parametric spline curves


 Elizabeth Hardy
 2 years ago
 Views:
Transcription
1 parametric spline curves 1
2 curves used in many contexts fonts (2D) animation paths (3D) shape modeling (3D) different representation implicit curves parametric curves (mostly used) 2D and 3D curves are mostly the same use vector notation to simplify treatment 2
3 implicit representation implicit curve representation f(p) = 0 e.g. XY circle: f(p) = 0 x 2 + y 2 r 2 = 0 3
4 parametric representation parametric curve representation P(u) = ( f (u), (u), (u)) x f y f z e.g. XY circle: P(u) = (rcos θ, rsin θ,0) 4
5 parametric representation goals when defining smoothness efficiency local control f curve controls only affect a piece of the curve predictable behaviour easy to use for designers 5
6 splines 6
7 splines splines: piecewise parametric polynomials split curve into segments at intervals t s uniform splines: split at integer intervals each segment P(t) N (t ) P s P s is a polynomial: smooth and efficient piecewise curve, i.e. splitting: local control t s t s 0,1,2 P(t) = P s (t t s ) with t [0, N), t t s [0,1) 7
8 splines intuition: define segment by "blending" control points intuition: join segments to from a curve 8
9 splines approximating: guided by control points interpolating: pass through control points 9
10 defining splines pick segment interpolating function smoothness pick segment control points local control impose constraints to define segments join segments together ensure smoothness 10
11 defining splines smoothness described by degree of continuity C 0 : same position at each side of joints C 1 : same tangent at each side of joints C 2 : same curvature at each side of joints C n n : th derivative defined at joints 11
12 defining splines local control: control points affects the curve locally easy to control, true for all splines 12
13 defining splines convex hull: smallest convex region enclosing all points predictable and efficient, but only some splines 13
14 defining splines affine invariance: transform controls equiv. transform spline efficient, all splines 14
15 linear splines 15
16 linear splines segment: linear function P(t) = ta + b with t [0,1) control points: end points P(0) = P 0 and P(1) = P 1 P(t) = (1 t) P 0 + tp 1 16
17 linear splines blending functions: interpret as blending control points P(t) = b 0 (t) P 0 + b 1 (t) P 1 b 0 (t) = (1 t) b 1 (t) = t 17
18 linear splines joining segments: impose C 0 continuity segments share endpoints continuity only for straight lines C 1 (1) = (0) = P 0 P 1 P 0 1 P
19 bezier cubic splines 19
20 bezier cubic splines segment: cubic function P(t) = a + b + tc + d with t [0,1) t 3 t 2, control points: end points P 0 P 3 P (0) P 1 P 0 and (1) and tangents P P 2 P 3 20
21 bezier cubic splines blending functions: Bernstein polynomials P(t) = b 0 (t) P 0 + b 1 (t) P 1 + b 2 (t) P 2 + b 3 (t) P 3 (t) b 0 (t) b 1 (t) b 2 (t) b 3 = (1 t) 3 = 3t(1 t) 2 = 3 t 2 (1 t) = t 3 21
22 bezier cubic splines joining segments: impose C 0 continuity segments share endpoints continuity by collinear tangents C 1 (1) = (0) = P 0 P 1 P 0 3 P
23 bezier cubic splines properties: local control comes from the formulation by segments for each segment, curve defined by 4 control points 23
24 bezier cubic splines properties: convex hull each segment is convex sum of control points since i b i b i (t) 0 and (t) = 1 24
25 bezier cubic splines properties: affine invariance X(P(t)) = MP(t) + t = M( ) = (t) + t = i b i P i +( = (t)m (t))t = i b i P i i = (t)(m + t) = b i (t)x( P i ) i b i b i P i i 25
26 rendering splines 26
27 rendering splines tesselation: approximate splines with line segments segments are efficient to draw in hardware and software more segments to provide better approximation uniform tesselation: split interval uniformly t fast to compute and simple to implement generates many segments adaptive tesselation: split recursively until good enough more complex to implement fewer segments with guaranteed approximation 27
28 uniform tesselation split into K segments uniformly at t k = 1/k 28
29 adaptive tesselation De Casteljau algorithm: recursively split to small splines if flat enough: draw control segments, otherwise split each control segment: Q = ( P + )/2 i i P i+1 29
30 adaptive tesselation De Casteljau algorithm: recursively split to small splines split new segments: split again: = ( + )/2 R i Q i Q i+1 S = ( + )/2 R i R i+1 30
