6(7): 399-3303, 03 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 03 Submitted: January 3, 03 Accepted: February 5, 03

### Data Mining K-Clustering Problem

Data Mining K-Clustering Problem Elham Karoussi Supervisor Associate Professor Noureddine Bouhmala This Master s Thesis is carried out as a part of the education at the University of Agder and is therefore

### Medical Information Management & Mining. You Chen Jan,15, 2013 You.chen@vanderbilt.edu

Medical Information Management & Mining You Chen Jan,15, 2013 You.chen@vanderbilt.edu 1 Trees Building Materials Trees cannot be used to build a house directly. How can we transform trees to building materials?

### STATISTICA. Clustering Techniques. Case Study: Defining Clusters of Shopping Center Patrons. and

Clustering Techniques and STATISTICA Case Study: Defining Clusters of Shopping Center Patrons STATISTICA Solutions for Business Intelligence, Data Mining, Quality Control, and Web-based Analytics Table

Cluster Analysis: Advanced Concepts and dalgorithms Dr. Hui Xiong Rutgers University Introduction to Data Mining 08/06/2006 1 Introduction to Data Mining 08/06/2006 1 Outline Prototype-based Fuzzy c-means

### Clustering. Chapter 7. 7.1 Introduction to Clustering Techniques. 7.1.1 Points, Spaces, and Distances

240 Chapter 7 Clustering Clustering is the process of examining a collection of points, and grouping the points into clusters according to some distance measure. The goal is that points in the same cluster

### Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

### Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

### Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

### SCAN: A Structural Clustering Algorithm for Networks

SCAN: A Structural Clustering Algorithm for Networks Xiaowei Xu, Nurcan Yuruk, Zhidan Feng (University of Arkansas at Little Rock) Thomas A. J. Schweiger (Acxiom Corporation) Networks scaling: #edges connected

### Clustering UE 141 Spring 2013

Clustering UE 141 Spring 013 Jing Gao SUNY Buffalo 1 Definition of Clustering Finding groups of obects such that the obects in a group will be similar (or related) to one another and different from (or

### Data Mining 資 料 探 勘. 分 群 分 析 (Cluster Analysis)

Data Mining 資 料 探 勘 Tamkang University 分 群 分 析 (Cluster Analysis) DM MI Wed,, (:- :) (B) Min-Yuh Day 戴 敏 育 Assistant Professor 專 任 助 理 教 授 Dept. of Information Management, Tamkang University 淡 江 大 學 資

### An Introduction to Cluster Analysis for Data Mining

An Introduction to Cluster Analysis for Data Mining 10/02/2000 11:42 AM 1. INTRODUCTION... 4 1.1. Scope of This Paper... 4 1.2. What Cluster Analysis Is... 4 1.3. What Cluster Analysis Is Not... 5 2. OVERVIEW...

### Knowledge-based systems and the need for learning

Knowledge-based systems and the need for learning The implementation of a knowledge-based system can be quite difficult. Furthermore, the process of reasoning with that knowledge can be quite slow. This

### Classifying Large Data Sets Using SVMs with Hierarchical Clusters. Presented by :Limou Wang

Classifying Large Data Sets Using SVMs with Hierarchical Clusters Presented by :Limou Wang Overview SVM Overview Motivation Hierarchical micro-clustering algorithm Clustering-Based SVM (CB-SVM) Experimental

### Dynamical Clustering of Personalized Web Search Results

Dynamical Clustering of Personalized Web Search Results Xuehua Shen CS Dept, UIUC xshen@cs.uiuc.edu Hong Cheng CS Dept, UIUC hcheng3@uiuc.edu Abstract Most current search engines present the user a ranked

### Data Mining. Cluster Analysis: Advanced Concepts and Algorithms

Data Mining Cluster Analysis: Advanced Concepts and Algorithms Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 More Clustering Methods Prototype-based clustering Density-based clustering Graph-based

### Car Insurance. Jan Tomášek Štěpán Havránek Michal Pokorný

Car Insurance Jan Tomášek Štěpán Havránek Michal Pokorný Competition details Jan Tomášek Official text As a customer shops an insurance policy, he/she will receive a number of quotes with different coverage

### Lecture 6 Online and streaming algorithms for clustering

CSE 291: Unsupervised learning Spring 2008 Lecture 6 Online and streaming algorithms for clustering 6.1 On-line k-clustering To the extent that clustering takes place in the brain, it happens in an on-line

### There are a number of different methods that can be used to carry out a cluster analysis; these methods can be classified as follows:

Statistics: Rosie Cornish. 2007. 3.1 Cluster Analysis 1 Introduction This handout is designed to provide only a brief introduction to cluster analysis and how it is done. Books giving further details are

### CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing

CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate

### Statistical Databases and Registers with some datamining

Unsupervised learning - Statistical Databases and Registers with some datamining a course in Survey Methodology and O cial Statistics Pages in the book: 501-528 Department of Statistics Stockholm University

### An Ameliorated Partitioning Clustering Algorithm for Large Data Sets

An Ameliorated Partitioning Clustering Algorithm for Large Data Sets Raghavi Chouhan 1, Abhishek Chauhan 2 MTech Scholar, CSE department, NRI Institute of Information Science and Technology, Bhopal, India

### Environmental Remote Sensing GEOG 2021

Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class

### Constrained Clustering of Territories in the Context of Car Insurance

Constrained Clustering of Territories in the Context of Car Insurance Samuel Perreault Jean-Philippe Le Cavalier Laval University July 2014 Perreault & Le Cavalier (ULaval) Constrained Clustering July

### 8. Machine Learning Applied Artificial Intelligence

8. Machine Learning Applied Artificial Intelligence Prof. Dr. Bernhard Humm Faculty of Computer Science Hochschule Darmstadt University of Applied Sciences 1 Retrospective Natural Language Processing Name

### Comparative Analysis of EM Clustering Algorithm and Density Based Clustering Algorithm Using WEKA tool.

International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 9, Issue 8 (January 2014), PP. 19-24 Comparative Analysis of EM Clustering Algorithm

### Research on Clustering Analysis of Big Data Yuan Yuanming 1, 2, a, Wu Chanle 1, 2

Advanced Engineering Forum Vols. 6-7 (2012) pp 82-87 Online: 2012-09-26 (2012) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/aef.6-7.82 Research on Clustering Analysis of Big Data

### An Analysis on Density Based Clustering of Multi Dimensional Spatial Data

An Analysis on Density Based Clustering of Multi Dimensional Spatial Data K. Mumtaz 1 Assistant Professor, Department of MCA Vivekanandha Institute of Information and Management Studies, Tiruchengode,

### Data Mining and Knowledge Discovery in Databases (KDD) State of the Art. Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland

Data Mining and Knowledge Discovery in Databases (KDD) State of the Art Prof. Dr. T. Nouri Computer Science Department FHNW Switzerland 1 Conference overview 1. Overview of KDD and data mining 2. Data

### Efficient Data Structures for Decision Diagrams

Artificial Intelligence Laboratory Efficient Data Structures for Decision Diagrams Master Thesis Nacereddine Ouaret Professor: Supervisors: Boi Faltings Thomas Léauté Radoslaw Szymanek Contents Introduction...

### Big Data Analytics CSCI 4030

High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

### Map-Reduce for Machine Learning on Multicore

Map-Reduce for Machine Learning on Multicore Chu, et al. Problem The world is going multicore New computers - dual core to 12+-core Shift to more concurrent programming paradigms and languages Erlang,

### A Relevant Document Information Clustering Algorithm for Web Search Engine

A Relevant Document Information Clustering Algorithm for Web Search Engine Y.SureshBabu, K.Venkat Mutyalu, Y.A.Siva Prasad Abstract Search engines are the Hub of Information, The advances in computing

### Analytics on Big Data

Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis

### Data Mining on Streams

Data Mining on Streams Using Decision Trees CS 536: Machine Learning Instructor: Michael Littman TA: Yihua Wu Outline Introduction to data streams Overview of traditional DT learning ALG DT learning ALGs

### PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION Introduction In the previous chapter, we explored a class of regression models having particularly simple analytical

### Cluster Analysis using R

Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the objects in the same cluster are more similar (in some sense or another) to each other

### A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization

A Partially Supervised Metric Multidimensional Scaling Algorithm for Textual Data Visualization Ángela Blanco Universidad Pontificia de Salamanca ablancogo@upsa.es Spain Manuel Martín-Merino Universidad

### Hadoop SNS. renren.com. Saturday, December 3, 11

Hadoop SNS renren.com Saturday, December 3, 11 2.2 190 40 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December 3, 11 Saturday, December

### FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT MINING SYSTEM

International Journal of Innovative Computing, Information and Control ICIC International c 0 ISSN 34-48 Volume 8, Number 8, August 0 pp. 4 FUZZY CLUSTERING ANALYSIS OF DATA MINING: APPLICATION TO AN ACCIDENT