31 adaptive tesselation De Casteljau algorithm: recursively split to small splines two Bezier splines:, recurse algorithm as above { P 0, Q 0, R 0,S} {S, R 1, Q 2, P 3 } 31
32 other splines 32
33 other cubic splines types Bezier splines most used today (2D APIs, PDF, fonts) Hermite splines: approximating control: end points and tangents CatmullRom splines: interpolating used very little Bsplines: C 2 continuity at joints impose 3 continuity constraints cubic splines can be converted into one another by changing control points 33
34 other spline degree linear and cubic most used can define splines for other polynomial degree e.g. Beziers use Bernestein polynomials of degree n 34
35 other spline functions uniform splines: split segments at integers nonuniform splines: split segments at arbitrary points nonuniform rational Bsplines (NURBS) ratios of Bsplines invariance under perspective can represent conic sections exactly often used in 3D 35
CSE 167: Lecture 13: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011
CSE 167: Introduction to Computer Graphics Lecture 13: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #6 due Friday, Nov 18
More informationComputer Graphics CS 543 Lecture 12 (Part 1) Curves. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)
Computer Graphics CS 54 Lecture 1 (Part 1) Curves Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines and flat surfaces Real world objects include
More informationWe want to define smooth curves:  for defining paths of cameras or objects.  for defining 1D shapes of objects
lecture 10  cubic curves  cubic splines  bicubic surfaces We want to define smooth curves:  for defining paths of cameras or objects  for defining 1D shapes of objects We want to define smooth surfaces
More informationComputer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science  Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: WireFrame Representation Object is represented as as a set of points
More informationCHAPTER 1 Splines and Bsplines an Introduction
CHAPTER 1 Splines and Bsplines an Introduction In this first chapter, we consider the following fundamental problem: Given a set of points in the plane, determine a smooth curve that approximates the
More informationQUADRATIC BÉZIER CURVES
OnLine Geometric Modeling Notes QUADRATIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve
More informationFigure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
More informationGeometric Modelling & Curves
Geometric Modelling & Curves Geometric Modeling Creating symbolic models of the physical world has long been a goal of mathematicians, scientists, engineers, etc. Recently technology has advanced sufficiently
More informationModeling Curves and Surfaces
Modeling Curves and Surfaces Graphics I Modeling for Computer Graphics!? 1 How can we generate this kind of objects? Umm!? Mathematical Modeling! S Do not worry too much about your difficulties in mathematics,
More informationWe can display an object on a monitor screen in three different computermodel forms: Wireframe model Surface Model Solid model
CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant
More informationComputer Animation: Art, Science and Criticism
Computer Animation: Art, Science and Criticism Tom Ellman Harry Roseman Lecture 4 Parametric Curve A procedure for distorting a straight line into a (possibly) curved line. The procedure lives in a black
More informationthe points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
More informationCurves and Surfaces. Goals. How do we draw surfaces? How do we specify a surface? How do we approximate a surface?
Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.110.6] Goals How do we draw surfaces? Approximate with polygons Draw polygons
More information(Refer Slide Time: 1:42)
Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture  10 Curves So today we are going to have a new topic. So far
More informationEssential Mathematics for Computer Graphics fast
John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made
More informationBEZIER CURVES AND SURFACES
Department of Applied Mathematics and Computational Sciences University of Cantabria UCCAGD Group COMPUTERAIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias email:
More informationCOMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg
COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg September 28, 2016 ii T. W. Sederberg iii Preface I have taught a course at Brigham Young University titled Computer Aided Geometric Design since 1983.
More information5. GEOMETRIC MODELING
5. GEOMETRIC MODELING Types of Curves and Their Mathematical Representation Types of Surfaces and Their Mathematical Representation Types of Solids and Their Mathematical Representation CAD/CAM Data Exchange
More informationCorollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality
Corollary For equidistant knots, i.e., u i = a + i (ba)/n, we obtain with (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality 120202: ESM4A  Numerical Methods
More informationThe distance of a curve to its control polygon J. M. Carnicer, M. S. Floater and J. M. Peña
The distance of a curve to its control polygon J. M. Carnicer, M. S. Floater and J. M. Peña Abstract. Recently, Nairn, Peters, and Lutterkort bounded the distance between a Bézier curve and its control
More informationContent. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11
Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter
More informationExample Degree Clip Impl. Int Sub. 1 3 2.5 1 10 15 2 3 1.8 1 5 6 3 5 1 1.7 3 5 4 10 1 na 2 4. Table 7.1: Relative computation times
Chapter 7 Curve Intersection Several algorithms address the problem of computing the points at which two curves intersect. Predominant approaches are the Bézier subdivision algorithm [LR80], the interval
More informationDhiren Bhatia Carnegie Mellon University
Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : Inclass final exam Held during class time All students expected to give final this date
More informationDesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design
DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design John L. Lowther and Ching Kuang Shene Programmers: Yuan Zhao and Yan Zhou (ver 1) Budirijanto Purnomo (ver 2) Michigan Technological
More informationPlanar Curve Intersection
Chapter 7 Planar Curve Intersection Curve intersection involves finding the points at which two planar curves intersect. If the two curves are parametric, the solution also identifies the parameter values
More informationDegree Reduction of Interval SB Curves
International Journal of Video&Image Processing and Network Security IJVIPNSIJENS Vol:13 No:04 1 Degree Reduction of Interval SB Curves O. Ismail, Senior Member, IEEE Abstract Ball basis was introduced
More informationParametric Representation of Curves and Surfaces
Parametric Representation of Crves and Srfaces How does the compter compte crves and srfaces? MAE 455 CompterAided Design and Drafting Types of Crve Eqations Implicit Form Explicit Form Parametric Form
More informationEECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
More informationNURBS Drawing Week 5, Lecture 10
CS 430/536 Computer Graphics I NURBS Drawing Week 5, Lecture 10 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University
More informationComputer Aided Design (CAD)
16.810 Engineering Design and Rapid Prototyping Lecture 4 Computer Aided Design (CAD) Instructor(s) Prof. Olivier de Weck January 6, 2005 Plan for Today CAD Lecture (ca. 50 min) CAD History, Background
More informationComputer Aided Design (CAD)
16.810 Engineering Design and Rapid Prototyping Lecture 3a Computer Aided Design (CAD) Instructor(s) Prof. Olivier de Weck January 16, 2007 Plan for Today CAD Lecture (ca. 50 min) CAD History, Background
More informationB2.53R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.
B2.53R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAROFF ANSWER
More informationNURBS Drawing Week 5, Lecture 10
CS 430/536 Computer Graphics I NURBS Drawing Week 5, Lecture 10 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University
More informationParametric Curves, Vectors and Calculus. Jeff Morgan Department of Mathematics University of Houston
Parametric Curves, Vectors and Calculus Jeff Morgan Department of Mathematics University of Houston jmorgan@math.uh.edu Online Masters of Arts in Mathematics at the University of Houston http://www.math.uh.edu/matweb/grad_mam.htm
More informationComputer Graphics. 2.1 Mathematics
2 Computer Graphics What You Will Learn: The objectives of this chapter are quite ambitious; you should refer to the references cited in each Section to get a deeper explanation of the topics presented.