### Embedded Systems 20 BF - ES

Embedded Systems 20-1 - Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:

### Comparison and Analysis of Various Clustering Methods in Data mining On Education data set Using the weak tool

Comparison and Analysis of Various Clustering Metho in Data mining On Education data set Using the weak tool Abstract:- Data mining is used to find the hidden information pattern and relationship between

### OUTLIER ANALYSIS. Data Mining 1

OUTLIER ANALYSIS Data Mining 1 What Are Outliers? Outlier: A data object that deviates significantly from the normal objects as if it were generated by a different mechanism Ex.: Unusual credit card purchase,

### Large-Scale Data Sets Clustering Based on MapReduce and Hadoop

Journal of Computational Information Systems 7: 16 (2011) 5956-5963 Available at http://www.jofcis.com Large-Scale Data Sets Clustering Based on MapReduce and Hadoop Ping ZHOU, Jingsheng LEI, Wenjun YE

### Clustering. Data Mining. Abraham Otero. Data Mining. Agenda

Clustering 1/46 Agenda Introduction Distance K-nearest neighbors Hierarchical clustering Quick reference 2/46 1 Introduction It seems logical that in a new situation we should act in a similar way as in

### Embedded Systems 20 REVIEW. Multiprocessor Scheduling

Embedded Systems 0 - - Multiprocessor Scheduling REVIEW Given n equivalent processors, a finite set M of aperiodic/periodic tasks find a schedule such that each task always meets its deadline. Assumptions:

### EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set

EM Clustering Approach for Multi-Dimensional Analysis of Big Data Set Amhmed A. Bhih School of Electrical and Electronic Engineering Princy Johnson School of Electrical and Electronic Engineering Martin

### Chapter 6: Episode discovery process

Chapter 6: Episode discovery process Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 1 6. Episode discovery process The knowledge discovery process KDD process of analyzing

### Introduction to Clustering

1/57 Introduction to Clustering Mark Johnson Department of Computing Macquarie University 2/57 Outline Supervised versus unsupervised learning Applications of clustering in text processing Evaluating clustering

### R-trees. R-Trees: A Dynamic Index Structure For Spatial Searching. R-Tree. Invariants

R-Trees: A Dynamic Index Structure For Spatial Searching A. Guttman R-trees Generalization of B+-trees to higher dimensions Disk-based index structure Occupancy guarantee Multiple search paths Insertions

### Predict the Popularity of YouTube Videos Using Early View Data

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

### HES-SO Master of Science in Engineering. Clustering. Prof. Laura Elena Raileanu HES-SO Yverdon-les-Bains (HEIG-VD)

HES-SO Master of Science in Engineering Clustering Prof. Laura Elena Raileanu HES-SO Yverdon-les-Bains (HEIG-VD) Plan Motivation Hierarchical Clustering K-Means Clustering 2 Problem Setup Arrange items

### Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Data Mining Cluster Analsis: Basic Concepts and Algorithms Lecture Notes for Chapter 8 Introduction to Data Mining b Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining /8/ What is Cluster

### Segmentation of stock trading customers according to potential value

Expert Systems with Applications 27 (2004) 27 33 www.elsevier.com/locate/eswa Segmentation of stock trading customers according to potential value H.W. Shin a, *, S.Y. Sohn b a Samsung Economy Research

### Methodology for Emulating Self Organizing Maps for Visualization of Large Datasets

Methodology for Emulating Self Organizing Maps for Visualization of Large Datasets Macario O. Cordel II and Arnulfo P. Azcarraga College of Computer Studies *Corresponding Author: macario.cordel@dlsu.edu.ph

### Large-scale Data Mining: MapReduce and Beyond Part 2: Algorithms. Spiros Papadimitriou, IBM Research Jimeng Sun, IBM Research Rong Yan, Facebook

Large-scale Data Mining: MapReduce and Beyond Part 2: Algorithms Spiros Papadimitriou, IBM Research Jimeng Sun, IBM Research Rong Yan, Facebook Part 2:Mining using MapReduce Mining algorithms using MapReduce

### CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

### Constrained curve and surface fitting

Constrained curve and surface fitting Simon Flöry FSP-Meeting Strobl (June 20, 2006), floery@geoemtrie.tuwien.ac.at, Vienna University of Technology Overview Introduction Motivation, Overview, Problem

### Going Big in Data Dimensionality:

LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Going Big in Data Dimensionality: Challenges and Solutions for Mining High Dimensional Data Peer Kröger Lehrstuhl für