More informationThe Essentials of CAGD
The Essentials of CAGD Chapter 2: Lines and Planes Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/essentialscagd c 2000 Farin & Hansford
More informationTopics in Computer Graphics Chap 14: Tensor Product Patches
Topics in Computer Graphics Chap 14: Tensor Product Patches fall, 2011 University of Seoul School of Computer Science Minho Kim Table of contents Bilinear Interpolation The Direct de Casteljau Algorithm
More information3.5 Spline interpolation
3.5 Spline interpolation Given a tabulated function f k = f(x k ), k = 0,... N, a spline is a polynomial between each pair of tabulated points, but one whose coefficients are determined slightly nonlocally.
More informationCurves and Surfaces for Computer Graphics
David Salomon Curves and Surfaces for Computer Graphics With 207 Figures, 2 in Full Color David Salomon (Emeritus) Department of Computer Science California State University, Northridge Northridge, CA
More informationA Mathematica Package for CAGD and Computer Graphics
A Mathematica Package for CAGD and Computer Graphics Andrés Iglesias 1, Flabio Gutiérrez 1,2 and Akemi Gálvez 1 1 Departament of Applied Mathematics and Computational Sciences University of Cantabria,
More informationChapter 1 Quadratic Equations in One Unknown (I)
Tin Ka Ping Secondary School 015016 F. Mathematics Compulsory Part Teaching Syllabus Chapter 1 Quadratic in One Unknown (I) 1 1.1 Real Number System A Integers B nal Numbers C Irrational Numbers D Real
More informationSpatial Deformations: FFDs, wires, wraps. Karan Singh
Spatial Deformations: FFDs, wires, wraps Karan Singh What are spatial deformations? Functional mapping from. Affine Transformations Nonlinear Deformations Axial Deformations Freeform Deformations Wires
More informationTessellation of Trimmed NURBS Surfaces using Multipass Shader Algorithms on the GPU BACHELOR THESIS. Mark Geiger
Tessellation of Trimmed NURBS Surfaces using Multipass Shader Algorithms on the GPU BACHELOR THESIS Mark Geiger Duale Hochschule BadenWürttemberg Bachelor Thesis Tessellation of Trimmed NURBS Surfaces
More informationNumerical algorithms for curve approximation and novel user oriented interactive tools
UNIVERSITÀ DEGLI STUDI DI BARI Dottorato di Ricerca in Matematica XXI Ciclo A.A. 2008/2009 Settore ScientificoDisciplinare: MAT/08 Analisi Numerica Tesi di Dottorato Numerical algorithms for curve approximation
More informationParametric Curves. (Com S 477/577 Notes) YanBin Jia. Oct 8, 2015
Parametric Curves (Com S 477/577 Notes) YanBin Jia Oct 8, 2015 1 Introduction A curve in R 2 (or R 3 ) is a differentiable function α : [a,b] R 2 (or R 3 ). The initial point is α[a] and the final point
More information2D Geometric Transformations. COMP 770 Fall 2011
2D Geometric Transformations COMP 770 Fall 2011 1 A little quick math background Notation for sets, functions, mappings Linear transformations Matrices Matrixvector multiplication Matrixmatrix multiplication
More informationPiecewise Cubic Splines
280 CHAP. 5 CURVE FITTING Piecewise Cubic Splines The fitting of a polynomial curve to a set of data points has applications in CAD (computerassisted design), CAM (computerassisted manufacturing), and
More informationIntroduction. Goals of geometric modeling
Introduction This class notes are intended for classes in geometric modeling. I intentionnaly wrote these notes in English so that they can be used in many contexts, but also, because I believe that students
More informationA matrix method for degreeraising of Bspline curves *
VOI. 40 NO. 1 SCIENCE IN CHINA (Series E) February 1997 A matrix method for degreeraising of Bspline curves * QIN Kaihuai (%*>/$) (Department of Computer Science and Technology, Tsinghua University,
More informationAlgebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More informationA Geometric Characterization of Parametric Cubic Curves
A Geometric Characterization of Parametric Cubic Curves MAUREEN C. STONE Xerox PARC and TONY D. DEROSE University of Washington In this paper, we analyze planar parametric cubic curves to determine conditions
More information88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
More informationarxiv:cs/ v1 [cs.gr] 22 Mar 2005
arxiv:cs/0503054v1 [cs.gr] 22 Mar 2005 ANALYTIC DEFINITION OF CURVES AND SURFACES BY PARABOLIC BLENDING by A.W. Overhauser Mathematical and Theoretical Sciences Department Scientific Laboratory, Ford Motor
More informationPERFORMANCE OF BÉZIER CURVES RENDERING IN WEB BROWSERS
PERFORMANCE OF BÉZIER CURVES RENDERING IN WEB BROWSERS Abstract By Ammar Hattab APMA2821Q Project Report Prof. Mark Ainsworth Spring 2013 Brown University Bézier curves are used everywhere in graphics,
More informationMethod To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
More informationa = x 1 < x 2 < < x n = b, and a low degree polynomial is used to approximate f(x) on each subinterval. Example: piecewise linear approximation S(x)
Spline Background SPLINE INTERPOLATION Problem: high degree interpolating polynomials often have extra oscillations. Example: Runge function f(x) = 1 1+4x 2, x [ 1, 1]. 1 1/(1+4x 2 ) and P 8 (x) and P
More informationQuaternions. Jason Lawrence CS445: Graphics. Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin
Jason Lawrence CS445: Graphics Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Overview Cross Products and (Skew) Symmetric Matrices Quaternions
More informationParametric Curves (Part 1)
Parametric Curves (Part 1) Jason Lawrence CS445: Graphics Acknowledgment: slides by Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin Parametric Curves and Surfaces Part 1:
More information4. Factor polynomials over complex numbers, describe geometrically, and apply to realworld situations. 5. Determine and apply relationships among syn
I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More informationBROWN UNIVERSITY Department of Computer Science Master's Project CS95M13. "Gestural Controls for Computer Animation" by Scott Snibbe
BROWN UNIVERSITY Department of Computer Science Master's Project CS95M13 "Gestural Controls for Computer Animation" by Scott Snibbe 1 Gestural Controls for Computer Animation by Scott Snibbe Department
More informationanimation animation shape specification as a function of time
animation animation shape specification as a function of time animation representation many ways to represent changes with time intent artistic motion physicallyplausible motion efficiency control typically
More informationPoint Lattices in Computer Graphics and Visualization how signal processing may help computer graphics
Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch
More informationCS 4620 Practicum Programming Assignment 6 Animation
CS 4620 Practicum Programming Assignment 6 Animation out: Friday 14th November 2014 due: : Monday 24th November 2014 1 Introduction In this assignment, we will explore a common topic in animation: key
More informationPlanning Motion Trajectories for Mobile Robots Using Splines
Faculty of Applied Sciences Department of Computer Science Autonomous Intelligent Systems Lab Prof. Dr. Wolfram Burgard Student Project Planning Motion Trajectories for Mobile Robots Using Splines Christoph
More informationGENERALIZED PYTHAGOREAN TRIPLES AND PYTHAGOREAN TRIPLE PRESERVING MATRICES. Mohan Tikoo and Haohao Wang
VOLUME 1, NUMBER 1, 009 3 GENERALIZED PYTHAGOREAN TRIPLES AND PYTHAGOREAN TRIPLE PRESERVING MATRICES Mohan Tikoo and Haohao Wang Abstract. Traditionally, Pythagorean triples (PT) consist of three positive
More informationLinear Models and Conjoint Analysis with Nonlinear Spline Transformations
Linear Models and Conjoint Analysis with Nonlinear Spline Transformations Warren F. Kuhfeld Mark Garratt Abstract Many common data analysis models are based on the general linear univariate model, including
More informationA Novel Fourier Transform Bspline Method for Option Pricing*
A Novel Fourier Transform Bspline Method for Option Pricing* Paper available from SSRN: http://ssrn.com/abstract=2269370 Gareth G. Haslip, FIA PhD Cass Business School, City University London October
More informationanimation shape specification as a function of time
animation 1 animation shape specification as a function of time 2 animation representation many ways to represent changes with time intent artistic motion physicallyplausible motion efficiency typically
More informationCOMPUTERAIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: HIGH LEVEL COMPUTATION PROGRAMS (MATHEMATICA AND MATLAB) ) IN CAGD AND COMPUTER GRAPHICS
Department of Applied Mathematics and Computational Sciences University of Cantabria UCCAGD Group COMPUTERAIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: HIGH LEVEL COMPUTATION PROGRAMS (MATHEMATICA AND
More informationFinite Element Formulation for Plates  Handout 3 
Finite Element Formulation for Plates  Handout 3  Dr Fehmi Cirak (fc286@) Completed Version Definitions A plate is a three dimensional solid body with one of the plate dimensions much smaller than the
More informationFaculty of Information Technology, Mathematics and Electrical Engineering NTNU
NTNU Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering MASTER S THESIS for stud.techn. Kjetil André Johannessen Faculty of Information
More informationLecture Notes, CEng 477
Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make
More informationMath 497C Sep 17, Curves and Surfaces Fall 2004, PSU
Math 497C Sep 17, 2004 1 Curves and Surfaces Fall 2004, PSU Lecture Notes 4 1.9 Curves of Constant Curvature Here we show that the only curves in the plane with constant curvature are lines and circles.
More informationBlender 3D Animation
Bachelor Maths/Physics/Computer Science University ParisSud Digital Imaging Course Blender 3D Animation Christian Jacquemin Introduction to Computer Animation Animation Basics animation consists in changing
More informationLINE INTEGRALS OF VECTOR FUNCTIONS: GREEN S THEOREM. Contents. 2. Green s Theorem 3
LINE INTEGRALS OF VETOR FUNTIONS: GREEN S THEOREM ontents 1. A differential criterion for conservative vector fields 1 2. Green s Theorem 3 1. A differential criterion for conservative vector fields We
More informationMATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More informationWater Flow in. Alex Vlachos, Valve July 28, 2010
Water Flow in Alex Vlachos, Valve July 28, 2010 Outline Goals & Technical Constraints How Artists Create Flow Maps Flowing Normal Maps in Left 4 Dead 2 Flowing Color Maps in Portal 2 Left 4 Dead 2 Goals
More information1 Cubic Hermite Spline Interpolation
cs412: introduction to numerical analysis 10/26/10 Lecture 13: Cubic Hermite Spline Interpolation II Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore 1 Cubic Hermite
More informationInteractive Computer Graphics
Interactive Computer Graphics A TopDown Approach Using OpenGL FIFTH EDITION EDWARD ANGEL UNIVERSITY OF NEW MEXICO PEARSON Addison Wesley Boston San Francisco New York London Toronto Sydney Tokyo Singapore
More informationCalculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum
Calculus C/Multivariate Calculus Advanced Placement G/T Essential Curriculum UNIT I: The Hyperbolic Functions basic calculus concepts, including techniques for curve sketching, exponential and logarithmic
More information1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
More informationSeminar. Path planning using Voronoi diagrams and BSplines. Stefano Martina stefano.martina@stud.unifi.it
Seminar Path planning using Voronoi diagrams and BSplines Stefano Martina stefano.martina@stud.unifi.it 23 may 2016 This work is licensed under a Creative Commons AttributionShareAlike 4.0 International
More informationCOT4501 Spring Homework VI
COT450 Spring 0 Homework VI This assignment has seven problems. The assignment is due in class on Tuesday, April 0, 0. There are seven regular problems and two computer problems (using MATLAB). For written
More informationRealTime Creased Approximate Subdivision Surfaces
RealTime Creased Approximate Subdivision Surfaces Denis Kovacs New York University Jason Mitchell Valve Shanon Drone Valve Denis Zorin New York University Figure : Left: A car model rendered with smooth
More information3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials
3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines
More informationSpline Toolbox Release Notes
Spline Toolbox Release Notes Note The Spline Toolbox 3.1 was released in Webdownloadable form after Release 12.1 was released, but before Release 13. The Spline Toolbox 3.1.1 that is part of Release 13
More informationPolygon Clipping and Filling Week 3, Lecture 5
CS 430/536 Computer Graphics I Polygon Clipping and Filling Week 3, Lecture 5 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science
More informationHYPERSONIC ENTRY AEROSHELL SHAPE OPTIMIZATION
HYPERSONIC ENTRY AEROSHELL SHAPE OPTIMIZATION John E. Theisinger (1), Dr. Robert D. Braun (2) (1) Graduate Research Assistant, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA 303320150 USA,
More informationComputational Geometry. Lecture 1: Introduction and Convex Hulls
Lecture 1: Introduction and convex hulls 1 Geometry: points, lines,... Plane (twodimensional), R 2 Space (threedimensional), R 3 Space (higherdimensional), R d A point in the plane, 3dimensional space,
More informationScientific Data Visualization with Shape Preserving C 1 Rational Cubic Interpolation
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 3, No. 2, 2010, 194212 ISSN 13075543 www.ejpam.com Scientific Data Visualization with Shape Preserving C 1 Rational Cubic Interpolation Malik Zawwar
More informationMathematical Modeling for Game Design
Mathematical Modeling for Game Design Paul Bouthellier and Saeed Dubas Department of Mathematics and Computer Science University of PittsburghTitusville Titusville, PA 16354 FAX: 8148275574 dubasis@pitt.edu
More informationIntroduction to Computer Graphics MariePaule Cani & Estelle Duveau
Introduction to Computer Graphics MariePaule Cani & Estelle Duveau 04/02 Introduction & projective rendering 11/02 Prodedural modeling, Interactive modeling with parametric surfaces 25/02 Introduction
More informationComputational Fluid Dynamics  CFD Francisco Palacios & Markus Widhalm fpalacios@gmail.com, markus.widhalm@dlr.de Basque Center for Applied
Computational Fluid Dynamics  CFD Francisco Palacios & Markus Widhalm fpalacios@gmail.com, markus.widhalm@dlr.de Basque Center for Applied Mathematics (BCAM). February 22nd to 26th, 2010 1 Grid generation
More informationSurface Modeling. Polygon Surfaces. Types: Generating models: Polygon Tables. Set of surface polygons that enclose an object interior
Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Surfaces Set of surface polygons that enclose an object interior Slide 1 Slide 2 Polygon
More informationAccuracy: The contour should accurately fit the image features.
Chapter 6 Contours Edges must be linked into a representation for a region boundary. This representation is called a contour. The contour can be open or closed. Closed contours correspond to region boundaries,
More informationIn what follows, we will focus on Voronoi diagrams in Euclidean space. Later, we will generalize to other distance spaces.
Voronoi Diagrams 4 A city builds a set of post offices, and now needs to determine which houses will be served by which office. It would be wasteful for a postman to go out of their way to make a delivery
More informationEvaluation in Machine Learning (2) Aims. Introduction
Acknowledgements Evaluation in Machine Learning (2) 15s1: COMP9417 Machine Learning and Data Mining School of Computer Science and Engineering, University of New South Wales Material derived from slides
More informationi = 0, 1,, N p(x i ) = f i,
Chapter 4 Curve Fitting We consider two commonly used methods for curve fitting, namely interpolation and least squares For interpolation, we use first polynomials then splines Then, we introduce least
More informationClassification of Fingerprints. Sarat C. Dass Department of Statistics & Probability
Classification of Fingerprints Sarat C. Dass Department of Statistics & Probability Fingerprint Classification Fingerprint classification is a coarse level partitioning of a fingerprint database into smaller
More informationA QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
More information